Package cern.colt.matrix

Examples of cern.colt.matrix.DoubleMatrix2D


* Returns the inverse or pseudo-inverse of matrix <tt>A</tt>.
* @return a new independent matrix; inverse(matrix) if the matrix is square, pseudoinverse otherwise.
*/
public DoubleMatrix2D inverse(DoubleMatrix2D A) {
  if (property.isSquare(A) && property.isDiagonal(A)) {
    DoubleMatrix2D inv = A.copy();
    boolean isNonSingular = Diagonal.inverse(inv);
    if (!isNonSingular) throw new IllegalArgumentException("A is singular.");
    return inv;
  }
  return solve(A, DoubleFactory2D.dense.identity(A.rows()));
View Full Code Here


  if (p<0) {
    A = inverse(A);
    p = -p;
  }
  if (p==0) return DoubleFactory2D.dense.identity(A.rows());
  DoubleMatrix2D T = A.like(); // temporary
  if (p==1) return T.assign(A)// safes one auxiliary matrix allocation
  if (p==2) {
    blas.dgemm(false,false,1,A,A,0,T); // mult(A,A); // safes one auxiliary matrix allocation
    return T;
  }

  int k = cern.colt.bitvector.QuickBitVector.mostSignificantBit(p); // index of highest bit in state "true"
 
  /*
  this is the naive version:
  DoubleMatrix2D B = A.copy();
  for (int i=0; i<p-1; i++) {
    B = mult(B,A);
  }
  return B;
  */

  // here comes the optimized version:
  //cern.colt.Timer timer = new cern.colt.Timer().start();

  int i=0;
  while (i<=k && (p & (1<<i)) == 0) { // while (bit i of p == false)
    // A = mult(A,A); would allocate a lot of temporary memory
    blas.dgemm(false,false,1,A,A,0,T); // A.zMult(A,T);
    DoubleMatrix2D swap = A; A = T; T = swap; // swap A with T
    i++;
  }

  DoubleMatrix2D B = A.copy();
  i++;
  for (; i<=k; i++) {
    // A = mult(A,A); would allocate a lot of temporary memory
    blas.dgemm(false,false,1,A,A,0,T); // A.zMult(A,T); 
    DoubleMatrix2D swap = A; A = T; T = swap; // swap A with T

    if ((p & (1<<i)) != 0) { // if (bit i of p == true)
      // B = mult(B,A); would allocate a lot of temporary memory
      blas.dgemm(false,false,1,B,A,0,T); // B.zMult(A,T);   
      swap = B; B = T; T = swap; // swap B with T
View Full Code Here

*/
private DoubleMatrix2D subMatrix(DoubleMatrix2D A, int[] rowIndexes, int columnFrom, int columnTo) {
  int width = columnTo-columnFrom+1;
  int rows = A.rows();
  A = A.viewPart(0,columnFrom,rows,width);
  DoubleMatrix2D sub = A.like(rowIndexes.length, width);
 
  for (int r = rowIndexes.length; --r >= 0; ) {
    int row = rowIndexes[r];
    if (row < 0 || row >= rows)
      throw new IndexOutOfBoundsException("Illegal Index");
    sub.viewRow(r).assign(A.viewRow(row));
  }
  return sub;
}
View Full Code Here

private DoubleMatrix2D subMatrix(DoubleMatrix2D A, int rowFrom, int rowTo, int[] columnIndexes) {
  if (rowTo-rowFrom >= A.rows()) throw new IndexOutOfBoundsException("Too many rows");
  int height = rowTo-rowFrom+1;
  int columns = A.columns();
  A = A.viewPart(rowFrom,0,height,columns);
  DoubleMatrix2D sub = A.like(height, columnIndexes.length);
 
  for (int c = columnIndexes.length; --c >= 0; ) {
    int column = columnIndexes[c];
    if (column < 0 || column >= columns)
      throw new IndexOutOfBoundsException("Illegal Index");
    sub.viewColumn(c).assign(A.viewColumn(column));
  }
  return sub;
}
View Full Code Here

* @param x the first source vector.
* @param y the second source vector.
* @return the outer product </tt>A</tt>.
*/
private DoubleMatrix2D xmultOuter(DoubleMatrix1D x, DoubleMatrix1D y) {
  DoubleMatrix2D A = x.like2D(x.size(),y.size());
  multOuter(x,y,A);
  return A;
}
View Full Code Here

*
* @throws IllegalArgumentException if <tt>!Testing.isSquare(A)</tt>.
*/
private DoubleMatrix2D xpowSlow(DoubleMatrix2D A, int k) {
  //cern.colt.Timer timer = new cern.colt.Timer().start();
  DoubleMatrix2D result = A.copy();
  for (int i=0; i<k-1; i++) {
    result = mult(result,A);
  }
  //timer.stop().display();
  return result;
View Full Code Here

* @return the covariance matrix (<tt>n x n, n=matrix.columns</tt>).
*/
public static DoubleMatrix2D covariance(DoubleMatrix2D matrix) {
  int rows = matrix.rows();
  int columns = matrix.columns();
  DoubleMatrix2D covariance = new cern.colt.matrix.impl.DenseDoubleMatrix2D(columns,columns);
 
  double[] sums = new double[columns];
  DoubleMatrix1D[] cols = new DoubleMatrix1D[columns];
  for (int i=columns; --i >= 0; ) {
    cols[i] = matrix.viewColumn(i);
    sums[i] = cols[i].zSum();
  }

  for (int i=columns; --i >= 0; ) {
    for (int j=i+1; --j >= 0; ) {
      double sumOfProducts = cols[i].zDotProduct(cols[j]);
      double cov = (sumOfProducts - sums[i]*sums[j]/rows) / rows;
      covariance.setQuick(i,j,cov);
      covariance.setQuick(j,i,cov); // symmetric
    }
  }
  return covariance; 
}
View Full Code Here

  { 2, 4, 6 },
  { 3, 6, 9 },
  { 4, -8, -10 }
};
DoubleFactory2D factory = DoubleFactory2D.dense;
DoubleMatrix2D A = factory.make(values);
System.out.println("\n\nmatrix="+A);
System.out.println("\ncovar1="+covariance(A));
//System.out.println(correlation(covariance(A)));
//System.out.println(distance(A,EUCLID));
View Full Code Here

* Demonstrates usage of this class.
*/
public static void demo2(int rows, int columns, boolean print) {
System.out.println("\n\ninitializing...");
DoubleFactory2D factory = DoubleFactory2D.dense;
DoubleMatrix2D A = factory.ascending(rows,columns);
//double value = 1;
//DoubleMatrix2D A = factory.make(rows,columns);
//A.assign(value);

System.out.println("benchmarking correlation...");

cern.colt.Timer timer = new cern.colt.Timer().start();
DoubleMatrix2D corr = correlation(covariance(A));
timer.stop().display();

if (print) {
  System.out.println("printing result...");
  System.out.println(corr);
View Full Code Here

  {-1.13415420.20388430}
};

System.out.println("\n\ninitializing...");
DoubleFactory2D factory = DoubleFactory2D.dense;
DoubleMatrix2D A = factory.make(values).viewDice();

System.out.println("\nA="+A.viewDice());
System.out.println("\ndist="+distance(A,norm).viewDice());
}
View Full Code Here

TOP

Related Classes of cern.colt.matrix.DoubleMatrix2D

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.