testing.addThruPipe (new ArrayIterator (data1));
CRF crf = new CRF (pipe, null);
crf.addFullyConnectedStatesForLabels ();
CRFTrainerByLabelLikelihood crft = new CRFTrainerByLabelLikelihood (crf);
TokenAccuracyEvaluator eval = new TokenAccuracyEvaluator (new InstanceList[] {training, testing}, new String[] {"Training", "Testing"});
for (int i = 0; i < 5; i++) {
crft.train (training, 1);
eval.evaluate(crft);
}
CRFExtractor extor = hackCrfExtor (crf);
Extraction e1 = extor.extract (new ArrayIterator (data1));
Pipe pipe2 = TestMEMM.makeSpacePredictionPipe ();
InstanceList training2 = new InstanceList (pipe2);
training2.addThruPipe (new ArrayIterator (data0));
InstanceList testing2 = new InstanceList (pipe2);
testing2.addThruPipe (new ArrayIterator (data1));
MEMM memm = new MEMM (pipe2, null);
memm.addFullyConnectedStatesForLabels ();
MEMMTrainer memmt = new MEMMTrainer (memm);
TransducerEvaluator memmeval = new TokenAccuracyEvaluator (new InstanceList[] {training2, testing2}, new String[] {"Training2", "Testing2"});
memmt.train (training2, 5);
memmeval.evaluate(memmt);
CRFExtractor extor2 = hackCrfExtor (memm);
Extraction e2 = extor2.extract (new ArrayIterator (data1));
if (!htmlDir.exists ()) htmlDir.mkdir ();