Examples of Configurable


Examples of org.apache.hadoop.conf.Configurable

   *          the directory pathname for input state
   * @param output
   *          the directory pathname for output points
   */
  public static void runClustering(String input, String stateIn, String output) {
    Configurable client = new JobClient();
    JobConf conf = new JobConf(DirichletDriver.class);
   
    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(Text.class);
   
    FileInputFormat.setInputPaths(conf, new Path(input));
    Path outPath = new Path(output);
    FileOutputFormat.setOutputPath(conf, outPath);
   
    conf.setMapperClass(DirichletMapper.class);
    conf.setNumReduceTasks(0);
   
    client.setConf(conf);
    try {
      JobClient.runJob(conf);
    } catch (IOException e) {
      log.warn(e.toString(), e);
    }
View Full Code Here

Examples of org.apache.hadoop.conf.Configurable

   */
  public static void runJob(String input, String output,
                            String measureClassName, double t1, double t2) throws IOException {
    log.info("Input: {} Out: {} "
      + "Measure: {} t1: {} t2: {}", new Object[] {input, output, measureClassName, t1, t2});
    Configurable client = new JobClient();
    JobConf conf = new JobConf(CanopyDriver.class);
    conf.set(CanopyConfigKeys.DISTANCE_MEASURE_KEY, measureClassName);
    conf.set(CanopyConfigKeys.T1_KEY, String.valueOf(t1));
    conf.set(CanopyConfigKeys.T2_KEY, String.valueOf(t2));
   
    conf.setInputFormat(SequenceFileInputFormat.class);
   
    conf.setMapOutputKeyClass(Text.class);
    conf.setMapOutputValueClass(VectorWritable.class);
    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(Canopy.class);
   
    FileInputFormat.setInputPaths(conf, new Path(input));
    Path outPath = new Path(output);
    FileOutputFormat.setOutputPath(conf, outPath);
   
    conf.setMapperClass(CanopyMapper.class);
    conf.setReducerClass(CanopyReducer.class);
    conf.setNumReduceTasks(1);
    conf.setOutputFormat(SequenceFileOutputFormat.class);
   
    client.setConf(conf);
    FileSystem dfs = FileSystem.get(outPath.toUri(), conf);
    if (dfs.exists(outPath)) {
      dfs.delete(outPath, true);
    }
    JobClient.runJob(conf);
View Full Code Here

Examples of org.apache.hadoop.conf.Configurable

                            String canopies,
                            String output,
                            String measureClassName,
                            double t1,
                            double t2) throws IOException {
    Configurable client = new JobClient();
    JobConf conf = new JobConf(ClusterDriver.class);
   
    conf.set(CanopyConfigKeys.DISTANCE_MEASURE_KEY, measureClassName);
    conf.set(CanopyConfigKeys.T1_KEY, String.valueOf(t1));
    conf.set(CanopyConfigKeys.T2_KEY, String.valueOf(t2));
    conf.set(CanopyConfigKeys.CANOPY_PATH_KEY, canopies);
   
    conf.setInputFormat(SequenceFileInputFormat.class);
   
    /*
     * conf.setMapOutputKeyClass(Text.class); conf.setMapOutputValueClass(RandomAccessSparseVector.class);
     */
    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(VectorWritable.class);
    conf.setOutputFormat(SequenceFileOutputFormat.class);
   
    FileInputFormat.setInputPaths(conf, new Path(points));
    Path outPath = new Path(output + DEFAULT_CLUSTER_OUTPUT_DIRECTORY);
    FileOutputFormat.setOutputPath(conf, outPath);
   
    conf.setMapperClass(ClusterMapper.class);
    conf.setReducerClass(IdentityReducer.class);
   
    client.setConf(conf);
    FileSystem dfs = FileSystem.get(outPath.toUri(), conf);
    if (dfs.exists(outPath)) {
      dfs.delete(outPath, true);
    }
    JobClient.runJob(conf);
View Full Code Here

