Package com.datasalt.pangool.tuplemr

Examples of com.datasalt.pangool.tuplemr.TupleMRBuilder$Input


      return -1;
    }

    delete(args[1]);

    TupleMRBuilder mr = new TupleMRBuilder(conf, "Pangool Topical Word Count");
    mr.addIntermediateSchema(getSchema());
    // We will count each (topicId, word) pair
    // Note that the order in which we defined the fields of the Schema is not relevant here
    mr.setGroupByFields("topic", "word");
    mr.addInput(new Path(args[0]), new HadoopInputFormat(TextInputFormat.class), new TokenizeMapper());
    // We'll use a TupleOutputFormat with the same schema than the intermediate schema
    mr.setTupleOutput(new Path(args[1]), getSchema());
    mr.setTupleReducer(new CountReducer());
    mr.setTupleCombiner(new CountReducer());

    mr.createJob().waitForCompletion(true);

    return 1;
  }
View Full Code Here


    Log.info("using parameters: maxX grid: " + maxX + " maxY grid: " + maxY + " max #iterations: " + iterations);
   
    // Define the intermediate schema: a pair of ints
    final Schema schema = new Schema("minMax", Fields.parse("min:int, max:int"));

    TupleMRBuilder job = new TupleMRBuilder(conf);
    job.addIntermediateSchema(schema);
    job.setGroupByFields("min", "max");
    job.setCustomPartitionFields("min");
    // Define the input and its associated mapper
    // The mapper will just emit the (min, max) pairs to the reduce stage
    job.addInput(new Path(input), new HadoopInputFormat(TextInputFormat.class), new TupleMapper<LongWritable, Text>() {

      Tuple tuple = new Tuple(schema);

      @Override
      public void map(LongWritable key, Text value, TupleMRContext context, Collector collector) throws IOException,
          InterruptedException {
        String[] fields = value.toString().split("\t");
        tuple.set("min", Integer.parseInt(fields[0]));
        tuple.set("max", Integer.parseInt(fields[1]));
        collector.write(tuple);
      }
    });

    // Define the reducer
    // The reducer will run as many games of life as (max - min) for each interval it receives
    // It will emit the inputs of GOL that converged together with the number of iterations
    // Note that inputs that produce grid overflow are ignored (but may have longer iteration convergence)
    job.setTupleReducer(new TupleReducer<Text, NullWritable>() {

      public void reduce(ITuple group, Iterable<ITuple> tuples, TupleMRContext context, Collector collector)
          throws IOException, InterruptedException, TupleMRException {

        int min = (Integer) group.get("min"), max = (Integer) group.get("max");
        for(int i = min; i < max; i++) {
          try {
            GameOfLife gameOfLife = new GameOfLife(gridSize, GameOfLife.longToBytes((long) i), maxX, maxY, iterations);
            while(true) {
              gameOfLife.nextCycle();
            }
          } catch(GameOfLifeException e) {
            context.getHadoopContext().progress();
            context.getHadoopContext().getCounter("stats", e.getCauseMessage() + "").increment(1);
            if(e.getCauseMessage().equals(CauseMessage.CONVERGENCE_REACHED)) {
              collector.write(new Text(Arrays.toString(GameOfLife.longToBytes((long) i)) + "\t" + e.getIterations()),
                  NullWritable.get());
            }
          }
        }
      };
    });

    job.setOutput(new Path(output), new HadoopOutputFormat(TextOutputFormat.class), Text.class, NullWritable.class);
    job.createJob().waitForCompletion(true);
    delete(input);
    return 0;
  }
View Full Code Here

    String input2 = args[1];
    String output = args[2];
 
    delete(output);
   
