/*
Copyright � 1999 CERN - European Organization for Nuclear Research.
Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose
is hereby granted without fee, provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear in supporting documentation.
CERN makes no representations about the suitability of this software for any purpose.
It is provided "as is" without expressed or implied warranty.
*/
package cern.colt.matrix.impl;
import cern.colt.matrix.DoubleMatrix1D;
import cern.colt.matrix.DoubleMatrix2D;
/**
Dense 2-d matrix holding <tt>double</tt> elements.
First see the <a href="package-summary.html">package summary</a> and javadoc <a href="package-tree.html">tree view</a> to get the broad picture.
<p>
<b>Implementation:</b>
<p>
Internally holds one single contigous one-dimensional array, addressed in row major.
Note that this implementation is not synchronized.
<p>
<b>Memory requirements:</b>
<p>
<tt>memory [bytes] = 8*rows()*columns()</tt>.
Thus, a 1000*1000 matrix uses 8 MB.
<p>
<b>Time complexity:</b>
<p>
<tt>O(1)</tt> (i.e. constant time) for the basic operations
<tt>get</tt>, <tt>getQuick</tt>, <tt>set</tt>, <tt>setQuick</tt> and <tt>size</tt>,
<p>
Cells are internally addressed in row-major.
Applications demanding utmost speed can exploit this fact.
Setting/getting values in a loop row-by-row is quicker than column-by-column.
Thus
<pre>
for (int row=0; row < rows; row++) {
for (int column=0; column < columns; column++) {
matrix.setQuick(row,column,someValue);
}
}
</pre>
is quicker than
<pre>
for (int column=0; column < columns; column++) {
for (int row=0; row < rows; row++) {
matrix.setQuick(row,column,someValue);
}
}
</pre>
@author wolfgang.hoschek@cern.ch
@version 1.0, 09/24/99
*/
public class DenseDoubleMatrix2D extends DoubleMatrix2D {
static final long serialVersionUID = 1020177651L;
/**
* The elements of this matrix.
* elements are stored in row major, i.e.
* index==row*columns + column
* columnOf(index)==index%columns
* rowOf(index)==index/columns
* i.e. {row0 column0..m}, {row1 column0..m}, ..., {rown column0..m}
*/
protected double[] elements;
/**
* Constructs a matrix with a copy of the given values.
* <tt>values</tt> is required to have the form <tt>values[row][column]</tt>
* and have exactly the same number of columns in every row.
* <p>
* The values are copied. So subsequent changes in <tt>values</tt> are not reflected in the matrix, and vice-versa.
*
* @param values The values to be filled into the new matrix.
* @throws IllegalArgumentException if <tt>for any 1 <= row < values.length: values[row].length != values[row-1].length</tt>.
*/
public DenseDoubleMatrix2D(double[][] values) {
this(values.length, values.length==0 ? 0: values[0].length);
assign(values);
}
/**
* Constructs a matrix with a given number of rows and columns.
* All entries are initially <tt>0</tt>.
* @param rows the number of rows the matrix shall have.
* @param columns the number of columns the matrix shall have.
* @throws IllegalArgumentException if <tt>rows<0 || columns<0 || (double)columns*rows > Integer.MAX_VALUE</tt>.
*/
public DenseDoubleMatrix2D(int rows, int columns) {
setUp(rows, columns);
this.elements = new double[rows*columns];
}
/**
* Constructs a view with the given parameters.
* @param rows the number of rows the matrix shall have.
* @param columns the number of columns the matrix shall have.
* @param elements the cells.
* @param rowZero the position of the first element.
* @param columnZero the position of the first element.
* @param rowStride the number of elements between two rows, i.e. <tt>index(i+1,j)-index(i,j)</tt>.
* @param columnStride the number of elements between two columns, i.e. <tt>index(i,j+1)-index(i,j)</tt>.
* @throws IllegalArgumentException if <tt>rows<0 || columns<0 || (double)columns*rows > Integer.MAX_VALUE</tt> or flip's are illegal.
*/
protected DenseDoubleMatrix2D(int rows, int columns, double[] elements, int rowZero, int columnZero, int rowStride, int columnStride) {
setUp(rows,columns,rowZero,columnZero,rowStride,columnStride);
this.elements = elements;
this.isNoView = false;
}
/**
* Sets all cells to the state specified by <tt>values</tt>.
