Examples of Clusterer


Examples of cc.mallet.cluster.Clusterer

    InfoGain ig = new InfoGain(trainList);
    ig.print();

//     Clusterer clusterer = new GreedyAgglomerative(training.getInstances().getPipe(),
//                                                   eval, 0.5);
    Clusterer clusterer = new GreedyAgglomerativeByDensity(training.getInstances().getPipe(),
                                                           eval, 0.5, false,
                                                           new java.util.Random(1));

    // TEST
    Clustering testing = sampleClustering(alphabet);   
    InstanceList testList = testing.getInstances();
    Clustering predictedClusters = clusterer.cluster(testList);     

    // EVALUATE
    System.err.println("\n\nEvaluating System: " + clusterer);
    ClusteringEvaluators evaluators = new ClusteringEvaluators(new ClusteringEvaluator[]{
        new BCubedEvaluator(),
View Full Code Here

Examples of cc.mallet.cluster.Clusterer

    CommandOption.process(Clusterings2Clusterer.class, args);

    // TRAIN

    Randoms random = new Randoms(123);
    Clusterer clusterer = null;
    if (!loadClusterer.value.exists()) {
      Clusterings training = readClusterings(trainingFile.value);

      Alphabet fieldAlphabet = ((Record) training.get(0).getInstances()
          .get(0).getData()).fieldAlphabet();

      Pipe pipe = new ClusteringPipe(string2ints(exactMatchFields.value, fieldAlphabet),
                                 string2ints(approxMatchFields.value, fieldAlphabet),
                                 string2ints(substringMatchFields.value, fieldAlphabet));

      InstanceList trainingInstances = new InstanceList(pipe);
      for (int i = 0; i < training.size(); i++) {
        PairSampleIterator iterator = new PairSampleIterator(training
            .get(i), random, 0.5, training.get(i).getNumInstances());
        while(iterator.hasNext()) {
          Instance inst = iterator.next();
          trainingInstances.add(pipe.pipe(inst));
        }
      }
      logger.info("generated " + trainingInstances.size()
          + " training instances");
      Classifier classifier = new MaxEntTrainer().train(trainingInstances);
      logger.info("InfoGain:\n");
      new InfoGain(trainingInstances).printByRank(System.out);
      logger.info("pairwise training accuracy="
          + new Trial(classifier, trainingInstances).getAccuracy());
      NeighborEvaluator neval = new PairwiseEvaluator(classifier, "YES",
          new PairwiseEvaluator.Average(), true);       
      clusterer = new GreedyAgglomerativeByDensity(
          training.get(0).getInstances().getPipe(), neval, 0.5, false,
          random);
      training = null;
      trainingInstances = null;
    } else {
      ObjectInputStream ois = new ObjectInputStream(new FileInputStream(loadClusterer.value));
      clusterer = (Clusterer) ois.readObject();
    }

    // TEST

    Clusterings testing = readClusterings(testingFile.value);
    ClusteringEvaluator evaluator = (ClusteringEvaluator) clusteringEvaluatorOption.value;
    if (evaluator == null)
      evaluator = new ClusteringEvaluators(
          new ClusteringEvaluator[] { new BCubedEvaluator(),
              new PairF1Evaluator(), new MUCEvaluator(), new AccuracyEvaluator() });
    ArrayList<Clustering> predictions = new ArrayList<Clustering>();
    for (int i = 0; i < testing.size(); i++) {
      Clustering clustering = testing.get(i);
      Clustering predicted = clusterer.cluster(clustering.getInstances());
      predictions.add(predicted);
      logger.info(evaluator.evaluate(clustering, predicted));
    }
    logger.info(evaluator.evaluateTotals());
   
View Full Code Here

Examples of com.google.refine.clustering.Clusterer

            long start = System.currentTimeMillis();
            Project project = getProject(request);
            Engine engine = getEngine(request, project);
            JSONObject clusterer_conf = getJsonParameter(request,"clusterer");

            Clusterer clusterer = null;
            String type = clusterer_conf.has("type") ? clusterer_conf.getString("type") : "binning";
           
            if ("knn".equals(type)) {
                clusterer = new kNNClusterer();
            } else  {
                clusterer = new BinningClusterer();
            }
               
            clusterer.initializeFromJSON(project, clusterer_conf);
           
            clusterer.computeClusters(engine);
           
            respondJSON(response, clusterer);
            logger.info("computed clusters [{},{}] in {}ms", new Object[] { type, clusterer_conf.getString("function"), Long.toString(System.currentTimeMillis() - start) });
        } catch (Exception e) {
            respondException(response, e);
View Full Code Here