Examples of org.apache.hadoop.conf.Configurable

   * @param output
   *          the output pathname String
   */
  @Override
  public void runJob(String input, String output, BayesParameters params) throws IOException {
    Configurable client = new JobClient();
    JobConf conf = new JobConf(BayesThetaNormalizerDriver.class);
   
    conf.setJobName("Bayes Theta Normalizer Driver running over input: " + input);
   
    conf.setOutputKeyClass(StringTuple.class);
    conf.setOutputValueClass(DoubleWritable.class);
    FileInputFormat.addInputPath(conf, new Path(output + "/trainer-tfIdf/trainer-tfIdf"));
    Path outPath = new Path(output + "/trainer-thetaNormalizer");
    FileOutputFormat.setOutputPath(conf, outPath);
    // conf.setNumMapTasks(100);
    // conf.setNumReduceTasks(1);
    conf.setMapperClass(BayesThetaNormalizerMapper.class);
    conf.setInputFormat(SequenceFileInputFormat.class);
    conf.setCombinerClass(BayesThetaNormalizerReducer.class);
    conf.setReducerClass(BayesThetaNormalizerReducer.class);
    conf.setOutputFormat(SequenceFileOutputFormat.class);
    conf.set("io.serializations", "org.apache.hadoop.io.serializer.JavaSerialization,"
                                  + "org.apache.hadoop.io.serializer.WritableSerialization");
    // Dont ever forget this. People should keep track of how hadoop conf
    // parameters and make or break a piece of code
   
    FileSystem dfs = FileSystem.get(outPath.toUri(), conf);
    if (dfs.exists(outPath)) {
      dfs.delete(outPath, true);
    }
   
    Path sigmaKFiles = new Path(output + "/trainer-weights/Sigma_k/*");
    Map<String,Double> labelWeightSum = SequenceFileModelReader.readLabelSums(dfs, sigmaKFiles, conf);
    DefaultStringifier<Map<String,Double>> mapStringifier = new DefaultStringifier<Map<String,Double>>(conf,
        GenericsUtil.getClass(labelWeightSum));
    String labelWeightSumString = mapStringifier.toString(labelWeightSum);
   
    log.info("Sigma_k for Each Label");
    Map<String,Double> c = mapStringifier.fromString(labelWeightSumString);
    log.info("{}", c);
    conf.set("cnaivebayes.sigma_k", labelWeightSumString);
   
    Path sigmaJSigmaKFile = new Path(output + "/trainer-weights/Sigma_kSigma_j/*");
    double sigmaJSigmaK = SequenceFileModelReader.readSigmaJSigmaK(dfs, sigmaJSigmaKFile, conf);
    DefaultStringifier<Double> stringifier = new DefaultStringifier<Double>(conf, Double.class);
    String sigmaJSigmaKString = stringifier.toString(sigmaJSigmaK);
   
    log.info("Sigma_kSigma_j for each Label and for each Features");
    double retSigmaJSigmaK = stringifier.fromString(sigmaJSigmaKString);
    log.info("{}", retSigmaJSigmaK);
    conf.set("cnaivebayes.sigma_jSigma_k", sigmaJSigmaKString);
   
    Path vocabCountFile = new Path(output + "/trainer-tfIdf/trainer-vocabCount/*");
    double vocabCount = SequenceFileModelReader.readVocabCount(dfs, vocabCountFile, conf);
    String vocabCountString = stringifier.toString(vocabCount);
   
    log.info("Vocabulary Count");
    conf.set("cnaivebayes.vocabCount", vocabCountString);
    double retvocabCount = stringifier.fromString(vocabCountString);
    log.info("{}", retvocabCount);
    conf.set("bayes.parameters", params.toString());
    conf.set("output.table", output);
    client.setConf(conf);
   
    JobClient.runJob(conf);
   
