Examples of Dataset


Examples of org.timepedia.chronoscope.client.Dataset

    // Basic test that verifies that given the same dataset values, an
    // immutable dataset and a mutable dataset (which have different code
    // paths for populating their underlying Array2D objects) produce
    // the same logical dataset state.
   
    Dataset ds = dsFactory.create(request);
    Dataset mutableDs = createMutableDataset(request);
    int numMipLevels = (int)MathUtil.log2(domain.size()) + 1;
    assertEqual(ds, mutableDs, numMipLevels);
  }
View Full Code Here

Examples of org.timepedia.chronoscope.client.Dataset

          throw new RuntimeException("Unknown Style " + style);
        }
        gssContext = gstyle.getGssContext();
      }

      final Dataset ds[] = DataTableParser.parseDatasets(table, dataset2Column);
      final Marker ms[] = DataTableParser
          .parseMarkers(ExporterUtil.wrap(this), table, dataset2Column);

      cp = Chronoscope
          .createTimeseriesChart(ds, element.getPropertyInt("clientWidth"),
View Full Code Here

Examples of org.timepedia.chronoscope.client.Dataset

   
    Datasets dsets = new Datasets();
    for (int i=0; i < sets.size(); i++) {
      JSONObject set = sets.getJSONObject(i);
      GwtJsonDataset s = new GwtJsonDataset(set);
      Dataset d = datasetReader.createDatasetFromJson(s);
      dsets.add(d);
    }
   
    String mippedJson;
    if (multiple) {
View Full Code Here

Examples of org.timepedia.chronoscope.client.Dataset

    chartPanel.setReadyListener(new ViewReadyCallback() {
      public void onViewReady(View view) {
        theplot = view.getChart().getPlot();
        theplot.getRangeAxis(0).setAutoZoomVisibleRange(true);
       
        Dataset d = theplot.getDatasets().get(0);
        System.out.println(ChronoscopeOptions.getCrosshairDateTimeFormat());
        d.setIncrementalHandler(new IncrementalHandler() {
         
          public void onDataNeeded(Interval region, Dataset dataset, IncrementalDataResponse response) {
           
            if (region.length() < 86400000) {
             
View Full Code Here

Examples of org.timepedia.chronoscope.client.Dataset

  public void testTupleAccessors() {
   
    double[] domain = {100.0, 200.0, 300.0};
    double[] range = {1.0, 2.0, 3.0};
    DatasetRequest.Basic request = dsMaker.newRequest(domain, range);
    Dataset ds = dsFactory.create(request);
   
    for (int i = 0; i < ds.getNumSamples(); i++) {
      assertEquals(domain[i], ds.getFlyweightTuple(i).getDomain());
      assertEquals(range[i], ds.getFlyweightTuple(i).getRange0());
    }
  }
View Full Code Here

Examples of org.timepedia.chronoscope.client.Dataset

    }
  }
 
  public void testSinglePoint() {
    DatasetRequest request = dsMaker.newRequest(new double[] {1000}, new double[] {10});
    Dataset ds = dsFactory.create(request);

    assertEquals(1, ds.getNumSamples());
    assertEquals(new Interval(1000, 1000), ds.getDomainExtrema());
    assertEquals(new Interval(10, 10), ds.getRangeExtrema(0));
    assertEquals(0.0, ds.getMinDomainInterval());
  }
View Full Code Here

Examples of org.uncommons.maths.statistics.DataSet

    {
        // Variance of a Possion distribution equals its mean.
        final double expectedStandardDeviation = Math.sqrt(expectedMean);

        final int iterations = 10000;
        DataSet data = new DataSet(iterations);
        for (int i = 0; i < iterations; i++)
        {
            int value = generator.nextValue();
            assert value >= 0 : "Value must be non-negative: " + value;
            data.addValue(value);
        }
        assert Maths.approxEquals(data.getArithmeticMean(), expectedMean, 0.02)
                : "Observed mean outside acceptable range: " + data.getArithmeticMean();
        assert Maths.approxEquals(data.getSampleStandardDeviation(), expectedStandardDeviation, 0.02)
                : "Observed standard deviation outside acceptable range: " + data.getSampleStandardDeviation();
    }
View Full Code Here

Examples of org.wicketstuff.flot.DataSet

  public List<Series> getData() {
    List<Series> result = new ArrayList<Series>();

    List<DataSet> sine = new ArrayList<DataSet>();
    for (double x = -5.0; x < 5.0; x += 0.1)
      sine.add(new DataSet(x, Math.sin(x)));

    result.add(new Series(sine, "sin(x)", new Color(0x00, 0x89, 0xBB), new LineGraphType(null, false, null)));

    return result;
  }
View Full Code Here

Examples of sg.edu.nus.iss.se07.bc.DataSet

         * @return
         * @throws IOException
         */
        public DataSet loadDataSet() throws IOException {
                ObjectInputStream objstream = null;
                DataSet object = null;
                try {
                        objstream = new ObjectInputStream(new FileInputStream(MyApp.DATASET_OBJECT_FILENAME));
                        object = (DataSet) objstream.readObject();
                        objstream.close();
                } catch (ClassNotFoundException ex) {
View Full Code Here

Examples of tv.floe.metronome.deeplearning.datasets.DataSet

    double learningRate = 0.001;
   
    int[] batchSteps = { 250, 200, 150, 100, 50, 25, 5 };
   
    DataSet first = fetcher.next();
/*
    RestrictedBoltzmannMachine da = new RBM.Builder().numberOfVisible(784).numHidden(400).withRandom(rand).renderWeights(1000)
        .useRegularization(false)
        .withMomentum(0).build();
*/
    RestrictedBoltzmannMachine rbm = new RestrictedBoltzmannMachine( 784, 400, null );
    rbm.useRegularization = false;
    //rbm.scaleWeights( 1000 );
    rbm.momentum = 0 ;
    rbm.sparsity = 0.01;
    // TODO: investigate "render weights"



    rbm.trainingDataset = first.getFirst();

    //MatrixUtils.debug_print( rbm.trainingDataset );

    // render base activations pre train
   
    this.renderActivationsToDisk(rbm, "init");
    this.renderWeightValuesToDisk(rbm, "init");
    this.renderFiltersToDisk(rbm, "init");
   
   
    System.out.println(" ----- Training ------");
   
    //for(int i = 0; i < 2; i++) {
    int epoch = 0;
   
    System.out.println("Epoch " + epoch + " Negative Log Likelhood: " + rbm.getReConstructionCrossEntropy() );
   
    for (int stepIndex = 0; stepIndex < batchSteps.length; stepIndex++ ) {
   
      int minCrossEntropy = batchSteps[ stepIndex ];
     
      while ( rbm.getReConstructionCrossEntropy() > minCrossEntropy) {
       
        System.out.println("Epoch " + epoch + " Negative Log Likelhood: " + rbm.getReConstructionCrossEntropy() );
       
        //rbm.trainTillConvergence( first.getFirst(), learningRate, new Object[]{ 1 } );
        //rbm.trainTillConvergence(learningRate, 1, first.getFirst());
        // new Object[]{1,0.01,1000}
        rbm.trainTillConvergence(first.getFirst(), learningRate, new Object[]{ 1, learningRate, 10 } );
       
        epoch++;
       
      }

View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.