argNames[0] = DOCUMENT_PNAME;
argNames[1] = ITERATOR_PNAME;
argNames[2] = TRANSLET_OUTPUT_PNAME;
final InstructionList mainIL = new InstructionList();
final MethodGenerator methodGen =
new MethodGenerator(ACC_PUBLIC | ACC_FINAL,
com.sun.org.apache.bcel.internal.generic.Type.VOID,
argTypes, argNames, functionName(),
getClassName(), mainIL,
classGen.getConstantPool());
methodGen.addException("com.sun.org.apache.xalan.internal.xsltc.TransletException");
// Create a local variable to hold the current node
final LocalVariableGen current;
current = methodGen.addLocalVariable2("current",
com.sun.org.apache.bcel.internal.generic.Type.INT,
mainIL.getEnd());
_currentIndex = current.getIndex();
// Create the "body" instruction list that will eventually hold the
// code for the entire method (other ILs will be appended).
final InstructionList body = new InstructionList();
body.append(NOP);
// Create an instruction list that contains the default next-node
// iteration
final InstructionList ilLoop = new InstructionList();
ilLoop.append(methodGen.loadIterator());
ilLoop.append(methodGen.nextNode());
ilLoop.append(DUP);
ilLoop.append(new ISTORE(_currentIndex));
// The body of this code can get very large - large than can be handled
// by a single IFNE(body.getStart()) instruction - need workaround:
final BranchHandle ifeq = ilLoop.append(new IFLT(null));
final BranchHandle loop = ilLoop.append(new GOTO_W(null));
ifeq.setTarget(ilLoop.append(RETURN)); // applyTemplates() ends here!
final InstructionHandle ihLoop = ilLoop.getStart();
// Compile default handling of elements (traverse children)
InstructionList ilRecurse =
compileDefaultRecursion(classGen, methodGen, ihLoop);
InstructionHandle ihRecurse = ilRecurse.getStart();
// Compile default handling of text/attribute nodes (output text)
InstructionList ilText =
compileDefaultText(classGen, methodGen, ihLoop);
InstructionHandle ihText = ilText.getStart();
// Distinguish attribute/element/namespace tests for further processing
final int[] types = new int[DTM.NTYPES + names.size()];
for (int i = 0; i < types.length; i++) {
types[i] = i;
}
// Initialize isAttribute[] and isNamespace[] arrays
final boolean[] isAttribute = new boolean[types.length];
final boolean[] isNamespace = new boolean[types.length];
for (int i = 0; i < names.size(); i++) {
final String name = (String)names.elementAt(i);
isAttribute[i + DTM.NTYPES] = isAttributeName(name);
isNamespace[i + DTM.NTYPES] = isNamespaceName(name);
}
// Compile all templates - regardless of pattern type
compileTemplates(classGen, methodGen, ihLoop);
// Handle template with explicit "*" pattern
final TestSeq elemTest = _testSeq[DTM.ELEMENT_NODE];
InstructionHandle ihElem = ihRecurse;
if (elemTest != null)
ihElem = elemTest.compile(classGen, methodGen, ihRecurse);
// Handle template with explicit "@*" pattern
final TestSeq attrTest = _testSeq[DTM.ATTRIBUTE_NODE];
InstructionHandle ihAttr = ihText;
if (attrTest != null)
ihAttr = attrTest.compile(classGen, methodGen, ihAttr);
// Do tests for id() and key() patterns first
InstructionList ilKey = null;
if (_idxTestSeq != null) {
loop.setTarget(_idxTestSeq.compile(classGen, methodGen, body.getStart()));
ilKey = _idxTestSeq.getInstructionList();
}
else {
loop.setTarget(body.getStart());
}
// If there is a match on node() we need to replace ihElem
// and ihText if the priority of node() is higher
if (_childNodeTestSeq != null) {
// Compare priorities of node() and "*"
double nodePrio = _childNodeTestSeq.getPriority();
int nodePos = _childNodeTestSeq.getPosition();
double elemPrio = (0 - Double.MAX_VALUE);
int elemPos = Integer.MIN_VALUE;
if (elemTest != null) {
elemPrio = elemTest.getPriority();
elemPos = elemTest.getPosition();
}
if (elemPrio == Double.NaN || elemPrio < nodePrio ||
(elemPrio == nodePrio && elemPos < nodePos))
{
ihElem = _childNodeTestSeq.compile(classGen, methodGen, ihLoop);
}
// Compare priorities of node() and text()
final TestSeq textTest = _testSeq[DTM.TEXT_NODE];
double textPrio = (0 - Double.MAX_VALUE);
int textPos = Integer.MIN_VALUE;
if (textTest != null) {
textPrio = textTest.getPriority();
textPos = textTest.getPosition();
}
if (textPrio == Double.NaN || textPrio < nodePrio ||
(textPrio == nodePrio && textPos < nodePos))
{
ihText = _childNodeTestSeq.compile(classGen, methodGen, ihLoop);
_testSeq[DTM.TEXT_NODE] = _childNodeTestSeq;
}
}
// Handle templates with "ns:*" pattern
InstructionHandle elemNamespaceHandle = ihElem;
InstructionList nsElem = compileNamespaces(classGen, methodGen,
isNamespace, isAttribute,
false, ihElem);
if (nsElem != null) elemNamespaceHandle = nsElem.getStart();
// Handle templates with "ns:@*" pattern
InstructionHandle attrNamespaceHandle = ihAttr;
InstructionList nsAttr = compileNamespaces(classGen, methodGen,
isNamespace, isAttribute,
true, ihAttr);
if (nsAttr != null) attrNamespaceHandle = nsAttr.getStart();
// Handle templates with "ns:elem" or "ns:@attr" pattern
final InstructionHandle[] targets = new InstructionHandle[types.length];
for (int i = DTM.NTYPES; i < targets.length; i++) {
final TestSeq testSeq = _testSeq[i];
// Jump straight to namespace tests ?