    TupleMRBuilder mr = new TupleMRBuilder(conf,"Pangool Url Resolution");
    mr.addIntermediateSchema(getURLMapSchema());
    mr.addIntermediateSchema(getURLRegisterSchema());
    mr.setFieldAliases("urlMap",new Aliases().add("url","nonCanonicalUrl"));
    mr.setGroupByFields("url");
    mr.setOrderBy(new OrderBy().add("url", Order.ASC).addSchemaOrder(Order.ASC));
    mr.setTupleReducer(new Handler());
    mr.setOutput(new Path(output), new HadoopOutputFormat(TextOutputFormat.class), Text.class, NullWritable.class);
    mr.addInput(new Path(input1), new HadoopInputFormat(TextInputFormat.class), new UrlMapProcessor());
    mr.addInput(new Path(input2), new HadoopInputFormat(TextInputFormat.class), new UrlProcessor());
    mr.createJob().waitForCompletion(true);

    return 1;
  }
View Full Code Here

      return -1;
    }

    deleteOutput(args[1]);

    TupleMRBuilder mr = new TupleMRBuilder(conf, "Pangool Topical Word Count");
    mr.addIntermediateSchema(getSchema());
    mr.setGroupByFields("my_avro");
    //here the custom comparator that groups by "topic,word" is used.
    MyAvroComparator customComp = new MyAvroComparator(getAvroSchema(),"topic","word");
    mr.setOrderBy(new OrderBy().add("my_avro",Order.ASC,customComp));
    mr.addInput(new Path(args[0]), new HadoopInputFormat(TextInputFormat.class), new TokenizeMapper());
    // We'll use a TupleOutputFormat with the same schema than the intermediate schema
    mr.setTupleOutput(new Path(args[1]), getSchema());
    mr.setTupleReducer(new CountReducer());
    mr.setTupleCombiner(new CountReducer());

    mr.createJob().waitForCompletion(true);

    return 1;
  }
View Full Code Here

    List<Field> fields = new ArrayList<Field>();
    fields.add(Field.create("first",Type.INT));
    fields.add(Field.create("second",Type.INT));
   
    Schema schema = new Schema("my_schema",fields);
    TupleMRBuilder builder = new TupleMRBuilder(conf);
    builder.addIntermediateSchema(schema);
    builder.setGroupByFields("first");
    builder.setOrderBy(new OrderBy().add("first",Order.ASC).add("second",Order.ASC));
    // Input / output and such
    builder.setTupleReducer(new Handler());
    builder.setOutput(new Path(output), new HadoopOutputFormat(TextOutputFormat.class), Text.class, NullWritable.class);
    builder.addInput(new Path(input), new HadoopInputFormat(TextInputFormat.class), new IProcessor());
    builder.createJob().waitForCompletion(true);

    return 1;
  }
View Full Code Here

    String input2 = args[1];
    String output = args[2];

    delete(output);

    TupleMRBuilder mr = new TupleMRBuilder(conf, "Pangool Url Resolution");
    mr.addIntermediateSchema(getURLMapSchema());
    mr.addIntermediateSchema(getURLRegisterSchema());
    mr.addInput(new Path(input1), new TupleTextInputFormat(getURLMapSchema(), false, false, '\t',
        NO_QUOTE_CHARACTER, NO_ESCAPE_CHARACTER, null, null), new IdentityTupleMapper());
    mr.addInput(new Path(input2), new TupleTextInputFormat(getURLRegisterSchema(), false, false, '\t',
        NO_QUOTE_CHARACTER, NO_ESCAPE_CHARACTER, null, null), new IdentityTupleMapper());
    mr.setFieldAliases("urlMap", new Aliases().add("url", "nonCanonicalUrl"));
    mr.setGroupByFields("url");
    mr.setOrderBy(new OrderBy().add("url", Order.ASC).addSchemaOrder(Order.ASC));
    mr.setSpecificOrderBy("urlRegister", new OrderBy().add("timestamp", Order.ASC));
    mr.setTupleReducer(new Handler());
    mr.setOutput(new Path(output), new TupleTextOutputFormat(getURLRegisterSchema(), false, '\t',
        NO_QUOTE_CHARACTER, NO_ESCAPE_CHARACTER), ITuple.class, NullWritable.class);

    try {
      mr.createJob().waitForCompletion(true);
    } finally {
      mr.cleanUpInstanceFiles();
    }

    return 1;
  }
View Full Code Here

    fields.add(Field.create("date", Type.STRING));
    fields.add(Field.create("visits",Type.INT));

    Schema schema = new Schema("my_schema", fields);

