Examples of BaseWork


Examples of org.apache.hadoop.hive.ql.plan.BaseWork

    // Right now the work graph is pretty simple. If there is no
    // Preceding work we have a root and will generate a map
    // vertex. If there is a preceding work we will generate
    // a reduce vertex
    BaseWork work;
    if (context.rootToWorkMap.containsKey(root)) {
      // having seen the root operator before means there was a branch in the
      // operator graph. There's typically two reasons for that: a) mux/demux
      // b) multi insert. Mux/Demux will hit the same leaf again, multi insert
      // will result into a vertex with multiple FS or RS operators.

      // At this point we don't have to do anything special in this case. Just
      // run through the regular paces w/o creating a new task.
      work = context.rootToWorkMap.get(root);
    } else {
      // create a new vertex
      if (context.preceedingWork == null) {
        work = utils.createMapWork(context, root, tezWork, null);
      } else {
        work = utils.createReduceWork(context, root, tezWork);
      }
      context.rootToWorkMap.put(root, work);
    }

    // this is where we set the sort columns that we will be using for KeyValueInputMerge
    if (operator instanceof DummyStoreOperator) {
      work.addSortCols(root.getOpTraits().getSortCols().get(0));
    }

    if (!context.childToWorkMap.containsKey(operator)) {
      List<BaseWork> workItems = new LinkedList<BaseWork>();
      workItems.add(work);
      context.childToWorkMap.put(operator, workItems);
    } else {
      context.childToWorkMap.get(operator).add(work);
    }

    // this transformation needs to be first because it changes the work item itself.
    // which can affect the working of all downstream transformations.
    if (context.currentMergeJoinOperator != null) {
      // we are currently walking the big table side of the merge join. we need to create or hook up
      // merge join work.
      MergeJoinWork mergeJoinWork = null;
      if (context.opMergeJoinWorkMap.containsKey(context.currentMergeJoinOperator)) {
        // we have found a merge work corresponding to this closing operator. Hook up this work.
        mergeJoinWork = context.opMergeJoinWorkMap.get(context.currentMergeJoinOperator);
      } else {
        // we need to create the merge join work
        mergeJoinWork = new MergeJoinWork();
        mergeJoinWork.setMergeJoinOperator(context.currentMergeJoinOperator);
        tezWork.add(mergeJoinWork);
        context.opMergeJoinWorkMap.put(context.currentMergeJoinOperator, mergeJoinWork);
      }
      // connect the work correctly.
      work.addSortCols(root.getOpTraits().getSortCols().get(0));
      mergeJoinWork.addMergedWork(work, null);
      Operator<? extends OperatorDesc> parentOp =
          getParentFromStack(context.currentMergeJoinOperator, stack);
      int pos = context.currentMergeJoinOperator.getTagForOperator(parentOp);
      work.setTag(pos);
      tezWork.setVertexType(work, VertexType.MULTI_INPUT_UNINITIALIZED_EDGES);
      for (BaseWork parentWork : tezWork.getParents(work)) {
        TezEdgeProperty edgeProp = tezWork.getEdgeProperty(parentWork, work);
        tezWork.disconnect(parentWork, work);
        tezWork.connect(parentWork, mergeJoinWork, edgeProp);
      }

      for (BaseWork childWork : tezWork.getChildren(work)) {
        TezEdgeProperty edgeProp = tezWork.getEdgeProperty(work, childWork);
        tezWork.disconnect(work, childWork);
        tezWork.connect(mergeJoinWork, childWork, edgeProp);
      }
      tezWork.remove(work);
      context.rootToWorkMap.put(root, mergeJoinWork);
      context.childToWorkMap.get(operator).remove(work);
      context.childToWorkMap.get(operator).add(mergeJoinWork);
      work = mergeJoinWork;
      context.currentMergeJoinOperator = null;
    }

    // remember which mapjoin operator links with which work
    if (!context.currentMapJoinOperators.isEmpty()) {
      for (MapJoinOperator mj: context.currentMapJoinOperators) {
        LOG.debug("Processing map join: " + mj);
        // remember the mapping in case we scan another branch of the
        // mapjoin later
        if (!context.mapJoinWorkMap.containsKey(mj)) {
          List<BaseWork> workItems = new LinkedList<BaseWork>();
          workItems.add(work);
          context.mapJoinWorkMap.put(mj, workItems);
        } else {
          context.mapJoinWorkMap.get(mj).add(work);
        }

