Examples of CholeskyDecomposition


Examples of org.apache.commons.math.linear.CholeskyDecomposition

    /** test that LT is transpose of L */
    @Test
    public void testLTTransposed() throws MathException {
        RealMatrix matrix = MatrixUtils.createRealMatrix(testData);
        CholeskyDecomposition llt = new CholeskyDecompositionImpl(matrix);
        RealMatrix l  = llt.getL();
        RealMatrix lt = llt.getLT();
        double norm = l.subtract(lt.transpose()).getNorm();
        assertEquals(0, norm, 1.0e-15);
    }
View Full Code Here

Examples of org.apache.commons.math.linear.CholeskyDecomposition

                23000 },
                45600 },
                789, 100 },
                { 11, 12, 13, 14, 15 }
        });
       CholeskyDecomposition llt =
            new CholeskyDecompositionImpl(MatrixUtils.createRealMatrix(testData));

        // check values against known references
        RealMatrix l = llt.getL();
        assertEquals(0, l.subtract(lRef).getNorm(), 1.0e-13);
        RealMatrix lt = llt.getLT();
        assertEquals(0, lt.subtract(lRef.transpose()).getNorm(), 1.0e-13);

        // check the same cached instance is returned the second time
        assertTrue(l  == llt.getL());
        assertTrue(lt == llt.getLT());
       
    }
View Full Code Here

Examples of org.apache.commons.math.linear.CholeskyDecomposition

   */
  @Override
  public CholeskyDecompositionResult evaluate(final DoubleMatrix2D x) {
    Validate.notNull(x);
    final RealMatrix temp = CommonsMathWrapper.wrap(x);
    CholeskyDecomposition cholesky;
    try {
      cholesky = new CholeskyDecompositionImpl(temp);
    } catch (Exception e) {
      throw new MathException(e.toString());
    }
View Full Code Here

Examples of org.apache.commons.math3.linear.CholeskyDecomposition

            .add(measurementModel.getMeasurementNoise());

        // invert S
        // as the error covariance matrix is a symmetric positive
        // semi-definite matrix, we can use the cholesky decomposition
        DecompositionSolver solver = new CholeskyDecomposition(s).getSolver();
        RealMatrix invertedS = solver.getInverse();

        // Inn = z(k) - H * xHat(k)-
        RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation));

View Full Code Here

Examples of org.apache.commons.math3.linear.CholeskyDecomposition

            .add(measurementModel.getMeasurementNoise());

        // invert S
        // as the error covariance matrix is a symmetric positive
        // semi-definite matrix, we can use the cholesky decomposition
        DecompositionSolver solver = new CholeskyDecomposition(s).getSolver();
        RealMatrix invertedS = solver.getInverse();

        // Inn = z(k) - H * xHat(k)-
        RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation));

View Full Code Here

Examples of org.apache.mahout.math.CholeskyDecomposition

  public SequentialBigSvd(Matrix A, int p) {
    // Y = A * \Omega
    y = A.times(new RandomTrinaryMatrix(A.columnSize(), p));

    // R'R = Y' Y
    cd1 = new CholeskyDecomposition(y.transpose().times(y));

    // B = Q" A = (Y R^{-1} )' A
    b = cd1.solveRight(y).transpose().times(A);

    // L L' = B B'
    cd2 = new CholeskyDecomposition(b.times(b.transpose()));

    // U_0 D V_0' = L
    svd = new SingularValueDecomposition(cd2.getL());
  }
View Full Code Here

Examples of org.apache.mahout.math.CholeskyDecomposition

        y2 = y.transpose().times(y);
      } else {
        y2.assign(y.transpose().times(y), Functions.PLUS);
      }
    }
    r2 = new CholeskyDecomposition(y2);

    // step 2, compute B
    int ncols = 0;
    for (File file : partsOfA) {
      MatrixWritable m = new MatrixWritable();
      DataInputStream in = new DataInputStream(new FileInputStream(file));
      try {
        m.readFields(in);
      } finally {
        in.close();
      }
      Matrix aI = m.get();
      ncols = Math.max(ncols, aI.columnSize());

      Matrix omega = new RandomTrinaryMatrix(seed, aI.numCols(), internalDimension, false);
      for (int j = 0; j < aI.numCols(); j += columnsPerSlice) {
        Matrix yI = aI.times(omega);
        Matrix aIJ = aI.viewPart(0, aI.rowSize(), j, Math.min(columnsPerSlice, aI.columnSize() - j));
        Matrix bIJ = r2.solveRight(yI).transpose().times(aIJ);
        addToSavedCopy(bFile(tmpDir, j), bIJ);
      }
    }

