/*
Copyright � 1999 CERN - European Organization for Nuclear Research.
Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose
is hereby granted without fee, provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear in supporting documentation.
CERN makes no representations about the suitability of this software for any purpose.
It is provided "as is" without expressed or implied warranty.
*/
package cern.colt.matrix.impl;
import cern.colt.map.AbstractIntObjectMap;
import cern.colt.map.OpenIntObjectHashMap;
import cern.colt.matrix.ObjectMatrix1D;
import cern.colt.matrix.ObjectMatrix2D;
/**
Sparse hashed 2-d matrix holding <tt>Object</tt> elements.
First see the <a href="package-summary.html">package summary</a> and javadoc <a href="package-tree.html">tree view</a> to get the broad picture.
<p>
<b>Implementation:</b>
<p>
Note that this implementation is not synchronized.
Uses a {@link cern.colt.map.OpenIntObjectHashMap}, which is a compact and performant hashing technique.
<p>
<b>Memory requirements:</b>
<p>
Cells that
<ul>
<li>are never set to non-zero values do not use any memory.
<li>switch from zero to non-zero state do use memory.
<li>switch back from non-zero to zero state also do use memory. However, their memory is automatically reclaimed from time to time. It can also manually be reclaimed by calling {@link #trimToSize()}.
</ul>
<p>
worst case: <tt>memory [bytes] = (1/minLoadFactor) * nonZeros * 13</tt>.
<br>best case: <tt>memory [bytes] = (1/maxLoadFactor) * nonZeros * 13</tt>.
<br>Where <tt>nonZeros = cardinality()</tt> is the number of non-zero cells.
Thus, a 1000 x 1000 matrix with minLoadFactor=0.25 and maxLoadFactor=0.5 and 1000000 non-zero cells consumes between 25 MB and 50 MB.
The same 1000 x 1000 matrix with 1000 non-zero cells consumes between 25 and 50 KB.
<p>
<b>Time complexity:</b>
<p>
This class offers <i>expected</i> time complexity <tt>O(1)</tt> (i.e. constant time) for the basic operations
<tt>get</tt>, <tt>getQuick</tt>, <tt>set</tt>, <tt>setQuick</tt> and <tt>size</tt>
assuming the hash function disperses the elements properly among the buckets.
Otherwise, pathological cases, although highly improbable, can occur, degrading performance to <tt>O(N)</tt> in the worst case.
As such this sparse class is expected to have no worse time complexity than its dense counterpart {@link DenseObjectMatrix2D}.
However, constant factors are considerably larger.
<p>
Cells are internally addressed in row-major.
Performance sensitive applications can exploit this fact.
Setting values in a loop row-by-row is quicker than column-by-column, because fewer hash collisions occur.
Thus
<pre>
for (int row=0; row < rows; row++) {
for (int column=0; column < columns; column++) {
matrix.setQuick(row,column,someValue);
}
}
</pre>
is quicker than
<pre>
for (int column=0; column < columns; column++) {
for (int row=0; row < rows; row++) {
matrix.setQuick(row,column,someValue);
}
}
</pre>
@see cern.colt.map
@see cern.colt.map.OpenIntObjectHashMap
@author wolfgang.hoschek@cern.ch
@version 1.0, 09/24/99
*/
public class SparseObjectMatrix2D extends ObjectMatrix2D {
/*
* The elements of the matrix.
*/
protected AbstractIntObjectMap elements;
/**
* Constructs a matrix with a copy of the given values.
* <tt>values</tt> is required to have the form <tt>values[row][column]</tt>
* and have exactly the same number of columns in every row.
* <p>
* The values are copied. So subsequent changes in <tt>values</tt> are not reflected in the matrix, and vice-versa.
*
* @param values The values to be filled into the new matrix.
* @throws IllegalArgumentException if <tt>for any 1 <= row < values.length: values[row].length != values[row-1].length</tt>.
*/
public SparseObjectMatrix2D(Object[][] values) {
this(values.length, values.length==0 ? 0: values[0].length);
assign(values);
}
/**
* Constructs a matrix with a given number of rows and columns and default memory usage.
* All entries are initially <tt>null</tt>.
* @param rows the number of rows the matrix shall have.
* @param columns the number of columns the matrix shall have.
* @throws IllegalArgumentException if <tt>rows<0 || columns<0 || (double)columns*rows > Integer.MAX_VALUE</tt>.
*/
public SparseObjectMatrix2D(int rows, int columns) {
this(rows,columns,rows*(columns/1000),0.2,0.5);
}
/**
* Constructs a matrix with a given number of rows and columns using memory as specified.
* All entries are initially <tt>null</tt>.
