Examples of BigIntPolynomial


Examples of org.bouncycastle.pqc.math.ntru.polynomial.BigIntPolynomial

            rg = gInt.resultant();
            r = BigIntEuclidean.calculate(rf.res, rg.res);
        }
        while (!r.gcd.equals(ONE));

        BigIntPolynomial A = (BigIntPolynomial)rf.rho.clone();
        A.mult(r.x.multiply(BigInteger.valueOf(q)));
        BigIntPolynomial B = (BigIntPolynomial)rg.rho.clone();
        B.mult(r.y.multiply(BigInteger.valueOf(-q)));

        BigIntPolynomial C;
        if (params.keyGenAlg == NTRUSigningKeyGenerationParameters.KEY_GEN_ALG_RESULTANT)
        {
            int[] fRevCoeffs = new int[N];
            int[] gRevCoeffs = new int[N];
            fRevCoeffs[0] = fInt.coeffs[0];
            gRevCoeffs[0] = gInt.coeffs[0];
            for (int i = 1; i < N; i++)
            {
                fRevCoeffs[i] = fInt.coeffs[N - i];
                gRevCoeffs[i] = gInt.coeffs[N - i];
            }
            IntegerPolynomial fRev = new IntegerPolynomial(fRevCoeffs);
            IntegerPolynomial gRev = new IntegerPolynomial(gRevCoeffs);

            IntegerPolynomial t = f.mult(fRev);
            t.add(g.mult(gRev));
            Resultant rt = t.resultant();
            C = fRev.mult(B);   // fRev.mult(B) is actually faster than new SparseTernaryPolynomial(fRev).mult(B), possibly due to cache locality?
            C.add(gRev.mult(A));
            C = C.mult(rt.rho);
            C.div(rt.res);
        }
        else
        {   // KeyGenAlg.FLOAT
            // calculate ceil(log10(N))
            int log10N = 0;
            for (int i = 1; i < N; i *= 10)
            {
                log10N++;
            }

            // * Cdec needs to be accurate to 1 decimal place so it can be correctly rounded;
            // * fInv loses up to (#digits of longest coeff of B) places in fInv.mult(B);
            // * multiplying fInv by B also multiplies the rounding error by a factor of N;
            // so make #decimal places of fInv the sum of the above.
            BigDecimalPolynomial fInv = rf.rho.div(new BigDecimal(rf.res), B.getMaxCoeffLength() + 1 + log10N);
            BigDecimalPolynomial gInv = rg.rho.div(new BigDecimal(rg.res), A.getMaxCoeffLength() + 1 + log10N);

            BigDecimalPolynomial Cdec = fInv.mult(B);
            Cdec.add(gInv.mult(A));
            Cdec.halve();
            C = Cdec.round();
        }

        BigIntPolynomial F = (BigIntPolynomial)B.clone();
        F.sub(f.mult(C));
        BigIntPolynomial G = (BigIntPolynomial)A.clone();
        G.sub(g.mult(C));

        IntegerPolynomial FInt = new IntegerPolynomial(F);
        IntegerPolynomial GInt = new IntegerPolynomial(G);
        minimizeFG(fInt, gInt, FInt, GInt, N);

View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.