  }
View Full Code Here

Examples of org.apache.hadoop.conf.Configurable

                                         Path dictionaryFilePath,
                                         Path output,
                                         int dimension,
                                         boolean sequentialAccess) throws IOException {
   
    Configurable client = new JobClient();
    JobConf conf = new JobConf(DictionaryVectorizer.class);
    conf.set("io.serializations", "org.apache.hadoop.io.serializer.JavaSerialization,"
                                  + "org.apache.hadoop.io.serializer.WritableSerialization");
    // this conf parameter needs to be set enable serialisation of conf values
   
    conf.setJobName("DictionaryVectorizer::MakePartialVectors: input-folder: " + input
                    + ", dictionary-file: " + dictionaryFilePath.toString());
    conf.setInt(PartialVectorMerger.DIMENSION, dimension);
    conf.setBoolean(PartialVectorMerger.SEQUENTIAL_ACCESS, sequentialAccess);
    conf.setInt(MAX_NGRAMS, maxNGramSize);
   
    conf.setMapOutputKeyClass(Text.class);
    conf.setMapOutputValueClass(StringTuple.class);
    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(VectorWritable.class);
    DistributedCache.setCacheFiles(new URI[] {dictionaryFilePath.toUri()}, conf);
    FileInputFormat.setInputPaths(conf, new Path(input));
   
    FileOutputFormat.setOutputPath(conf, output);
   
    conf.setMapperClass(IdentityMapper.class);
    conf.setInputFormat(SequenceFileInputFormat.class);
    conf.setReducerClass(TFPartialVectorReducer.class);
    conf.setOutputFormat(SequenceFileOutputFormat.class);
    FileSystem dfs = FileSystem.get(output.toUri(), conf);
    if (dfs.exists(output)) {
      dfs.delete(output, true);
    }
   
    client.setConf(conf);
    JobClient.runJob(conf);
  }
View Full Code Here

Examples of org.apache.hadoop.conf.Configurable

   * Count the frequencies of words in parallel using Map/Reduce. The input documents have to be in
   * {@link SequenceFile} format
   */
  private static void startWordCounting(Path input, Path output, int minSupport) throws IOException {
   
    Configurable client = new JobClient();
    JobConf conf = new JobConf(DictionaryVectorizer.class);
    conf.set("io.serializations", "org.apache.hadoop.io.serializer.JavaSerialization,"
                                  + "org.apache.hadoop.io.serializer.WritableSerialization");
    // this conf parameter needs to be set enable serialisation of conf values
   
    conf.setJobName("DictionaryVectorizer::WordCount: input-folder: " + input.toString());
    conf.setInt(MIN_SUPPORT, minSupport);
   
    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(LongWritable.class);
   
    FileInputFormat.setInputPaths(conf, input);
    FileOutputFormat.setOutputPath(conf, output);
   
    conf.setMapperClass(TermCountMapper.class);
   
    conf.setInputFormat(SequenceFileInputFormat.class);
    conf.setCombinerClass(TermCountReducer.class);
    conf.setReducerClass(TermCountReducer.class);
    conf.setOutputFormat(SequenceFileOutputFormat.class);
   
    FileSystem dfs = FileSystem.get(output.toUri(), conf);
    if (dfs.exists(output)) {
      dfs.delete(output, true);
    }
   
    client.setConf(conf);
    JobClient.runJob(conf);
  }
View Full Code Here

Examples of org.apache.hadoop.conf.Configurable

   * @throws IOException
   */
  public static void tokenizeDocuments(String input, Class<? extends Analyzer> analyzerClass,
                                       String output) throws IOException {
   
    Configurable client = new JobClient();
    JobConf conf = new JobConf(DocumentProcessor.class);
    conf.set("io.serializations", "org.apache.hadoop.io.serializer.JavaSerialization,"
                                  + "org.apache.hadoop.io.serializer.WritableSerialization");
    // this conf parameter needs to be set enable serialisation of conf values
   
    conf.set(ANALYZER_CLASS, analyzerClass.getName());
    conf.setJobName("DocumentProcessor::DocumentTokenizer: input-folder: " + input);
   