* <tt>values</tt> is required to have the form <tt>values[row][column]</tt>
* and have exactly the same number of rows and columns as the receiver.
* <p>
* The values are copied. So subsequent changes in <tt>values</tt> are not reflected in the matrix, and vice-versa.
*
* @param values the values to be filled into the cells.
* @return <tt>this</tt> (for convenience only).
* @throws IllegalArgumentException if <tt>values.length != rows() || for any 0 <= row < rows(): values[row].length != columns()</tt>.
*/
public DoubleMatrix2D assign(double[][] values) {
if (this.isNoView) {
if (values.length != rows) throw new IllegalArgumentException("Must have same number of rows: rows="+values.length+"rows()="+rows());
int i = columns*(rows-1);
for (int row=rows; --row >= 0;) {
double[] currentRow = values[row];
if (currentRow.length != columns) throw new IllegalArgumentException("Must have same number of columns in every row: columns="+currentRow.length+"columns()="+columns());
System.arraycopy(currentRow, 0, this.elements, i, columns);
i -= columns;
}
}
else {
super.assign(values);
}
return this;
}
/**
* Sets all cells to the state specified by <tt>value</tt>.
* @param value the value to be filled into the cells.
* @return <tt>this</tt> (for convenience only).
*/
public DoubleMatrix2D assign(double value) {
final double[] elems = this.elements;
int index = index(0,0);
int cs = this.columnStride;
int rs = this.rowStride;
for (int row=rows; --row >= 0; ) {
for (int i=index, column=columns; --column >= 0; ) {
elems[i] = value;
i += cs;
}
index += rs;
}
return this;
}
/**
Assigns the result of a function to each cell; <tt>x[row,col] = function(x[row,col])</tt>.
<p>
<b>Example:</b>
<pre>
matrix = 2 x 2 matrix
0.5 1.5
2.5 3.5
// change each cell to its sine
matrix.assign(cern.jet.math.Functions.sin);
-->
2 x 2 matrix
0.479426 0.997495
0.598472 -0.350783
</pre>
For further examples, see the <a href="package-summary.html#FunctionObjects">package doc</a>.
@param function a function object taking as argument the current cell's value.
@return <tt>this</tt> (for convenience only).
@see cern.jet.math.Functions
*/
public DoubleMatrix2D assign(cern.colt.function.DoubleFunction function) {
final double[] elems = this.elements;
if (elems==null) throw new InternalError();
int index = index(0,0);
int cs = this.columnStride;
int rs = this.rowStride;
// specialization for speed
if (function instanceof cern.jet.math.Mult) { // x[i] = mult*x[i]
double multiplicator = ((cern.jet.math.Mult)function).multiplicator;
if (multiplicator==1) return this;
if (multiplicator==0) return assign(0);
for (int row=rows; --row >= 0; ) { // the general case
for (int i=index, column=columns; --column >= 0; ) {
elems[i] *= multiplicator;
i += cs;
}
index += rs;
}
}
else { // the general case x[i] = f(x[i])
for (int row=rows; --row >= 0; ) {
for (int i=index, column=columns; --column >= 0; ) {
elems[i] = function.apply(elems[i]);
i += cs;
}
index += rs;
}
}
return this;
}
/**
* Replaces all cell values of the receiver with the values of another matrix.
* Both matrices must have the same number of rows and columns.
* If both matrices share the same cells (as is the case if they are views derived from the same matrix) and intersect in an ambiguous way, then replaces <i>as if</i> using an intermediate auxiliary deep copy of <tt>other</tt>.
*
* @param source the source matrix to copy from (may be identical to the receiver).
* @return <tt>this</tt> (for convenience only).
* @throws IllegalArgumentException if <tt>columns() != source.columns() || rows() != source.rows()</tt>
*/
public DoubleMatrix2D assign(DoubleMatrix2D source) {
// overriden for performance only
if (! (source instanceof DenseDoubleMatrix2D)) {
return super.assign(source);
}
DenseDoubleMatrix2D other = (DenseDoubleMatrix2D) source;
if (other==this) return this; // nothing to do
checkShape(other);
if (this.isNoView && other.isNoView) { // quickest
System.arraycopy(other.elements, 0, this.elements, 0, this.elements.length);
return this;
}
if (haveSharedCells(other)) {
DoubleMatrix2D c = other.copy();
if (! (c instanceof DenseDoubleMatrix2D)) { // should not happen
return super.assign(other);
}
other = (DenseDoubleMatrix2D) c;
}
final double[] elems = this.elements;
final double[] otherElems = other.elements;
if (elems==null || otherElems==null) throw new InternalError();
int cs = this.columnStride;
int ocs = other.columnStride;
int rs = this.rowStride;
int ors = other.rowStride;
int otherIndex = other.index(0,0);
int index = index(0,0);
for (int row=rows; --row >= 0; ) {
for (int i=index, j=otherIndex, column=columns; --column >= 0; ) {
elems[i] = otherElems[j];
i += cs;
j += ocs;
}
index += rs;
otherIndex += ors;
}
return this;
}
/**
Assigns the result of a function to each cell; <tt>x[row,col] = function(x[row,col],y[row,col])</tt>.