* For details related to memory usage see {@link cern.colt.map.OpenIntObjectHashMap}.
*
* @param rows the number of rows the matrix shall have.
* @param columns the number of columns the matrix shall have.
* @param initialCapacity the initial capacity of the hash map.
* If not known, set <tt>initialCapacity=0</tt> or small.
* @param minLoadFactor the minimum load factor of the hash map.
* @param maxLoadFactor the maximum load factor of the hash map.
* @throws IllegalArgumentException if <tt>initialCapacity < 0 || (minLoadFactor < 0.0 || minLoadFactor >= 1.0) || (maxLoadFactor <= 0.0 || maxLoadFactor >= 1.0) || (minLoadFactor >= maxLoadFactor)</tt>.
* @throws IllegalArgumentException if <tt>rows<0 || columns<0 || (double)columns*rows > Integer.MAX_VALUE</tt>.
*/
public SparseObjectMatrix2D(int rows, int columns, int initialCapacity, double minLoadFactor, double maxLoadFactor) {
setUp(rows,columns);
this.elements = new OpenIntObjectHashMap(initialCapacity, minLoadFactor, maxLoadFactor);
}
/**
* Constructs a view with the given parameters.
* @param rows the number of rows the matrix shall have.
* @param columns the number of columns the matrix shall have.
* @param elements the cells.
* @param rowZero the position of the first element.
* @param columnZero the position of the first element.
* @param rowStride the number of elements between two rows, i.e. <tt>index(i+1,j)-index(i,j)</tt>.
* @param columnStride the number of elements between two columns, i.e. <tt>index(i,j+1)-index(i,j)</tt>.
* @throws IllegalArgumentException if <tt>rows<0 || columns<0 || (double)columns*rows > Integer.MAX_VALUE</tt> or flip's are illegal.
*/
protected SparseObjectMatrix2D(int rows, int columns, AbstractIntObjectMap elements, int rowZero, int columnZero, int rowStride, int columnStride) {
setUp(rows,columns,rowZero,columnZero,rowStride,columnStride);
this.elements = elements;
this.isNoView = false;
}
/**
* Returns the number of cells having non-zero values.
*/
public int cardinality() {
if (this.isNoView) return this.elements.size();
else return super.cardinality();
}
/**
* Ensures that the receiver can hold at least the specified number of non-zero cells without needing to allocate new internal memory.
* If necessary, allocates new internal memory and increases the capacity of the receiver.
* <p>
* This method never need be called; it is for performance tuning only.
* Calling this method before tt>set()</tt>ing a large number of non-zero values boosts performance,
* because the receiver will grow only once instead of potentially many times and hash collisions get less probable.
*
* @param minNonZeros the desired minimum number of non-zero cells.
*/
public void ensureCapacity(int minCapacity) {
this.elements.ensureCapacity(minCapacity);
}
/**
* Returns the matrix cell value at coordinate <tt>[row,column]</tt>.
*
* <p>Provided with invalid parameters this method may return invalid objects without throwing any exception.
* <b>You should only use this method when you are absolutely sure that the coordinate is within bounds.</b>
* Precondition (unchecked): <tt>0 <= column < columns() && 0 <= row < rows()</tt>.
*
* @param row the index of the row-coordinate.
* @param column the index of the column-coordinate.
* @return the value at the specified coordinate.
*/
public Object getQuick(int row, int column) {
//if (debug) if (column<0 || column>=columns || row<0 || row>=rows) throw new IndexOutOfBoundsException("row:"+row+", column:"+column);
//return this.elements.get(index(row,column));
//manually inlined:
return this.elements.get(rowZero + row*rowStride + columnZero + column*columnStride);
}
/**
* Returns <tt>true</tt> if both matrices share common cells.
* More formally, returns <tt>true</tt> if at least one of the following conditions is met
* <ul>
* <li>the receiver is a view of the other matrix
* <li>the other matrix is a view of the receiver
* <li><tt>this == other</tt>
* </ul>
*/
protected boolean haveSharedCellsRaw(ObjectMatrix2D other) {
if (other instanceof SelectedSparseObjectMatrix2D) {
SelectedSparseObjectMatrix2D otherMatrix = (SelectedSparseObjectMatrix2D) other;
return this.elements==otherMatrix.elements;
}
else if (other instanceof SparseObjectMatrix2D) {
SparseObjectMatrix2D otherMatrix = (SparseObjectMatrix2D) other;
return this.elements==otherMatrix.elements;
}
return false;
}
/**
* Returns the position of the given coordinate within the (virtual or non-virtual) internal 1-dimensional array.
*
* @param row the index of the row-coordinate.
* @param column the index of the column-coordinate.
