Package com.rapidminer.parameter

Examples of com.rapidminer.parameter.ParameterTypeInt


  private OutputPort exampleSetOutput = getOutputPorts().createPort("example set");

 
  public List<ParameterType> getParameterTypes() {
     List<ParameterType> types = super.getParameterTypes();
     types.add(new ParameterTypeInt(PARAMETER_K, "The used number of nearest neighbors. Range: integer; 1-+?; default: 80", 1, Integer.MAX_VALUE, 80, false));
     types.add(new ParameterTypeBoolean(PARAMETER_WEIGHTED, "Use weighted Knn.  Range: boolean; default: false", false, false));
     return types;
     }
View Full Code Here


  public static final String PARAMETER_Range="Range";

 
  public List<ParameterType> getParameterTypes() {
     List<ParameterType> types = super.getParameterTypes();
     types.add(new ParameterTypeInt(PARAMETER_Min, "Value of minimal rating value. Range: integer; 0-+?; default: 1", 0, Integer.MAX_VALUE, 1, false));
     types.add(new ParameterTypeInt(PARAMETER_Range, "Range of possible rating values.  Range: integer; 1-+?; default: 4 ; Max Rating=Min Rating+Range;", 1, Integer.MAX_VALUE, 4, false));
     types.add(new ParameterTypeInt(PARAMETER_NUM_FACTORS, "Number of latent factors. Range: integer; 1-+?; default: 10", 1, Integer.MAX_VALUE, 10, true));
     types.add(new ParameterTypeDouble(PARAMETER_BIAS_REG, "Bias regularization parameter.  Range: double; 0-+?; default: 0.0001", 0, Double.MAX_VALUE, 0.0001, true));
     types.add(new ParameterTypeDouble(PARAMETER_REG_U, "User regularization parameter.  Range: double; 0-+?; default: 0.015", 0, Double.MAX_VALUE, 0.015, true));
     types.add(new ParameterTypeDouble(PARAMETER_REG_I, "Item regularization parameter.  Range: double; 0-+?; default: 0.015", 0, Double.MAX_VALUE, 0.015, true));
     types.add(new ParameterTypeDouble(PARAMETER_LEARN_RATE, "Learning rate of algorithm.  Range: double; 0-+?; default: 0.01", 0, Double.MAX_VALUE, 0.01, false));
     types.add(new ParameterTypeInt(PARAMETER_NUM_ITER, "Number of iterations.  Range: integer; 1-+?; default: 30", 1, Integer.MAX_VALUE, 30, false));
     types.add(new ParameterTypeDouble(PARAMETER_REGULARIZATION, "Value of regularization parameter. Range: double; 0-+?; default: 0.015", 0, Double.MAX_VALUE, 0.015, true));
     types.add(new ParameterTypeDouble(PARAMETER_INIT_MEAN, "Initial mean.  Range: double; 0-+?; default: 0", 0, Double.MAX_VALUE, 0, true));
     types.add(new ParameterTypeDouble(PARAMETER_INIT_STDEV, "Initial stdev.  Range: double; 0-+?; default: 0.1", 0, Double.MAX_VALUE, 0.1, true));
     types.add(new ParameterTypeBoolean(PARAMETER_BOLD_DRIVER, "Use bold driver heuristics for learning rate adaption.  Range: boolean; default: false", false, true));
     types.add(new ParameterTypeBoolean(PARAMETER_MAE_OPTIMIZED, "Use biased matrix factorization optimized for mean average error (MAE).  Range: boolean; default: false", false, false));
View Full Code Here

 
 
  public List<ParameterType> getParameterTypes() {
     List<ParameterType> types = super.getParameterTypes();
     types.add(new ParameterTypeInt(PARAMETER_Min, "Value of minimal rating value. Range: integer; 0-+?; default: 1", 0, Integer.MAX_VALUE, 1, false));
     types.add(new ParameterTypeInt(PARAMETER_Range, "Range of possible rating values.  Range: integer; 1-+?; default: 4 ; Max Rating=Min Rating+Range;", 1, Integer.MAX_VALUE, 4, false));
     return types;
     }
View Full Code Here

  private OutputPort exampleSetOutput = getOutputPorts().createPort("example set");

 
  public List<ParameterType> getParameterTypes() {
     List<ParameterType> types = super.getParameterTypes();
     types.add(new ParameterTypeInt(PARAMETER_Min, "Value of minimal rating value. Range: integer; 0-+?; default: 1", 0, Integer.MAX_VALUE, 1, false));
     types.add(new ParameterTypeInt(PARAMETER_Range, "Range of possible rating values.  Range: integer; 1-+?; default: 4 ; Max Rating=Min Rating+Range;", 1, Integer.MAX_VALUE, 4, false));
     types.add(new ParameterTypeInt(PARAMETER_numIter, "Number of iterations; 1-+?; default: 10", 1, Integer.MAX_VALUE, 10, false));
     types.add(new ParameterTypeDouble(PARAMETER_REGU, "Regularization parameter for user biases.  Range: double; 0-+?; default: 15 ;", 0, Double.MAX_VALUE, 15, true));
     types.add(new ParameterTypeDouble(PARAMETER_REGI, "Regularization parameter for item biases.  Range: double; 0-+?; default: 10 ;", 0, Double.MAX_VALUE, 10, true));
     return types;
     }
View Full Code Here

         });
      }
     
      public List<ParameterType> getParameterTypes() {
         List<ParameterType> types = super.getParameterTypes();
         types.add(new ParameterTypeInt(PARAMETER_K, "The used number of nearest neighbors. Range: integer; 1-+?; default: 80", 1, Integer.MAX_VALUE, 80, false));
         return types;
         }
View Full Code Here

