Package cern.colt.matrix.impl

Source Code of cern.colt.matrix.impl.SparseDoubleMatrix1D

/*
Copyright � 1999 CERN - European Organization for Nuclear Research.
Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose
is hereby granted without fee, provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear in supporting documentation.
CERN makes no representations about the suitability of this software for any purpose.
It is provided "as is" without expressed or implied warranty.
*/
package cern.colt.matrix.impl;

import cern.colt.map.AbstractIntDoubleMap;
import cern.colt.map.OpenIntDoubleHashMap;
import cern.colt.matrix.DoubleMatrix1D;
import cern.colt.matrix.DoubleMatrix2D;

/**
Sparse hashed 1-d matrix (aka <i>vector</i>) holding <tt>double</tt> elements.
First see the <a href="package-summary.html">package summary</a> and javadoc <a href="package-tree.html">tree view</a> to get the broad picture.
<p>
<b>Implementation:</b>
<p>
Note that this implementation is not synchronized.
Uses a {@link cern.colt.map.OpenIntDoubleHashMap}, which is a compact and performant hashing technique.
<p>
<b>Memory requirements:</b>
<p>
Cells that
<ul>
<li>are never set to non-zero values do not use any memory.
<li>switch from zero to non-zero state do use memory.
<li>switch back from non-zero to zero state also do use memory. However, their memory is automatically reclaimed from time to time. It can also manually be reclaimed by calling {@link #trimToSize()}.
</ul>
<p>
worst case: <tt>memory [bytes] = (1/minLoadFactor) * nonZeros * 13</tt>.
<br>best  case: <tt>memory [bytes] = (1/maxLoadFactor) * nonZeros * 13</tt>.
<br>Where <tt>nonZeros = cardinality()</tt> is the number of non-zero cells.
Thus, a 1000000 matrix with minLoadFactor=0.25 and maxLoadFactor=0.5 and 1000000 non-zero cells consumes between 25 MB and 50 MB.
The same 1000000 matrix with 1000 non-zero cells consumes between 25 and 50 KB.
<p>
<b>Time complexity:</b>
<p>
This class offers <i>expected</i> time complexity <tt>O(1)</tt> (i.e. constant time) for the basic operations
<tt>get</tt>, <tt>getQuick</tt>, <tt>set</tt>, <tt>setQuick</tt> and <tt>size</tt>
assuming the hash function disperses the elements properly among the buckets.
Otherwise, pathological cases, although highly improbable, can occur, degrading performance to <tt>O(N)</tt> in the worst case.
As such this sparse class is expected to have no worse time complexity than its dense counterpart {@link DenseDoubleMatrix1D}.
However, constant factors are considerably larger.