if (isNamespace[i]) {
if (isAttribute[i])
targets[i] = attrNamespaceHandle;
else
targets[i] = elemNamespaceHandle;
}
// Test first, then jump to namespace tests
else if (testSeq != null) {
if (isAttribute[i])
targets[i] = testSeq.compile(classGen, methodGen,
attrNamespaceHandle);
else
targets[i] = testSeq.compile(classGen, methodGen,
elemNamespaceHandle);
}
else {
targets[i] = ihLoop;
}
}
// Handle pattern with match on root node - default: traverse children
targets[DTM.ROOT_NODE] = _rootPattern != null
? getTemplateInstructionHandle(_rootPattern.getTemplate())
: ihRecurse;
// Handle pattern with match on root node - default: traverse children
targets[DTM.DOCUMENT_NODE] = _rootPattern != null
? getTemplateInstructionHandle(_rootPattern.getTemplate())
: ihRecurse;
// Handle any pattern with match on text nodes - default: output text
targets[DTM.TEXT_NODE] = _testSeq[DTM.TEXT_NODE] != null
? _testSeq[DTM.TEXT_NODE].compile(classGen, methodGen, ihText)
: ihText;
// This DOM-type is not in use - default: process next node
targets[DTM.NAMESPACE_NODE] = ihLoop;
// Match unknown element in DOM - default: check for namespace match
targets[DTM.ELEMENT_NODE] = elemNamespaceHandle;
// Match unknown attribute in DOM - default: check for namespace match
targets[DTM.ATTRIBUTE_NODE] = attrNamespaceHandle;
// Match on processing instruction - default: process next node
InstructionHandle ihPI = ihLoop;
if (_childNodeTestSeq != null) ihPI = ihElem;
if (_testSeq[DTM.PROCESSING_INSTRUCTION_NODE] != null)
targets[DTM.PROCESSING_INSTRUCTION_NODE] =
_testSeq[DTM.PROCESSING_INSTRUCTION_NODE].
compile(classGen, methodGen, ihPI);
else
targets[DTM.PROCESSING_INSTRUCTION_NODE] = ihPI;
// Match on comments - default: process next node
InstructionHandle ihComment = ihLoop;
if (_childNodeTestSeq != null) ihComment = ihElem;
targets[DTM.COMMENT_NODE] = _testSeq[DTM.COMMENT_NODE] != null
? _testSeq[DTM.COMMENT_NODE].compile(classGen, methodGen, ihComment)
: ihComment;
// This DOM-type is not in use - default: process next node
targets[DTM.CDATA_SECTION_NODE] = ihLoop;
// This DOM-type is not in use - default: process next node
targets[DTM.DOCUMENT_FRAGMENT_NODE] = ihLoop;
// This DOM-type is not in use - default: process next node
targets[DTM.DOCUMENT_TYPE_NODE] = ihLoop;
// This DOM-type is not in use - default: process next node
targets[DTM.ENTITY_NODE] = ihLoop;
// This DOM-type is not in use - default: process next node
targets[DTM.ENTITY_REFERENCE_NODE] = ihLoop;
// This DOM-type is not in use - default: process next node
targets[DTM.NOTATION_NODE] = ihLoop;
// Now compile test sequences for various match patterns:
for (int i = DTM.NTYPES; i < targets.length; i++) {
final TestSeq testSeq = _testSeq[i];
// Jump straight to namespace tests ?
if ((testSeq == null) || (isNamespace[i])) {
if (isAttribute[i])
targets[i] = attrNamespaceHandle;
else
targets[i] = elemNamespaceHandle;
}
// Match on node type
else {
if (isAttribute[i])
targets[i] = testSeq.compile(classGen, methodGen,
attrNamespaceHandle);
else
targets[i] = testSeq.compile(classGen, methodGen,
elemNamespaceHandle);
}
}
if (ilKey != null) body.insert(ilKey);
// Append first code in applyTemplates() - get type of current node
final int getType = cpg.addInterfaceMethodref(DOM_INTF,
"getExpandedTypeID",
"(I)I");
body.append(methodGen.loadDOM());
body.append(new ILOAD(_currentIndex));
body.append(new INVOKEINTERFACE(getType, 2));
// Append switch() statement - main dispatch loop in applyTemplates()
InstructionHandle disp = body.append(new SWITCH(types, targets, ihLoop));
// Append all the "case:" statements
appendTestSequences(body);
// Append the actual template code
appendTemplateCode(body);
// Append NS:* node tests (if any)
if (nsElem != null) body.append(nsElem);
// Append NS:@* node tests (if any)
if (nsAttr != null) body.append(nsAttr);
// Append default action for element and root nodes
body.append(ilRecurse);
// Append default action for text and attribute nodes
body.append(ilText);
// putting together constituent instruction lists
mainIL.append(new GOTO_W(ihLoop));
mainIL.append(body);
// fall through to ilLoop
mainIL.append(ilLoop);
peepHoleOptimization(methodGen);
methodGen.stripAttributes(true);
methodGen.setMaxLocals();
methodGen.setMaxStack();
methodGen.removeNOPs();
classGen.addMethod(methodGen.getMethod());
// Compile method(s) for <xsl:apply-imports/> for this mode
if (_importLevels != null) {
Enumeration levels = _importLevels.keys();
while (levels.hasMoreElements()) {