    TupleMRBuilder mr = new TupleMRBuilder(conf);
    mr.addIntermediateSchema(schema);
    mr.setGroupByFields("url");
    mr.setOrderBy(new OrderBy().add("url", Order.ASC).add("date", Order.ASC));
    // Input / output and such
    mr.setTupleReducer(new MovingAverageHandler(nDaysAverage));
    mr.setOutput(new Path(output), new HadoopOutputFormat(TextOutputFormat.class), Text.class, NullWritable.class);
    mr.addInput(new Path(input), new HadoopInputFormat(TextInputFormat.class), new URLVisitsProcessor());
    mr.createJob().waitForCompletion(true);
    return 1;
  }
View Full Code Here

    deleteOutput(args[1]);
    // Parse the size of the Top
    Integer n = Integer.parseInt(args[2]);

    TupleMRBuilder builder = new TupleMRBuilder(conf, "Pangool Topic Fingerprint From Topical Word Count");
    builder.addIntermediateSchema(TopicalWordCount.getSchema());
    // We need to group the counts by (topic)
    builder.setGroupByFields("topic");
    // Then we need to sort by topic and count (DESC) -> This way we will receive the most relevant words first.
    builder.setOrderBy(new OrderBy().add("topic", Order.ASC).add("count", Order.DESC));
    // Note that we are changing the grouping logic in the job configuration,
    // However, as we work with tuples, we don't need to write specific code for grouping the same data differently,
    // Therefore an IdentityTupleMapper is sufficient for this Job.
    builder.addTupleInput(new Path(args[0]), new IdentityTupleMapper()); // Note the use of "addTupleInput"
    /*
     * TODO Add Combiner as same Reducer when possible
     */
    builder.setTupleOutput(new Path(args[1]), TopicalWordCount.getSchema());
    builder.addNamedTupleOutput(OUTPUT_TOTALCOUNT, getOutputCountSchema());
    builder.setTupleReducer(new TopNWords(n));

    builder.createJob().waitForCompletion(true);

    return 1;
  }
View Full Code Here

    fields.add(Field.create("date", Type.STRING));
    fields.add(Field.create("hashtag", Type.STRING));
    fields.add(Field.create("count", Type.INT));
    Schema schema = new Schema("my_schema", fields);

    TupleMRBuilder mr = new TupleMRBuilder(conf);
    mr.addIntermediateSchema(schema);
    mr.setGroupByFields("location", "date", "hashtag");
    mr.setOrderBy(new OrderBy().add("location", Order.ASC).add("date", Order.ASC).add("hashtag", Order.ASC));
    mr.setRollupFrom("date");
    // Input / output and such
    mr.setTupleReducer(new TweetsHandler(n));
    mr.setOutput(new Path(output), new HadoopOutputFormat(TextOutputFormat.class), Text.class, NullWritable.class);
    mr.addInput(new Path(input), new HadoopInputFormat(TextInputFormat.class), new TweetsProcessor());
    mr.createJob().waitForCompletion(true);
    return 0;
  }
View Full Code Here

    fields.add(Field.create("all",Type.BOOLEAN));
    fields.add(Field.create("clicks", Type.INT));

    Schema schema = new Schema("my_schema", fields);

    TupleMRBuilder mr = new TupleMRBuilder(conf);
    mr.addIntermediateSchema(schema);
    mr.setGroupByFields("user", "all", "feature");
    mr.setOrderBy(new OrderBy().add("user", Order.ASC).add("all", Order.DESC).add("feature", Order.ASC));
    // Rollup from "user" - all features from same user will go to the same Reducer
    mr.setRollupFrom("user");
    // Input / output and such
    mr.setTupleCombiner(new CountCombinerHandler());
    mr.setTupleReducer(new NormalizingHandler());
    mr.setOutput(new Path(output), new HadoopOutputFormat(TextOutputFormat.class), Text.class, NullWritable.class);
    mr.addInput(new Path(input), new HadoopInputFormat(TextInputFormat.class), new UserActivityProcessor());
    mr.createJob().waitForCompletion(true);
   
    return 1;
  }
View Full Code Here

TOP

Related Classes of com.datasalt.pangool.tuplemr.TupleMRBuilder$Input

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.