     });
  }
 
  public List<ParameterType> getParameterTypes() {
     List<ParameterType> types = super.getParameterTypes();
     types.add(new ParameterTypeInt(PARAMETER_K, "The used number of nearest neighbors. Range: integer; 1-+?; default: 80", 1, Integer.MAX_VALUE, 80, false));
     types.add(new ParameterTypeBoolean(PARAMETER_WEIGHTED, "Use weighted Knn.  Range: boolean; default: false", false, false));
     return types;
     }
View Full Code Here

       });
    }
   
    public List<ParameterType> getParameterTypes() {
       List<ParameterType> types = super.getParameterTypes();
       types.add(new ParameterTypeInt(PARAMETER_K, "The used number of nearest neighbors. Range: integer; 1-+?; default: 80", 1, Integer.MAX_VALUE, 80, false));
       return types;
       }
View Full Code Here

  public static final String PARAMETER_INIT_STDEV="Initial stdev";
 
  public List<ParameterType> getParameterTypes() {
     List<ParameterType> types = super.getParameterTypes();
 
     types.add(new ParameterTypeInt(PARAMETER_NUM_FACTORS, "Number of latent factors. Range: integer; 1-+?; default: 10", 1, Integer.MAX_VALUE, 10, true));
     types.add(new ParameterTypeDouble(PARAMETER_BIAS_REG, "Bias regularization parameter.  Range: double; 0-+?; default: 0", 0, Double.MAX_VALUE, 0, true));
     types.add(new ParameterTypeDouble(PARAMETER_REG_U, "User regularization parameter.  Range: double; 0-+?; default: 0.025", 0, Double.MAX_VALUE, 0.025, true));
     types.add(new ParameterTypeDouble(PARAMETER_REG_I, "Item regularization parameter.  Range: double; 0-+?; default: 0.025", 0, Double.MAX_VALUE, 0.025, true));
     types.add(new ParameterTypeDouble(PARAMETER_REG_J, "Negative item regularization parameter.  Range: double; 0-+?; default: 0.025", 0, Double.MAX_VALUE, 0.025, true));
     types.add(new ParameterTypeInt(PARAMETER_NUM_ITER, "Number of iterations.  Range: integer; 1-+?; default: 30", 1, Integer.MAX_VALUE, 30, false));
     types.add(new ParameterTypeDouble(PARAMETER_LEARN_RATE, "Learning rate of algorithm.  Range: double; 0-+?; default: 0.05", 0, Double.MAX_VALUE, 0.05, false));
     types.add(new ParameterTypeDouble(PARAMETER_INIT_MEAN, "Initial mean.  Range: double; 0-+?; default: 0", 0, Double.MAX_VALUE, 0, true));
     types.add(new ParameterTypeDouble(PARAMETER_INIT_STDEV, "Initial stdev.  Range: double; 0-+?; default: 0.1", 0, Double.MAX_VALUE, 0.1, true));
     types.add(new ParameterTypeInt(PARAMETER_FAST_SAMPLING, "Fast sampling memory limit, in MiB. Range: integer; 1-+?; default: 1024", 1, Integer.MAX_VALUE, 1024, true));
     types.add(new ParameterTypeBoolean(PARAMETER_BOLD_DRIVER, "Use bold driver heuristics for learning rate adaption.  Range: boolean; default: false", false, true));
   
   
     return types;
     }
View Full Code Here

  public static final String PARAMETER_INIT_STDEV="Initial stdev";
 
  public List<ParameterType> getParameterTypes() {
     List<ParameterType> types = super.getParameterTypes();
 
     types.add(new ParameterTypeInt(PARAMETER_NUM_FACTORS, "Number of latent factors. Range: integer; 1-+?; default: 10", 1, Integer.MAX_VALUE, 10, true));
     types.add(new ParameterTypeDouble(PARAMETER_REGULARIZATION, "Value of regularization parameter. Range: double; 0-+?; default: 0.015", 0, Double.MAX_VALUE, 0.015, true));
     types.add(new ParameterTypeDouble(PARAMETER_CPOS, "C position: the weight/confidence that is put on positive observations. Range: double; 0-+?; default: 1", 0, Double.MAX_VALUE, 1, true));
     types.add(new ParameterTypeInt(PARAMETER_NUM_ITER, "Number of iterations.  Range: integer; 1-+?; default: 30", 1, Integer.MAX_VALUE, 30, false));
     types.add(new ParameterTypeDouble(PARAMETER_INIT_MEAN, "Initial mean.  Range: double; 0-+?; default: 0", 0, Double.MAX_VALUE, 0, true));
     types.add(new ParameterTypeDouble(PARAMETER_INIT_STDEV, "Initial stdev.  Range: double; 0-+?; default: 0.1", 0, Double.MAX_VALUE, 0.1, true));
   
     return types;
     }
View Full Code Here

  public static final String PARAMETER_Updates="Online updates";
 
 
  public List<ParameterType> getParameterTypes() {
     List<ParameterType> types = super.getParameterTypes();
     types.add(new ParameterTypeInt(PARAMETER_N, "Desplay first n ranked items for users. Range: integer; 1-+?; default: 100", 1, Integer.MAX_VALUE, 100, false));
     types.add(new ParameterTypeBoolean(PARAMETER_Updates, "Use online model updates.  Range: boolean; default: false", false, false));
     return types;
     }
View Full Code Here

TOP

Related Classes of com.rapidminer.parameter.ParameterTypeInt

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.