*/
protected int index(int row, int column) {
// return super.index(row,column);
// manually inlined for speed:
return rowZero + row*rowStride + columnZero + column*columnStride;
}
/**
* Construct and returns a new empty matrix <i>of the same dynamic type</i> as the receiver, having the specified number of rows and columns.
* For example, if the receiver is an instance of type <tt>DenseObjectMatrix2D</tt> the new matrix must also be of type <tt>DenseObjectMatrix2D</tt>,
* if the receiver is an instance of type <tt>SparseObjectMatrix2D</tt> the new matrix must also be of type <tt>SparseObjectMatrix2D</tt>, etc.
* In general, the new matrix should have internal parametrization as similar as possible.
*
* @param rows the number of rows the matrix shall have.
* @param columns the number of columns the matrix shall have.
* @return a new empty matrix of the same dynamic type.
*/
public ObjectMatrix2D like(int rows, int columns) {
return new SparseObjectMatrix2D(rows, columns);
}
/**
* Construct and returns a new 1-d matrix <i>of the corresponding dynamic type</i>, entirelly independent of the receiver.
* For example, if the receiver is an instance of type <tt>DenseObjectMatrix2D</tt> the new matrix must be of type <tt>DenseObjectMatrix1D</tt>,
* if the receiver is an instance of type <tt>SparseObjectMatrix2D</tt> the new matrix must be of type <tt>SparseObjectMatrix1D</tt>, etc.
*
* @param size the number of cells the matrix shall have.
* @return a new matrix of the corresponding dynamic type.
*/
public ObjectMatrix1D like1D(int size) {
return new SparseObjectMatrix1D(size);
}
/**
* Construct and returns a new 1-d matrix <i>of the corresponding dynamic type</i>, sharing the same cells.
* For example, if the receiver is an instance of type <tt>DenseObjectMatrix2D</tt> the new matrix must be of type <tt>DenseObjectMatrix1D</tt>,
* if the receiver is an instance of type <tt>SparseObjectMatrix2D</tt> the new matrix must be of type <tt>SparseObjectMatrix1D</tt>, etc.
*
* @param size the number of cells the matrix shall have.
* @param offset the index of the first element.
* @param stride the number of indexes between any two elements, i.e. <tt>index(i+1)-index(i)</tt>.
* @return a new matrix of the corresponding dynamic type.
*/
protected ObjectMatrix1D like1D(int size, int offset, int stride) {
return new SparseObjectMatrix1D(size,this.elements,offset,stride);
}
/**
* Sets the matrix cell at coordinate <tt>[row,column]</tt> to the specified value.
*
* <p>Provided with invalid parameters this method may access illegal indexes without throwing any exception.
* <b>You should only use this method when you are absolutely sure that the coordinate is within bounds.</b>
* Precondition (unchecked): <tt>0 <= column < columns() && 0 <= row < rows()</tt>.
*
* @param row the index of the row-coordinate.
* @param column the index of the column-coordinate.
* @param value the value to be filled into the specified cell.
*/
public void setQuick(int row, int column, Object value) {
//if (debug) if (column<0 || column>=columns || row<0 || row>=rows) throw new IndexOutOfBoundsException("row:"+row+", column:"+column);
//int index = index(row,column);
//manually inlined:
int index = rowZero + row*rowStride + columnZero + column*columnStride;
if (value == null)
this.elements.removeKey(index);
else
this.elements.put(index, value);
}
/**
* Releases any superfluous memory created by explicitly putting zero values into cells formerly having non-zero values;
* An application can use this operation to minimize the
* storage of the receiver.
* <p>
* <b>Background:</b>
* <p>
* Cells that <ul>
* <li>are never set to non-zero values do not use any memory.
* <li>switch from zero to non-zero state do use memory.
* <li>switch back from non-zero to zero state also do use memory. However, their memory can be reclaimed by calling <tt>trimToSize()</tt>.
* </ul>
* A sequence like <tt>set(r,c,5); set(r,c,0);</tt>
* sets a cell to non-zero state and later back to zero state.
* Such as sequence generates obsolete memory that is automatically reclaimed from time to time or can manually be reclaimed by calling <tt>trimToSize()</tt>.
* Putting zeros into cells already containing zeros does not generate obsolete memory since no memory was allocated to them in the first place.
*/
public void trimToSize() {
this.elements.trimToSize();
}
/**
* Construct and returns a new selection view.
*
* @param rowOffsets the offsets of the visible elements.
* @param columnOffsets the offsets of the visible elements.
* @return a new view.
*/
protected ObjectMatrix2D viewSelectionLike(int[] rowOffsets, int[] columnOffsets) {
return new SelectedSparseObjectMatrix2D(this.elements,rowOffsets,columnOffsets,0);
}
}