@author wolfgang.hoschek@cern.ch
@version 1.0, 09/24/99
*/
public class SparseDoubleMatrix1D extends DoubleMatrix1D {
  /*
   * The elements of the matrix.
   */
  protected AbstractIntDoubleMap elements;
/**
* Constructs a matrix with a copy of the given values.
* The values are copied. So subsequent changes in <tt>values</tt> are not reflected in the matrix, and vice-versa.
*
* @param values The values to be filled into the new matrix.
*/
public SparseDoubleMatrix1D(double[] values) {
  this(values.length);
  assign(values);
}
/**
* Constructs a matrix with a given number of cells.
* All entries are initially <tt>0</tt>.
* @param size the number of cells the matrix shall have.
* @throws IllegalArgumentException if <tt>size<0</tt>.
*/
public SparseDoubleMatrix1D(int size) {
  this(size,size/1000,0.2,0.5);
}
/**
* Constructs a matrix with a given number of parameters.
* All entries are initially <tt>0</tt>.
* For details related to memory usage see {@link cern.colt.map.OpenIntDoubleHashMap}.
*
* @param size the number of cells the matrix shall have.
* @param initialCapacity   the initial capacity of the hash map.
*                          If not known, set <tt>initialCapacity=0</tt> or small.    
* @param minLoadFactor        the minimum load factor of the hash map.
* @param maxLoadFactor        the maximum load factor of the hash map.
* @throws  IllegalArgumentException if <tt>initialCapacity < 0 || (minLoadFactor < 0.0 || minLoadFactor >= 1.0) || (maxLoadFactor <= 0.0 || maxLoadFactor >= 1.0) || (minLoadFactor >= maxLoadFactor)</tt>.
* @throws IllegalArgumentException if <tt>size<0</tt>.
*/
public SparseDoubleMatrix1D(int size, int initialCapacity, double minLoadFactor, double maxLoadFactor) {
  setUp(size);
  this.elements = new OpenIntDoubleHashMap(initialCapacity, minLoadFactor, maxLoadFactor);
}
/**
* Constructs a matrix view with a given number of parameters.
*
* @param size the number of cells the matrix shall have.
* @param elements the cells.
* @param offset the index of the first element.
* @param stride the number of indexes between any two elements, i.e. <tt>index(i+1)-index(i)</tt>.
* @throws IllegalArgumentException if <tt>size<0</tt>.
*/
protected SparseDoubleMatrix1D(int size, AbstractIntDoubleMap elements, int offset, int stride) {
  setUp(size,offset,stride);
  this.elements = elements;
  this.isNoView = false;
}
/**
* Sets all cells to the state specified by <tt>value</tt>.
* @param    value the value to be filled into the cells.
* @return <tt>this</tt> (for convenience only).
*/
public DoubleMatrix1D assign(double value) {
  // overriden for performance only
  if (this.isNoView && value==0) this.elements.clear();
  else super.assign(value);
  return this;
}
/**
* Returns the number of cells having non-zero values.
*/
public int cardinality() {
  if (this.isNoView) return this.elements.size();
  else return super.cardinality();
}
/**
* Ensures that the receiver can hold at least the specified number of non-zero cells without needing to allocate new internal memory.
* If necessary, allocates new internal memory and increases the capacity of the receiver.
* <p>
* This method never need be called; it is for performance tuning only.
* Calling this method before tt>set()</tt>ing a large number of non-zero values boosts performance,
* because the receiver will grow only once instead of potentially many times and hash collisions get less probable.
*
* @param   minNonZeros   the desired minimum number of non-zero cells.
*/
public void ensureCapacity(int minCapacity) {
  this.elements.ensureCapacity(minCapacity);
}
/**
* Returns the matrix cell value at coordinate <tt>index</tt>.
*
* <p>Provided with invalid parameters this method may return invalid objects without throwing any exception.
* <b>You should only use this method when you are absolutely sure that the coordinate is within bounds.</b>
* Precondition (unchecked): <tt>index&lt;0 || index&gt;=size()</tt>.
*
* @param     index   the index of the cell.
* @return    the value of the specified cell.
*/
public double getQuick(int index) {
  //if (debug) if (index<0 || index>=size) checkIndex(index);
  //return this.elements.get(index(index));
  // manually inlined:
  return elements.get(zero + index*stride);
}
/**
* Returns <tt>true</tt> if both matrices share at least one identical cell.
*/
protected boolean haveSharedCellsRaw(DoubleMatrix1D other) {
  if (other instanceof SelectedSparseDoubleMatrix1D) {
    SelectedSparseDoubleMatrix1D otherMatrix = (SelectedSparseDoubleMatrix1D) other;
    return this.elements==otherMatrix.elements;
  }
  else if (other instanceof SparseDoubleMatrix1D) {
    SparseDoubleMatrix1D otherMatrix = (SparseDoubleMatrix1D) other;
    return this.elements==otherMatrix.elements;
  }
  return false;
}
/**
* Returns the position of the element with the given relative rank within the (virtual or non-virtual) internal 1-dimensional array.
* You may want to override this method for performance.
*
* @param     rank   the rank of the element.
*/
protected int index(int rank) {
  // overriden for manual inlining only
  //return _offset(_rank(rank));
  return zero + rank*stride;
}
/**
* Construct and returns a new empty matrix <i>of the same dynamic type</i> as the receiver, having the specified size.
* For example, if the receiver is an instance of type <tt>DenseDoubleMatrix1D</tt> the new matrix must also be of type <tt>DenseDoubleMatrix1D</tt>,
* if the receiver is an instance of type <tt>SparseDoubleMatrix1D</tt> the new matrix must also be of type <tt>SparseDoubleMatrix1D</tt>, etc.
* In general, the new matrix should have internal parametrization as similar as possible.
*
* @param size the number of cell the matrix shall have.
* @return  a new empty matrix of the same dynamic type.
*/
public DoubleMatrix1D like(int size) {
  return new SparseDoubleMatrix1D(size);
}
/**
* Construct and returns a new 2-d matrix <i>of the corresponding dynamic type</i>, entirelly independent of the receiver.
* For example, if the receiver is an instance of type <tt>DenseDoubleMatrix1D</tt> the new matrix must be of type <tt>DenseDoubleMatrix2D</tt>,
* if the receiver is an instance of type <tt>SparseDoubleMatrix1D</tt> the new matrix must be of type <tt>SparseDoubleMatrix2D</tt>, etc.
*
* @param rows the number of rows the matrix shall have.
* @param columns the number of columns the matrix shall have.
* @return  a new matrix of the corresponding dynamic type.
*/
public DoubleMatrix2D like2D(int rows, int columns) {
  return new SparseDoubleMatrix2D(rows,columns);
}
/**
* Sets the matrix cell at coordinate <tt>index</tt> to the specified value.
*
* <p>Provided with invalid parameters this method may access illegal indexes without throwing any exception.
* <b>You should only use this method when you are absolutely sure that the coordinate is within bounds.</b>
* Precondition (unchecked): <tt>index&lt;0 || index&gt;=size()</tt>.
*
* @param     index   the index of the cell.
* @param    value the value to be filled into the specified cell.
*/
public void setQuick(int index, double value) {
  //if (debug) if (index<0 || index>=size) checkIndex(index);
  //int i =  index(index);
  // manually inlined:
  int i = zero + index*stride;
  if (value == 0)
    this.elements.removeKey(i);
  else
    this.elements.put(i, value);
}
/**
* Releases any superfluous memory created by explicitly putting zero values into cells formerly having non-zero values;
* An application can use this operation to minimize the
* storage of the receiver.
* <p>
* <b>Background:</b>
* <p>
* Cells that <ul>
* <li>are never set to non-zero values do not use any memory.
* <li>switch from zero to non-zero state do use memory.
* <li>switch back from non-zero to zero state also do use memory. However, their memory can be reclaimed by calling <tt>trimToSize()</tt>.
* </ul>
* A sequence like <tt>set(i,5); set(i,0);</tt>
* sets a cell to non-zero state and later back to zero state.
* Such as sequence generates obsolete memory that is automatically reclaimed from time to time or can manually be reclaimed by calling <tt>trimToSize()</tt>.
* Putting zeros into cells already containing zeros does not generate obsolete memory since no memory was allocated to them in the first place.
*/
public void trimToSize() {
  this.elements.trimToSize();
}
/**
* Construct and returns a new selection view.
*
* @param offsets the offsets of the visible elements.
* @return  a new view.
*/
protected DoubleMatrix1D viewSelectionLike(int[] offsets) {
  return new SelectedSparseDoubleMatrix1D(this.elements,offsets);
}
}
TOP

Related Classes of cern.colt.matrix.impl.SparseDoubleMatrix1D

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.