    // step 3, compute BB', L and SVD(L)
    Matrix b2 = new DenseMatrix(internalDimension, internalDimension);
    MatrixWritable bTmp = new MatrixWritable();
    for (int j = 0; j < ncols; j += columnsPerSlice) {
      if (bFile(tmpDir, j).exists()) {
        DataInputStream in = new DataInputStream(new FileInputStream(bFile(tmpDir, j)));
        try {
          bTmp.readFields(in);
        } finally {
          in.close();
        }

        b2.assign(bTmp.get().times(bTmp.get().transpose()), Functions.PLUS);
      }
    }
    l2 = new CholeskyDecomposition(b2);
    svd = new SingularValueDecomposition(l2.getL());
  }
View Full Code Here

Examples of org.apache.mahout.math.CholeskyDecomposition

        y2 = y.transpose().times(y);
      } else {
        y2.assign(y.transpose().times(y), Functions.PLUS);
      }
    }
    r2 = new CholeskyDecomposition(y2);

    // step 2, compute B
    int ncols = 0;
    for (File file : partsOfA) {
      MatrixWritable m = new MatrixWritable();
      DataInputStream in = new DataInputStream(new FileInputStream(file));
      try {
        m.readFields(in);
      } finally {
        in.close();
      }
      Matrix aI = m.get();
      ncols = Math.max(ncols, aI.columnSize());

      Matrix omega = new RandomTrinaryMatrix(seed, aI.numCols(), internalDimension, false);
      for (int j = 0; j < aI.numCols(); j += columnsPerSlice) {
        Matrix yI = aI.times(omega);
        Matrix aIJ = aI.viewPart(0, aI.rowSize(), j, Math.min(columnsPerSlice, aI.columnSize() - j));
        Matrix bIJ = r2.solveRight(yI).transpose().times(aIJ);
        addToSavedCopy(bFile(tmpDir, j), bIJ);
      }
    }

    // step 3, compute BB', L and SVD(L)
    Matrix b2 = new DenseMatrix(internalDimension, internalDimension);
    MatrixWritable bTmp = new MatrixWritable();
    for (int j = 0; j < ncols; j += columnsPerSlice) {
      if (bFile(tmpDir, j).exists()) {
        DataInputStream in = new DataInputStream(new FileInputStream(bFile(tmpDir, j)));
        try {
          bTmp.readFields(in);
        } finally {
          in.close();
        }

        b2.assign(bTmp.get().times(bTmp.get().transpose()), Functions.PLUS);
      }
    }
    l2 = new CholeskyDecomposition(b2);
    svd = new SingularValueDecomposition(l2.getL());
  }
View Full Code Here

Examples of org.apache.mahout.math.CholeskyDecomposition

        y2 = y.transpose().times(y);
      } else {
        y2.assign(y.transpose().times(y), Functions.PLUS);
      }
    }
    r2 = new CholeskyDecomposition(y2);

    // step 2, compute B
    int ncols = 0;
    for (File file : partsOfA) {
      MatrixWritable m = new MatrixWritable();
      final DataInputStream in = new DataInputStream(new FileInputStream(file));
      try {
        m.readFields(in);
      } finally {
        in.close();
      }
      Matrix aI = m.get();
      ncols = Math.max(ncols, aI.columnSize());

      Matrix omega = new RandomTrinaryMatrix(seed, aI.numCols(), internalDimension, false);
      for (int j = 0; j < aI.numCols(); j += columnsPerSlice) {
        Matrix yI = aI.times(omega);
        Matrix aIJ = aI.viewPart(0, aI.rowSize(), j, Math.min(columnsPerSlice, aI.columnSize() - j));
        Matrix bIJ = r2.solveRight(yI).transpose().times(aIJ);
        addToSavedCopy(bFile(tmpDir, j), bIJ);
      }
    }

    // step 3, compute BB', L and SVD(L)
    Matrix b2 = new DenseMatrix(internalDimension, internalDimension);
    MatrixWritable bTmp = new MatrixWritable();
    for (int j = 0; j < ncols; j += columnsPerSlice) {
      if (bFile(tmpDir, j).exists()) {
        final DataInputStream in = new DataInputStream(new FileInputStream(bFile(tmpDir, j)));
        try {
          bTmp.readFields(in);
        } finally {
          in.close();
        }

        b2.assign(bTmp.get().times(bTmp.get().transpose()), Functions.PLUS);
      }
    }
    l2 = new CholeskyDecomposition(b2);
    svd = new SingularValueDecomposition(l2.getL());
  }
View Full Code Here

Examples of org.encog.mathutil.matrices.decomposition.CholeskyDecomposition

        {21,22,23,24},
        {25,27,28,29},
        {37,33,31,30} };
    Matrix matrix2 = new Matrix(m2);
   
    CholeskyDecomposition c = new CholeskyDecomposition(matrix1);
    c.solve(matrix2);

    Matrix mx = c.getL();
   
    Assert.assertEquals(1.0, mx.get(0,0));
    Assert.assertEquals(1.0, mx.get(1,1));
    Assert.assertEquals(1.0, mx.get(2,2));
    Assert.assertEquals(4, mx.getRows());
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.