        /*
         * this happens in case of map join operations.
         * The tree looks like this:
         *
         *        RS <--- we are here perhaps
         *        |
         *     MapJoin
         *     /     \
         *   RS       TS
         *  /
         * TS
         *
         * If we are at the RS pointed above, and we may have already visited the
         * RS following the TS, we have already generated work for the TS-RS.
         * We need to hook the current work to this generated work.
         */
        if (context.linkOpWithWorkMap.containsKey(mj)) {
          Map<BaseWork,TezEdgeProperty> linkWorkMap = context.linkOpWithWorkMap.get(mj);
          if (linkWorkMap != null) {
            if (context.linkChildOpWithDummyOp.containsKey(mj)) {
              for (Operator<?> dummy: context.linkChildOpWithDummyOp.get(mj)) {
                work.addDummyOp((HashTableDummyOperator) dummy);
              }
            }
            for (Entry<BaseWork,TezEdgeProperty> parentWorkMap : linkWorkMap.entrySet()) {
              BaseWork parentWork = parentWorkMap.getKey();
              LOG.debug("connecting "+parentWork.getName()+" with "+work.getName());
              TezEdgeProperty edgeProp = parentWorkMap.getValue();
              tezWork.connect(parentWork, work, edgeProp);
              if (edgeProp.getEdgeType() == EdgeType.CUSTOM_EDGE) {
                tezWork.setVertexType(work, VertexType.INITIALIZED_EDGES);
              }

              // need to set up output name for reduce sink now that we know the name
              // of the downstream work
              for (ReduceSinkOperator r:
                     context.linkWorkWithReduceSinkMap.get(parentWork)) {
                if (r.getConf().getOutputName() != null) {
                  LOG.debug("Cloning reduce sink for multi-child broadcast edge");
                  // we've already set this one up. Need to clone for the next work.
                  r = (ReduceSinkOperator) OperatorFactory.getAndMakeChild(
                      (ReduceSinkDesc)r.getConf().clone(), r.getParentOperators());
                  context.clonedReduceSinks.add(r);
                }
                r.getConf().setOutputName(work.getName());
                context.connectedReduceSinks.add(r);
              }
            }
          }
        }
      }
      // clear out the set. we don't need it anymore.
      context.currentMapJoinOperators.clear();
    }

    if (!context.currentUnionOperators.isEmpty()) {
      // if there are union all operators we need to add the work to the set
      // of union operators.

      UnionWork unionWork;
      if (context.unionWorkMap.containsKey(operator)) {
        // we've seen this terminal before and have created a union work object.
        // just need to add this work to it. There will be no children of this one
        // since we've passed this operator before.
        assert operator.getChildOperators().isEmpty();
        unionWork = (UnionWork) context.unionWorkMap.get(operator);

      } else {
        // first time through. we need to create a union work object and add this
        // work to it. Subsequent work should reference the union and not the actual
        // work.
        unionWork = utils.createUnionWork(context, operator, tezWork);
      }

      // finally hook everything up
      LOG.debug("Connecting union work ("+unionWork+") with work ("+work+")");
      TezEdgeProperty edgeProp = new TezEdgeProperty(EdgeType.CONTAINS);
      tezWork.connect(unionWork, work, edgeProp);
      unionWork.addUnionOperators(context.currentUnionOperators);
      context.currentUnionOperators.clear();
      context.workWithUnionOperators.add(work);
      work = unionWork;
    }


    // This is where we cut the tree as described above. We also remember that
    // we might have to connect parent work with this work later.
    boolean removeParents = false;
    for (Operator<?> parent: new ArrayList<Operator<?>>(root.getParentOperators())) {
      removeParents = true;
      context.leafOperatorToFollowingWork.put(parent, work);
      LOG.debug("Removing " + parent + " as parent from " + root);
    }
    if (removeParents) {
      for (Operator<?> parent : new ArrayList<Operator<?>>(root.getParentOperators())) {
        root.removeParent(parent);
      }
    }