    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(StringTuple.class);
    FileInputFormat.setInputPaths(conf, new Path(input));
    Path outPath = new Path(output);
    FileOutputFormat.setOutputPath(conf, outPath);
   
    conf.setMapperClass(SequenceFileTokenizerMapper.class);
    conf.setInputFormat(SequenceFileInputFormat.class);
    conf.setNumReduceTasks(0);
    conf.setOutputFormat(SequenceFileOutputFormat.class);
    FileSystem dfs = FileSystem.get(outPath.toUri(), conf);
    if (dfs.exists(outPath)) {
      dfs.delete(outPath, true);
    }
   
    client.setConf(conf);
    JobClient.runJob(conf);
  }
View Full Code Here

Examples of org.apache.hadoop.conf.Configurable

   * @param output
   *          the output pathname String
   */
  @Override
  public void runJob(String input, String output, BayesParameters params) throws IOException {
    Configurable client = new JobClient();
    JobConf conf = new JobConf(BayesFeatureDriver.class);
    conf.setJobName("Bayes Feature Driver running over input: " + input);
    conf.setOutputKeyClass(StringTuple.class);
    conf.setOutputValueClass(DoubleWritable.class);
   
    FileInputFormat.setInputPaths(conf, new Path(input));
    Path outPath = new Path(output);
    FileOutputFormat.setOutputPath(conf, outPath);
   
    conf.setMapperClass(BayesFeatureMapper.class);
   
    conf.setInputFormat(KeyValueTextInputFormat.class);
    conf.setCombinerClass(BayesFeatureReducer.class);
    conf.setReducerClass(BayesFeatureReducer.class);
    conf.setOutputFormat(BayesFeatureOutputFormat.class);
    conf
        .set("io.serializations",
          "org.apache.hadoop.io.serializer.JavaSerialization,org.apache.hadoop.io.serializer.WritableSerialization");
    // this conf parameter needs to be set enable serialisation of conf values
   
    FileSystem dfs = FileSystem.get(outPath.toUri(), conf);
    if (dfs.exists(outPath)) {
      dfs.delete(outPath, true);
    }
    conf.set("bayes.parameters", params.toString());
   
    client.setConf(conf);
    JobClient.runJob(conf);
   
  }
View Full Code Here

Examples of org.apache.hadoop.conf.Configurable

   * @throws ClassNotFoundException
   */
  @Override
  public void runJob(String input, String output, BayesParameters params) throws IOException {
   
    Configurable client = new JobClient();
    JobConf conf = new JobConf(BayesWeightSummerDriver.class);
    conf.setJobName("TfIdf Driver running over input: " + input);
   
    conf.setOutputKeyClass(StringTuple.class);
    conf.setOutputValueClass(DoubleWritable.class);
   
    FileInputFormat.addInputPath(conf, new Path(output + "/trainer-termDocCount"));
    FileInputFormat.addInputPath(conf, new Path(output + "/trainer-wordFreq"));
    FileInputFormat.addInputPath(conf, new Path(output + "/trainer-featureCount"));
    Path outPath = new Path(output + "/trainer-tfIdf/");
    FileOutputFormat.setOutputPath(conf, outPath);
   
    // conf.setNumMapTasks(100);
   
    conf.setJarByClass(BayesTfIdfDriver.class);
   
    conf.setMapperClass(BayesTfIdfMapper.class);
    conf.setInputFormat(SequenceFileInputFormat.class);
    conf.setCombinerClass(BayesTfIdfReducer.class);
   
    conf.setReducerClass(BayesTfIdfReducer.class);
   
    conf.setOutputFormat(BayesTfIdfOutputFormat.class);
   
    conf
        .set("io.serializations",
          "org.apache.hadoop.io.serializer.JavaSerialization,org.apache.hadoop.io.serializer.WritableSerialization");
    // Dont ever forget this. People should keep track of how hadoop conf
    // parameters and make or break a piece of code
   
