movAvgFit = 0.0;
movAvgColl = 0.0;
movAvgGate = 0.0;
}
ChartEvent eventMovAvgFit = new ChartEvent("Evolution", "Fitness MovAvg", movAvgFit);
eventMovAvgFit.setLineStroke(new ShapeStroke(new Rectangle(3, 3), 1));
eventMovAvgFit.setLineColor(Color.red);
env.getSimTime().broadcastEvent(eventMovAvgFit);
ChartEvent eventMovAvgColl = new ChartEvent("Evolution", "Coll MovAvg", movAvgColl);
eventMovAvgColl.setLineStroke(new ShapeStroke(new Rectangle(3, 3), 1));
eventMovAvgColl.setLineColor(Color.blue);
env.getSimTime().broadcastEvent(eventMovAvgColl);
ChartEvent eventMovAvgGate = new ChartEvent("Evolution", "Gate MovAvg", movAvgGate);
eventMovAvgGate.setLineStroke(new ShapeStroke(new Rectangle(3, 3), 1));
eventMovAvgGate.setLineColor(Color.black);
env.getSimTime().broadcastEvent(eventMovAvgGate);
params.logInfo("Simulation cycle: " + simZyk);
ChartEvent event0 = new ChartEvent("Evolution", "FitnessSum (quad)", fitVal);
event0.setLineStroke(new ShapeStroke(new Rectangle(1, 1), 1));
env.getSimTime().broadcastEvent(event0);
ChartEvent event1 = new ChartEvent("Evolution", "Collisions * 10", collisions);
event1.setLineStroke(new ShapeStroke(new Rectangle(1, 1), 1));
env.getSimTime().broadcastEvent(event1);
ChartEvent event2 = new ChartEvent("Evolution", "Mem-Genome * 100", (memory) * 100.0);
event2.setLineStroke(new ShapeStroke(new Rectangle(1, 1), 1));
env.getSimTime().broadcastEvent(event2);
ChartEvent event3 = new ChartEvent("Evolution", "GP * 100", gatePassings);
event3.setLineColor(Color.black);
env.getSimTime().broadcastEvent(event3);
// List<RobNeural> agents = env.getAgents();
// Collections.sort(agents, (r1, r2) -> -new Double(r1.getGlobalBestFitness()).compareTo(r2.getGlobalBestFitness()));
// double globalBestFit = agents.get(0).getGlobalBestFitness() * agents.get(0).getGlobalBestFitness() / 30000 * 150 / env.getAgents().size();