    // We're scanning a tree from roots to leaf (this is not technically
    // correct, demux and mux operators might form a diamond shape, but
    // we will only scan one path and ignore the others, because the
    // diamond shape is always contained in a single vertex). The scan
    // is depth first and because we remove parents when we pack a pipeline
    // into a vertex we will never visit any node twice. But because of that
    // we might have a situation where we need to connect 'work' that comes after
    // the 'work' we're currently looking at.
    //
    // Also note: the concept of leaf and root is reversed in hive for historical
    // reasons. Roots are data sources, leaves are data sinks. I know.
    if (context.leafOperatorToFollowingWork.containsKey(operator)) {

      BaseWork followingWork = context.leafOperatorToFollowingWork.get(operator);
      long bytesPerReducer = context.conf.getLongVar(HiveConf.ConfVars.BYTESPERREDUCER);

      LOG.debug("Second pass. Leaf operator: "+operator
        +" has common downstream work:"+followingWork);

      if (operator instanceof DummyStoreOperator) {
        // this is the small table side.
        assert (followingWork instanceof MergeJoinWork);
        MergeJoinWork mergeJoinWork = (MergeJoinWork) followingWork;
        CommonMergeJoinOperator mergeJoinOp = mergeJoinWork.getMergeJoinOperator();
        work.setTag(mergeJoinOp.getTagForOperator(operator));
        mergeJoinWork.addMergedWork(null, work);
        tezWork.setVertexType(mergeJoinWork, VertexType.MULTI_INPUT_UNINITIALIZED_EDGES);
        for (BaseWork parentWork : tezWork.getParents(work)) {
          TezEdgeProperty edgeProp = tezWork.getEdgeProperty(parentWork, work);
          tezWork.disconnect(parentWork, work);
          tezWork.connect(parentWork, mergeJoinWork, edgeProp);
        }
        work = mergeJoinWork;
      } else {
        // need to add this branch to the key + value info
        assert operator instanceof ReduceSinkOperator
            && ((followingWork instanceof ReduceWork) || (followingWork instanceof MergeJoinWork)
                || followingWork instanceof UnionWork);
        ReduceSinkOperator rs = (ReduceSinkOperator) operator;
        ReduceWork rWork = null;
        if (followingWork instanceof MergeJoinWork) {
          MergeJoinWork mergeJoinWork = (MergeJoinWork) followingWork;
          rWork = (ReduceWork) mergeJoinWork.getMainWork();
        } else if (followingWork instanceof UnionWork) {
          // this can only be possible if there is merge work followed by the union
          UnionWork unionWork = (UnionWork) followingWork;
          int index = getMergeIndex(tezWork, unionWork, rs);
          // guaranteed to be instance of MergeJoinWork if index is valid
          BaseWork baseWork = tezWork.getChildren(unionWork).get(index);
          if (baseWork instanceof MergeJoinWork) {
            MergeJoinWork mergeJoinWork = (MergeJoinWork) baseWork;
            // disconnect the connection to union work and connect to merge work
            followingWork = mergeJoinWork;
            rWork = (ReduceWork) mergeJoinWork.getMainWork();
          } else {
            throw new SemanticException("Unknown work type found: "
                + baseWork.getClass().getCanonicalName());
          }
        } else {
          rWork = (ReduceWork) followingWork;
        }
        GenMapRedUtils.setKeyAndValueDesc(rWork, rs);
View Full Code Here

Examples of org.apache.hadoop.hive.ql.plan.BaseWork

   * @param name
   * @return BaseWork based on the name supplied will return null if name is null
   * @throws RuntimeException if the configuration files are not proper or if plan can not be loaded
   */
  private static BaseWork getBaseWork(Configuration conf, String name) {
    BaseWork gWork = null;
    Path path = null;
    InputStream in = null;
    try {
      path = getPlanPath(conf, name);
      assert path != null;
View Full Code Here

Examples of org.apache.hadoop.hive.ql.plan.BaseWork

    MapWork work = (MapWork) procCtx.rootToWorkMap.get(ts);
    if (work == null) {
      throw new AssertionError("No work found for tablescan " + ts);
    }

    BaseWork enclosingWork = getEnclosingWork(event, procCtx);
    if (enclosingWork == null) {
      throw new AssertionError("Cannot find work for operator" + event);
    }
    String sourceName = enclosingWork.getName();