    FileSystem dfs = FileSystem.get(outPath.toUri(), conf);
    if (dfs.exists(outPath)) {
      dfs.delete(outPath, true);
    }
   
    Path interimFile = new Path(output + "/trainer-docCount/part-*");
   
    Map<String,Double> labelDocumentCounts = SequenceFileModelReader.readLabelDocumentCounts(dfs,
      interimFile, conf);
   
    DefaultStringifier<Map<String,Double>> mapStringifier = new DefaultStringifier<Map<String,Double>>(conf,
        GenericsUtil.getClass(labelDocumentCounts));
   
    String labelDocumentCountString = mapStringifier.toString(labelDocumentCounts);
    log.info("Counts of documents in Each Label");
    Map<String,Double> c = mapStringifier.fromString(labelDocumentCountString);
    log.info("{}", c);
   
    conf.set("cnaivebayes.labelDocumentCounts", labelDocumentCountString);
    log.info(params.print());
    if (params.get("dataSource").equals("hbase")) {
      HBaseConfiguration hc = new HBaseConfiguration(new Configuration());
      HTableDescriptor ht = new HTableDescriptor(output);
      HColumnDescriptor hcd = new HColumnDescriptor(BayesConstants.HBASE_COLUMN_FAMILY + ':');
      hcd.setBloomfilter(true);
      hcd.setInMemory(true);
      hcd.setMaxVersions(1);
      hcd.setBlockCacheEnabled(true);
      ht.addFamily(hcd);
     
      log.info("Connecting to hbase...");
      HBaseAdmin hba = new HBaseAdmin(hc);
      log.info("Creating Table {}", output);
     
      if (hba.tableExists(output)) {
        hba.disableTable(output);
        hba.deleteTable(output);
        hba.majorCompact(".META.");
      }
      hba.createTable(ht);
      conf.set("output.table", output);
    }
    conf.set("bayes.parameters", params.toString());
   
    client.setConf(conf);
   
    JobClient.runJob(conf);
  }
View Full Code Here

Examples of org.apache.hadoop.conf.Configurable

   * @param output
   *          the output pathname String
   */
  @Override
  public void runJob(String input, String output, BayesParameters params) throws IOException {
    Configurable client = new JobClient();
    JobConf conf = new JobConf(BayesWeightSummerDriver.class);
    conf.setJobName("Bayes Weight Summer Driver running over input: " + input);
   
    conf.setOutputKeyClass(StringTuple.class);
    conf.setOutputValueClass(DoubleWritable.class);
   
    FileInputFormat.addInputPath(conf, new Path(output + "/trainer-tfIdf/trainer-tfIdf"));
    Path outPath = new Path(output + "/trainer-weights");
    FileOutputFormat.setOutputPath(conf, outPath);
    // conf.setNumReduceTasks(1);
    // conf.setNumMapTasks(100);
    conf.setMapperClass(BayesWeightSummerMapper.class);
    // see the javadoc for the spec for file input formats: first token is key,
    // rest is input. Whole document on one line
    conf.setInputFormat(SequenceFileInputFormat.class);
    conf.setCombinerClass(BayesWeightSummerReducer.class);
    conf.setReducerClass(BayesWeightSummerReducer.class);
    conf.setOutputFormat(BayesWeightSummerOutputFormat.class);
    FileSystem dfs = FileSystem.get(outPath.toUri(), conf);
    if (dfs.exists(outPath)) {
      dfs.delete(outPath, true);
    }
    conf.set("bayes.parameters", params.toString());
   
    conf.set("output.table", output);
   
    client.setConf(conf);
   
    JobClient.runJob(conf);
  }
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.