<p>
<b>Example:</b>
<pre>
// assign x[row,col] = x[row,col]<sup>y[row,col]</sup>
m1 = 2 x 2 matrix
0 1
2 3
m2 = 2 x 2 matrix
0 2
4 6
m1.assign(m2, cern.jet.math.Functions.pow);
-->
m1 == 2 x 2 matrix
1 1
16 729
</pre>
For further examples, see the <a href="package-summary.html#FunctionObjects">package doc</a>.
@param y the secondary matrix to operate on.
@param function a function object taking as first argument the current cell's value of <tt>this</tt>,
and as second argument the current cell's value of <tt>y</tt>,
@return <tt>this</tt> (for convenience only).
@throws IllegalArgumentException if <tt>columns() != other.columns() || rows() != other.rows()</tt>
@see cern.jet.math.Functions
*/
public DoubleMatrix2D assign(DoubleMatrix2D y, cern.colt.function.DoubleDoubleFunction function) {
// overriden for performance only
if (! (y instanceof DenseDoubleMatrix2D)) {
return super.assign(y, function);
}
DenseDoubleMatrix2D other = (DenseDoubleMatrix2D) y;
checkShape(y);
final double[] elems = this.elements;
final double[] otherElems = other.elements;
if (elems==null || otherElems==null) throw new InternalError();
int cs = this.columnStride;
int ocs = other.columnStride;
int rs = this.rowStride;
int ors = other.rowStride;
int otherIndex = other.index(0,0);
int index = index(0,0);
// specialized for speed
if (function==cern.jet.math.Functions.mult) { // x[i] = x[i] * y[i]
for (int row=rows; --row >= 0; ) {
for (int i=index, j=otherIndex, column=columns; --column >= 0; ) {
elems[i] *= otherElems[j];
i += cs;
j += ocs;
}
index += rs;
otherIndex += ors;
}
}
else if (function==cern.jet.math.Functions.div) { // x[i] = x[i] / y[i]
for (int row=rows; --row >= 0; ) {
for (int i=index, j=otherIndex, column=columns; --column >= 0; ) {
elems[i] /= otherElems[j];
i += cs;
j += ocs;
}
index += rs;
otherIndex += ors;
}
}
else if (function instanceof cern.jet.math.PlusMult) {
double multiplicator = ((cern.jet.math.PlusMult) function).multiplicator;
if (multiplicator == 0) { // x[i] = x[i] + 0*y[i]
return this;
}
else if (multiplicator == 1) { // x[i] = x[i] + y[i]
for (int row=rows; --row >= 0; ) {
for (int i=index, j=otherIndex, column=columns; --column >= 0; ) {
elems[i] += otherElems[j];
i += cs;
j += ocs;
}
index += rs;
otherIndex += ors;
}
}
else if (multiplicator == -1) { // x[i] = x[i] - y[i]
for (int row=rows; --row >= 0; ) {
for (int i=index, j=otherIndex, column=columns; --column >= 0; ) {
elems[i] -= otherElems[j];
i += cs;
j += ocs;
}
index += rs;
otherIndex += ors;
}
}
else { // the general case
for (int row=rows; --row >= 0; ) { // x[i] = x[i] + mult*y[i]
for (int i=index, j=otherIndex, column=columns; --column >= 0; ) {
elems[i] += multiplicator*otherElems[j];
i += cs;
j += ocs;
}
index += rs;
otherIndex += ors;
}
}
}
else { // the general case x[i] = f(x[i],y[i])
for (int row=rows; --row >= 0; ) {
for (int i=index, j=otherIndex, column=columns; --column >= 0; ) {
elems[i] = function.apply(elems[i], otherElems[j]);
i += cs;
j += ocs;
}
index += rs;
otherIndex += ors;
}
}
return this;
}
/**
* Returns the matrix cell value at coordinate <tt>[row,column]</tt>.