    // store the vertex name in the operator pipeline
    eventDesc.setVertexName(work.getName());
    eventDesc.setInputName(work.getAliases().get(0));
View Full Code Here

Examples of org.apache.hadoop.hive.ql.plan.BaseWork

   */
  public BaseWork getEnclosingWork(Operator<?> op, GenTezProcContext procCtx) {
    List<Operator<?>> ops = new ArrayList<Operator<?>>();
    findRoots(op, ops);
    for (Operator<?> r : ops) {
      BaseWork work = procCtx.rootToWorkMap.get(r);
      if (work != null) {
        return work;
      }
    }
    return null;
View Full Code Here

Examples of org.apache.hadoop.hive.ql.plan.BaseWork

     *  Otherwise, we need to associate that the mapjoin op
     *  to be linked to the RS work (associated with the RS-MJ pattern).
     *
     */
    mapJoinWork = context.mapJoinWorkMap.get(mapJoinOp);
    BaseWork parentWork;
    if (context.unionWorkMap.containsKey(parentRS)) {
      parentWork = context.unionWorkMap.get(parentRS);
    } else {
      assert context.childToWorkMap.get(parentRS).size() == 1;
      parentWork = context.childToWorkMap.get(parentRS).get(0);
    }

    // set the link between mapjoin and parent vertex
    int pos = context.mapJoinParentMap.get(mapJoinOp).indexOf(parentRS);
    if (pos == -1) {
      throw new SemanticException("Cannot find position of parent in mapjoin");
    }
    MapJoinDesc joinConf = mapJoinOp.getConf();
    long keyCount = Long.MAX_VALUE, rowCount = Long.MAX_VALUE, bucketCount = 1;
    Statistics stats = parentRS.getStatistics();
    if (stats != null) {
      keyCount = rowCount = stats.getNumRows();
      if (keyCount <= 0) {
        keyCount = rowCount = Long.MAX_VALUE;
      }
      ArrayList<String> keyCols = parentRS.getConf().getOutputKeyColumnNames();
      if (keyCols != null && !keyCols.isEmpty()) {
        // See if we can arrive at a smaller number using distinct stats from key columns.
        long maxKeyCount = 1;
        String prefix = Utilities.ReduceField.KEY.toString();
        for (String keyCol : keyCols) {
          ExprNodeDesc realCol = parentRS.getColumnExprMap().get(prefix + "." + keyCol);
          ColStatistics cs =
              StatsUtils.getColStatisticsFromExpression(context.conf, stats, realCol);
          if (cs == null || cs.getCountDistint() <= 0) {
            maxKeyCount = Long.MAX_VALUE;
            break;
          }
          maxKeyCount *= cs.getCountDistint();
          if (maxKeyCount >= keyCount) {
            break;
          }
        }
        keyCount = Math.min(maxKeyCount, keyCount);
      }
      if (joinConf.isBucketMapJoin()) {
        OpTraits opTraits = mapJoinOp.getOpTraits();
        bucketCount = (opTraits == null) ? -1 : opTraits.getNumBuckets();
        if (bucketCount > 0) {
          // We cannot obtain a better estimate without CustomPartitionVertex providing it
          // to us somehow; in which case using statistics would be completely unnecessary.
          keyCount /= bucketCount;
        }
      }
    }
    LOG.info("Mapjoin " + mapJoinOp + ", pos: " + pos + " --> " + parentWork.getName() + " ("
      + keyCount + " keys estimated from " + rowCount + " rows, " + bucketCount + " buckets)");
    joinConf.getParentToInput().put(pos, parentWork.getName());
    if (keyCount != Long.MAX_VALUE) {
      joinConf.getParentKeyCounts().put(pos, keyCount);
    }

    int numBuckets = -1;
    EdgeType edgeType = EdgeType.BROADCAST_EDGE;
    if (joinConf.isBucketMapJoin()) {

