boolean tupleMemoryEnabled = true;
LeftTupleMemory ltm = bm.getLeftTupleMemory();
RightTupleMemory rtm = bm.getRightTupleMemory();
ContextEntry[] contextEntry = bm.getContext();
BetaConstraints constraints = notNode.getRawConstraints();
FastIterator leftIt = notNode.getLeftIterator( ltm );
FastIterator rightIt = notNode.getRightIterator( rtm );
for ( RightTuple rightTuple = srcRightTuples.getUpdateFirst(); rightTuple != null; ) {
RightTuple next = rightTuple.getStagedNext();
if ( bm.getLeftTupleMemory() == null || (bm.getLeftTupleMemory().size() == 0 && rightTuple.getBlocked() == null) ) {
// do nothing here, as we know there are no left tuples
//normally do this at the end, but as we are exiting early, make sure the buckets are still correct.
bm.getRightTupleMemory().removeAdd( rightTuple );
rightTuple.clearStaged();
rightTuple = next;
continue;
}
PropagationContext context = rightTuple.getPropagationContext();
constraints.updateFromFactHandle( contextEntry,
wm,
rightTuple.getFactHandle() );
LeftTuple firstLeftTuple = notNode.getFirstLeftTuple( rightTuple, ltm, context, leftIt );
LeftTuple firstBlocked = rightTuple.getBlocked();
// we now have reference to the first Blocked, so null it in the rightTuple itself, so we can rebuild
rightTuple.nullBlocked();
// first process non-blocked tuples, as we know only those ones are in the left memory.
for ( LeftTuple leftTuple = firstLeftTuple; leftTuple != null; ) {
// preserve next now, in case we remove this leftTuple
LeftTuple temp = (LeftTuple) leftIt.next( leftTuple );
// we know that only unblocked LeftTuples are still in the memory
if ( constraints.isAllowedCachedRight( contextEntry,
leftTuple ) ) {
leftTuple.setBlocker( rightTuple );
rightTuple.addBlocked( leftTuple );
// this is now blocked so remove from memory
ltm.remove( leftTuple );
// subclasses like ForallNotNode might override this propagation
if ( leftTuple.getFirstChild() != null ) {
deleteRightChild( leftTuple.getFirstChild(), trgLeftTuples, stagedLeftTuples );
}
}
leftTuple = temp;
}
if ( firstBlocked != null ) {
// now process existing blocks, we only process existing and not new from above loop
boolean useComparisonIndex = rtm.getIndexType().isComparison();
RightTuple rootBlocker = useComparisonIndex ? null : (RightTuple) rightIt.next( rightTuple );
RightTupleList list = rightTuple.getMemory();
// we must do this after we have the next in memory
// We add to the end to give an opportunity to re-match if in same bucket
rtm.removeAdd( rightTuple );
if ( !useComparisonIndex && rootBlocker == null && list == rightTuple.getMemory() ) {
// we are at the end of the list, so set to self, to give self a chance to rematch
rootBlocker = rightTuple;
}
// iterate all the existing previous blocked LeftTuples
for ( LeftTuple leftTuple = firstBlocked; leftTuple != null; ) {
LeftTuple temp = leftTuple.getBlockedNext();
leftTuple.clearBlocker();
constraints.updateFromTuple( contextEntry,
wm,
leftTuple );
if ( useComparisonIndex ) {
rootBlocker = notNode.getFirstRightTuple( leftTuple, rtm, context, rightIt );
}
// we know that older tuples have been checked so continue next
for ( RightTuple newBlocker = rootBlocker; newBlocker != null; newBlocker = (RightTuple) rightIt.next( newBlocker ) ) {
if ( constraints.isAllowedCachedLeft( contextEntry,
newBlocker.getFactHandle() ) ) {
leftTuple.setBlocker( newBlocker );
newBlocker.addBlocked( leftTuple );
break;
}
}
if ( leftTuple.getBlocker() == null ) {
// was previous blocked and not in memory, so add
ltm.add( leftTuple );
// subclasses like ForallNotNode might override this propagation
trgLeftTuples.addInsert( sink.createLeftTuple( leftTuple,
sink,
tupleMemory ) );
}
leftTuple = temp;
}
} else {
// we had to do this at the end, rather than beginning as this 'if' block needs the next memory tuple
rtm.removeAdd( rightTuple );
}
rightTuple.clearStaged();
rightTuple = next;
}
constraints.resetFactHandle( contextEntry );
constraints.resetTuple( contextEntry );
}