Examples of edu.mit.simile.vicino.clustering.Clusterer

        List<String> strings = getStrings(args[1]);
        double radius = Double.parseDouble(args[2]);
        int blocking_size = Integer.parseInt(args[3]);

        long vptree_start = System.currentTimeMillis();
        Clusterer vptree_clusterer = new VPTreeClusterer(distance);
        for (String s: strings) {
            vptree_clusterer.populate(s);
        }
        List<Set<Serializable>> vptree_clusters = vptree_clusterer.getClusters(radius);
        long vptree_elapsed = System.currentTimeMillis() - vptree_start;
        int vptree_distances = distance.getCount();
        distance.resetCounter();
       
        long ngram_start = System.currentTimeMillis();
        Clusterer ngram_clusterer = new NGramClusterer(distance,blocking_size);
        for (String s: strings) {
            ngram_clusterer.populate(s);
        }
        List<Set<Serializable>> ngram_clusters = ngram_clusterer.getClusters(radius);
        long ngram_elapsed = System.currentTimeMillis() - ngram_start;
        int ngram_distances = distance.getCount();
        distance.resetCounter();
       
        log("VPTree found " + vptree_clusters.size() + " in " + vptree_elapsed + " ms with " + vptree_distances + " distances\n");
View Full Code Here

Examples of me.uits.aiphial.general.basic.Clusterer

        fireIterationDone(clusters);
        List clusters1 = clusters;

        while (clusteresIterator.hasNext())
        {
            Clusterer curClusterer = clusteresIterator.next();

            curClusterer.setDataStore(curDataStore);
            curClusterer.doClustering();
            clusters1 = curClusterer.getClusters();

            fireIterationDone(getClustersOfInitialPoints(clusters1));
            curDataStore = dataStoreFactory.createDataStore(dim);

            for (Object cluster : clusters1)
View Full Code Here

Examples of org.gephi.clustering.spi.Clusterer

                    if (model.getSelectedClusterer() != null) {
                        model.setSelectedClusterer(null);
                    }
                } else {
                    ClustererBuilder selectedBuilder = (ClustererBuilder) algorithmComboBox.getSelectedItem();
                    Clusterer savedData = getSavedClusterer(selectedBuilder);
                    if (savedData != null) {
                        model.setSelectedClusterer(savedData);
                    } else {
                        Clusterer newClusterer = selectedBuilder.getClusterer();
                        model.addClusterer(newClusterer);
                        model.setSelectedClusterer(newClusterer);
                    }
                }
            }
View Full Code Here

Examples of org.gephi.clustering.spi.Clusterer

        }
    }

    private void run() {
        if (!model.isRunning()) {
            Clusterer clusterer = model.getSelectedClusterer();
            ClusteringController controller = Lookup.getDefault().lookup(ClusteringController.class);
            controller.clusterize(clusterer);
        } else {
            //stop
            Clusterer clusterer = model.getSelectedClusterer();
            ClusteringController controller = Lookup.getDefault().lookup(ClusteringController.class);
            controller.cancelClusterize(clusterer);
        }

    }
View Full Code Here

Examples of org.gephi.clustering.spi.Clusterer

    }

    private void reset() {
        model.removeClusterer(model.getSelectedClusterer());
        ClustererBuilder selectedBuilder = (ClustererBuilder) algorithmComboBox.getSelectedItem();
        Clusterer newClusterer = selectedBuilder.getClusterer();
        model.addClusterer(newClusterer);
        model.setSelectedClusterer(newClusterer);
    }
View Full Code Here

Examples of org.gephi.clustering.spi.Clusterer

        ClusterExplorer clusterExplorer = (ClusterExplorer) resultPanel;
        if (model == null || model.getSelectedClusterer() == null) {
            clusterExplorer.resetExplorer();
            return;
        }
        Clusterer clusterer = model.getSelectedClusterer();
        Cluster[] clusters = clusterer.getClusters();
        clusterExplorer.initExplorer(clusters);
    }
View Full Code Here

Examples of org.gephi.clustering.spi.Clusterer

                    if (model.getSelectedClusterer() != null) {
                        model.setSelectedClusterer(null);
                    }
                } else {
                    ClustererBuilder selectedBuilder = (ClustererBuilder) algorithmComboBox.getSelectedItem();
                    Clusterer savedData = getSavedClusterer(selectedBuilder);
                    if (savedData != null) {
                        model.setSelectedClusterer(savedData);
                    } else {
                        Clusterer newClusterer = selectedBuilder.getClusterer();
                        model.addClusterer(newClusterer);
                        model.setSelectedClusterer(newClusterer);
                    }
                }
            }
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.