      // disable auto parallelism for bucket map joins
      parentRS.getConf().setReducerTraits(EnumSet.of(FIXED));

      numBuckets = (Integer) joinConf.getBigTableBucketNumMapping().values().toArray()[0];
      if (joinConf.getCustomBucketMapJoin()) {
        edgeType = EdgeType.CUSTOM_EDGE;
      } else {
        edgeType = EdgeType.CUSTOM_SIMPLE_EDGE;
      }
    }
    TezEdgeProperty edgeProp = new TezEdgeProperty(null, edgeType, numBuckets);

    if (mapJoinWork != null) {
      for (BaseWork myWork: mapJoinWork) {
        // link the work with the work associated with the reduce sink that triggered this rule
        TezWork tezWork = context.currentTask.getWork();
        LOG.debug("connecting "+parentWork.getName()+" with "+myWork.getName());
        tezWork.connect(parentWork, myWork, edgeProp);
        if (edgeType == EdgeType.CUSTOM_EDGE) {
          tezWork.setVertexType(myWork, VertexType.INITIALIZED_EDGES);
        }

View Full Code Here

Examples of org.apache.hadoop.hive.ql.plan.BaseWork

    TezWork tezWork = context.currentTask.getWork();
    @SuppressWarnings("unchecked")
    Operator<? extends OperatorDesc> parentOp =
        (Operator<? extends OperatorDesc>) ((stack.get(stack.size() - 2)));
    // Guaranteed to be just 1 because each DummyStoreOperator can be part of only one work.
    BaseWork parentWork = context.childToWorkMap.get(parentOp).get(0);


    // we need to set the merge work that has been created as part of the dummy store walk. If a
    // merge work already exists for this merge join operator, add the dummy store work to the
    // merge work. Else create a merge work, add above work to the merge work
    MergeJoinWork mergeWork = null;
    if (context.opMergeJoinWorkMap.containsKey(mergeJoinOp)) {
      // we already have the merge work corresponding to this merge join operator
      mergeWork = context.opMergeJoinWorkMap.get(mergeJoinOp);
    } else {
      mergeWork = new MergeJoinWork();
      tezWork.add(mergeWork);
      context.opMergeJoinWorkMap.put(mergeJoinOp, mergeWork);
    }

    mergeWork.setMergeJoinOperator(mergeJoinOp);
    mergeWork.addMergedWork(null, parentWork);
    tezWork.setVertexType(mergeWork, VertexType.MULTI_INPUT_UNINITIALIZED_EDGES);

    for (BaseWork grandParentWork : tezWork.getParents(parentWork)) {
      parentWork.setName(grandParentWork.getName());
      TezEdgeProperty edgeProp = tezWork.getEdgeProperty(grandParentWork, parentWork);
      tezWork.disconnect(grandParentWork, parentWork);
      tezWork.connect(grandParentWork, mergeWork, edgeProp);
    }

    for (BaseWork childWork : tezWork.getChildren(parentWork)) {
      TezEdgeProperty edgeProp = tezWork.getEdgeProperty(parentWork, childWork);
      tezWork.disconnect(parentWork, childWork);
      tezWork.connect(mergeWork, childWork, edgeProp);
    }

    tezWork.remove(parentWork);

    DummyStoreOperator dummyOp = (DummyStoreOperator) (stack.get(stack.size() - 2));

    parentWork.setTag(mergeJoinOp.getTagForOperator(dummyOp));

    mergeJoinOp.getParentOperators().remove(dummyOp);
    dummyOp.getChildOperators().clear();

    return true;
View Full Code Here

Examples of org.apache.hadoop.hive.ql.plan.BaseWork

    if ( rWrk == null) {
      return;
    }
    Operator<? extends OperatorDesc> reducer = rWrk.getReducer();
    if ( reducer instanceof JoinOperator|| reducer instanceof CommonMergeJoinOperator ) {
      BaseWork prntWork = mrWrk.getMapWork();
      checkForCrossProduct(taskName, reducer,
          new ExtractReduceSinkInfo(null).analyze(prntWork));
    }
  }
View Full Code Here

Examples of org.apache.hadoop.hive.ql.plan.BaseWork

    }
  }

  private Map<Integer, ExtractReduceSinkInfo.Info> getReducerInfo(TezWork tzWrk, String vertex, String prntVertex)
      throws SemanticException {
    BaseWork prntWork = tzWrk.getWorkMap().get(prntVertex);
    return new ExtractReduceSinkInfo(vertex).analyze(prntWork);
  }
View Full Code Here

Examples of org.apache.hadoop.hive.ql.plan.BaseWork

    // Right now the work graph is pretty simple. If there is no
    // Preceding work we have a root and will generate a map
    // vertex. If there is a preceding work we will generate
    // a reduce vertex
    BaseWork work;
    if (context.rootToWorkMap.containsKey(root)) {
      // having seen the root operator before means there was a branch in the
      // operator graph. There's typically two reasons for that: a) mux/demux
      // b) multi insert. Mux/Demux will hit the same leaf again, multi insert
      // will result into a vertex with multiple FS or RS operators.