*
* <p>Provided with invalid parameters this method may return invalid objects without throwing any exception.
* <b>You should only use this method when you are absolutely sure that the coordinate is within bounds.</b>
* Precondition (unchecked): <tt>0 <= column < columns() && 0 <= row < rows()</tt>.
*
* @param row the index of the row-coordinate.
* @param column the index of the column-coordinate.
* @return the value at the specified coordinate.
*/
public double getQuick(int row, int column) {
//if (debug) if (column<0 || column>=columns || row<0 || row>=rows) throw new IndexOutOfBoundsException("row:"+row+", column:"+column);
//return elements[index(row,column)];
//manually inlined:
return elements[rowZero + row*rowStride + columnZero + column*columnStride];
}
/**
* Returns <tt>true</tt> if both matrices share common cells.
* More formally, returns <tt>true</tt> if <tt>other != null</tt> and at least one of the following conditions is met
* <ul>
* <li>the receiver is a view of the other matrix
* <li>the other matrix is a view of the receiver
* <li><tt>this == other</tt>
* </ul>
*/
protected boolean haveSharedCellsRaw(DoubleMatrix2D other) {
if (other instanceof SelectedDenseDoubleMatrix2D) {
SelectedDenseDoubleMatrix2D otherMatrix = (SelectedDenseDoubleMatrix2D) other;
return this.elements==otherMatrix.elements;
}
else if (other instanceof DenseDoubleMatrix2D) {
DenseDoubleMatrix2D otherMatrix = (DenseDoubleMatrix2D) other;
return this.elements==otherMatrix.elements;
}
return false;
}
/**
* Returns the position of the given coordinate within the (virtual or non-virtual) internal 1-dimensional array.
*
* @param row the index of the row-coordinate.
* @param column the index of the column-coordinate.
*/
protected int index(int row, int column) {
// return super.index(row,column);
// manually inlined for speed:
return rowZero + row*rowStride + columnZero + column*columnStride;
}
/**
* Construct and returns a new empty matrix <i>of the same dynamic type</i> as the receiver, having the specified number of rows and columns.
* For example, if the receiver is an instance of type <tt>DenseDoubleMatrix2D</tt> the new matrix must also be of type <tt>DenseDoubleMatrix2D</tt>,
* if the receiver is an instance of type <tt>SparseDoubleMatrix2D</tt> the new matrix must also be of type <tt>SparseDoubleMatrix2D</tt>, etc.
* In general, the new matrix should have internal parametrization as similar as possible.
*
* @param rows the number of rows the matrix shall have.
* @param columns the number of columns the matrix shall have.
* @return a new empty matrix of the same dynamic type.
*/
public DoubleMatrix2D like(int rows, int columns) {
return new DenseDoubleMatrix2D(rows, columns);
}
/**
* Construct and returns a new 1-d matrix <i>of the corresponding dynamic type</i>, entirelly independent of the receiver.
* For example, if the receiver is an instance of type <tt>DenseDoubleMatrix2D</tt> the new matrix must be of type <tt>DenseDoubleMatrix1D</tt>,
* if the receiver is an instance of type <tt>SparseDoubleMatrix2D</tt> the new matrix must be of type <tt>SparseDoubleMatrix1D</tt>, etc.
*
* @param size the number of cells the matrix shall have.
* @return a new matrix of the corresponding dynamic type.
*/
public DoubleMatrix1D like1D(int size) {
return new DenseDoubleMatrix1D(size);
}
/**
* Construct and returns a new 1-d matrix <i>of the corresponding dynamic type</i>, sharing the same cells.
* For example, if the receiver is an instance of type <tt>DenseDoubleMatrix2D</tt> the new matrix must be of type <tt>DenseDoubleMatrix1D</tt>,
* if the receiver is an instance of type <tt>SparseDoubleMatrix2D</tt> the new matrix must be of type <tt>SparseDoubleMatrix1D</tt>, etc.
*
* @param size the number of cells the matrix shall have.
* @param zero the index of the first element.
* @param stride the number of indexes between any two elements, i.e. <tt>index(i+1)-index(i)</tt>.
* @return a new matrix of the corresponding dynamic type.