      // At this point we don't have to do anything special in this case. Just
      // run through the regular paces w/o creating a new task.
      work = context.rootToWorkMap.get(root);
    } else {
      // create a new vertex
      if (context.preceedingWork == null) {
        work = utils.createMapWork(context, root, tezWork, null);
      } else {
        work = utils.createReduceWork(context, root, tezWork);
      }
      context.rootToWorkMap.put(root, work);
    }

    if (!context.childToWorkMap.containsKey(operator)) {
      List<BaseWork> workItems = new LinkedList<BaseWork>();
      workItems.add(work);
      context.childToWorkMap.put(operator, workItems);
    } else {
      context.childToWorkMap.get(operator).add(work);
    }

    // remember which mapjoin operator links with which work
    if (!context.currentMapJoinOperators.isEmpty()) {
      for (MapJoinOperator mj: context.currentMapJoinOperators) {
        LOG.debug("Processing map join: " + mj);
        // remember the mapping in case we scan another branch of the
        // mapjoin later
        if (!context.mapJoinWorkMap.containsKey(mj)) {
          List<BaseWork> workItems = new LinkedList<BaseWork>();
          workItems.add(work);
          context.mapJoinWorkMap.put(mj, workItems);
        } else {
          context.mapJoinWorkMap.get(mj).add(work);
        }

        /*
         * this happens in case of map join operations.
         * The tree looks like this:
         *
         *        RS <--- we are here perhaps
         *        |
         *     MapJoin
         *     /     \
         *   RS       TS
         *  /
         * TS
         *
         * If we are at the RS pointed above, and we may have already visited the
         * RS following the TS, we have already generated work for the TS-RS.
         * We need to hook the current work to this generated work.
         */
        if (context.linkOpWithWorkMap.containsKey(mj)) {
          Map<BaseWork,TezEdgeProperty> linkWorkMap = context.linkOpWithWorkMap.get(mj);
          if (linkWorkMap != null) {
            if (context.linkChildOpWithDummyOp.containsKey(mj)) {
              for (Operator<?> dummy: context.linkChildOpWithDummyOp.get(mj)) {
                work.addDummyOp((HashTableDummyOperator) dummy);
              }
            }
            for (Entry<BaseWork,TezEdgeProperty> parentWorkMap : linkWorkMap.entrySet()) {
              BaseWork parentWork = parentWorkMap.getKey();
              LOG.debug("connecting "+parentWork.getName()+" with "+work.getName());
              TezEdgeProperty edgeProp = parentWorkMap.getValue();
              tezWork.connect(parentWork, work, edgeProp);
             
              // need to set up output name for reduce sink now that we know the name
              // of the downstream work
              for (ReduceSinkOperator r:
                     context.linkWorkWithReduceSinkMap.get(parentWork)) {
                if (r.getConf().getOutputName() != null) {
                  LOG.debug("Cloning reduce sink for multi-child broadcast edge");
                  // we've already set this one up. Need to clone for the next work.
                  r = (ReduceSinkOperator) OperatorFactory.getAndMakeChild(
                      (ReduceSinkDesc)r.getConf().clone(), r.getParentOperators());
                  context.clonedReduceSinks.add(r);
                }
                r.getConf().setOutputName(work.getName());
                context.connectedReduceSinks.add(r);
              }
            }
          }
        }
      }
      // clear out the set. we don't need it anymore.
      context.currentMapJoinOperators.clear();
    }

    // This is where we cut the tree as described above. We also remember that
    // we might have to connect parent work with this work later.
    for (Operator<?> parent: new ArrayList<Operator<?>>(root.getParentOperators())) {
      context.leafOperatorToFollowingWork.put(parent, work);
      LOG.debug("Removing " + parent + " as parent from " + root);
      root.removeParent(parent);
    }

    if (!context.currentUnionOperators.isEmpty()) {     
      // if there are union all operators we need to add the work to the set
      // of union operators.

      UnionWork unionWork;
      if (context.unionWorkMap.containsKey(operator)) {
        // we've seen this terminal before and have created a union work object.
        // just need to add this work to it. There will be no children of this one
        // since we've passed this operator before.
        assert operator.getChildOperators().isEmpty();
        unionWork = (UnionWork) context.unionWorkMap.get(operator);

      } else {
        // first time through. we need to create a union work object and add this
        // work to it. Subsequent work should reference the union and not the actual
        // work.
        unionWork = utils.createUnionWork(context, operator, tezWork);
      }

      // finally hook everything up
      LOG.debug("Connecting union work ("+unionWork+") with work ("+work+")");
      TezEdgeProperty edgeProp = new TezEdgeProperty(EdgeType.CONTAINS);
      tezWork.connect(unionWork, work, edgeProp);
      unionWork.addUnionOperators(context.currentUnionOperators);
      context.currentUnionOperators.clear();
      context.workWithUnionOperators.add(work);
      work = unionWork;
    }

    // We're scanning a tree from roots to leaf (this is not technically
    // correct, demux and mux operators might form a diamond shape, but
    // we will only scan one path and ignore the others, because the
    // diamond shape is always contained in a single vertex). The scan
    // is depth first and because we remove parents when we pack a pipeline
    // into a vertex we will never visit any node twice. But because of that
    // we might have a situation where we need to connect 'work' that comes after
    // the 'work' we're currently looking at.
    //
    // Also note: the concept of leaf and root is reversed in hive for historical
    // reasons. Roots are data sources, leaves are data sinks. I know.
    if (context.leafOperatorToFollowingWork.containsKey(operator)) {

      BaseWork followingWork = context.leafOperatorToFollowingWork.get(operator);

      LOG.debug("Second pass. Leaf operator: "+operator
        +" has common downstream work:"+followingWork);

      // need to add this branch to the key + value info
View Full Code Here

Examples of org.apache.hadoop.hive.ql.plan.BaseWork

     *  Otherwise, we need to associate that the mapjoin op
     *  to be linked to the RS work (associated with the RS-MJ pattern).
     *
     */
    mapJoinWork = context.mapJoinWorkMap.get(mapJoinOp);
    BaseWork parentWork;
    if (context.unionWorkMap.containsKey(parentRS)) {
      parentWork = context.unionWorkMap.get(parentRS);
    } else {
      assert context.childToWorkMap.get(parentRS).size() == 1;
      parentWork = context.childToWorkMap.get(parentRS).get(0);
    }

    // set the link between mapjoin and parent vertex
    int pos = context.mapJoinParentMap.get(mapJoinOp).indexOf(parentRS);
    if (pos == -1) {
      throw new SemanticException("Cannot find position of parent in mapjoin");
    }
    LOG.debug("Mapjoin "+mapJoinOp+", pos: "+pos+" --> "+parentWork.getName());
    mapJoinOp.getConf().getParentToInput().put(pos, parentWork.getName());

    int numBuckets = -1;
    EdgeType edgeType = EdgeType.BROADCAST_EDGE;
    if (mapJoinOp.getConf().isBucketMapJoin()) {
      numBuckets = (Integer) mapJoinOp.getConf().getBigTableBucketNumMapping().values().toArray()[0];
      if (mapJoinOp.getConf().getCustomBucketMapJoin()) {
        edgeType = EdgeType.CUSTOM_EDGE;
      } else {
        edgeType = EdgeType.CUSTOM_SIMPLE_EDGE;
      }
    }
    TezEdgeProperty edgeProp = new TezEdgeProperty(null, edgeType, numBuckets);

    if (mapJoinWork != null) {
      for (BaseWork myWork: mapJoinWork) {
        // link the work with the work associated with the reduce sink that triggered this rule
        TezWork tezWork = context.currentTask.getWork();
        LOG.debug("connecting "+parentWork.getName()+" with "+myWork.getName());
        tezWork.connect(parentWork, myWork, edgeProp);
       
        ReduceSinkOperator r = null;
        if (parentRS.getConf().getOutputName() != null) {
          LOG.debug("Cloning reduce sink for multi-child broadcast edge");
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.