*/
protected DoubleMatrix1D like1D(int size, int zero, int stride) {
return new DenseDoubleMatrix1D(size,this.elements,zero,stride);
}
/**
* Sets the matrix cell at coordinate <tt>[row,column]</tt> to the specified value.
*
* <p>Provided with invalid parameters this method may access illegal indexes without throwing any exception.
* <b>You should only use this method when you are absolutely sure that the coordinate is within bounds.</b>
* Precondition (unchecked): <tt>0 <= column < columns() && 0 <= row < rows()</tt>.
*
* @param row the index of the row-coordinate.
* @param column the index of the column-coordinate.
* @param value the value to be filled into the specified cell.
*/
public void setQuick(int row, int column, double value) {
//if (debug) if (column<0 || column>=columns || row<0 || row>=rows) throw new IndexOutOfBoundsException("row:"+row+", column:"+column);
//elements[index(row,column)] = value;
//manually inlined:
elements[rowZero + row*rowStride + columnZero + column*columnStride] = value;
}
/**
* Construct and returns a new selection view.
*
* @param rowOffsets the offsets of the visible elements.
* @param columnOffsets the offsets of the visible elements.
* @return a new view.
*/
protected DoubleMatrix2D viewSelectionLike(int[] rowOffsets, int[] columnOffsets) {
return new SelectedDenseDoubleMatrix2D(this.elements,rowOffsets,columnOffsets,0);
}
/**
8 neighbor stencil transformation. For efficient finite difference operations.
Applies a function to a moving <tt>3 x 3</tt> window.
Does nothing if <tt>rows() < 3 || columns() < 3</tt>.
<pre>
B[i,j] = function.apply(
A[i-1,j-1], A[i-1,j], A[i-1,j+1],
A[i, j-1], A[i, j], A[i, j+1],
A[i+1,j-1], A[i+1,j], A[i+1,j+1]
)
x x x - - x x x - - - -
x o x - - x o x - - - -
x x x - - x x x ... - x x x
- - - - - - - - - x o x
- - - - - - - - - x x x
</pre>
Make sure that cells of <tt>this</tt> and <tt>B</tt> do not overlap.
In case of overlapping views, behaviour is unspecified.
</pre>
<p>
<b>Example:</b>
<pre>
final double alpha = 0.25;
final double beta = 0.75;
// 8 neighbors
cern.colt.function.Double9Function f = new cern.colt.function.Double9Function() {
public final double apply(
double a00, double a01, double a02,
double a10, double a11, double a12,
double a20, double a21, double a22) {
return beta*a11 + alpha*(a00+a01+a02 + a10+a12 + a20+a21+a22);
}
};
A.zAssign8Neighbors(B,f);
// 4 neighbors
cern.colt.function.Double9Function g = new cern.colt.function.Double9Function() {
public final double apply(
double a00, double a01, double a02,
double a10, double a11, double a12,
double a20, double a21, double a22) {
return beta*a11 + alpha*(a01+a10+a12+a21);
}
C.zAssign8Neighbors(B,g); // fast, even though it doesn't look like it
};
</pre>
@param B the matrix to hold the results.
@param function the function to be applied to the 9 cells.
@throws NullPointerException if <tt>function==null</tt>.
@throws IllegalArgumentException if <tt>rows() != B.rows() || columns() != B.columns()</tt>.
*/
public void zAssign8Neighbors(DoubleMatrix2D B, cern.colt.function.Double9Function function) {
// 1. using only 4-5 out of the 9 cells in "function" is *not* the limiting factor for performance.
// 2. if the "function" would be hardwired into the innermost loop, a speedup of 1.5-2.0 would be seen
// but then the multi-purpose interface is gone...
if (!(B instanceof DenseDoubleMatrix2D)) {
super.zAssign8Neighbors(B, function);
return;
}
if (function==null) throw new NullPointerException("function must not be null.");
checkShape(B);
int r = rows-1;
int c = columns-1;
if (rows<3 || columns<3) return; // nothing to do
DenseDoubleMatrix2D BB = (DenseDoubleMatrix2D) B;
int A_rs = rowStride;
int B_rs = BB.rowStride;
int A_cs = columnStride;
int B_cs = BB.columnStride;
double[] elems = this.elements;
double[] B_elems = BB.elements;
if (elems == null || B_elems==null) throw new InternalError();
int A_index = index(1,1);
int B_index = BB.index(1,1);
for (int i=1; i<r; i++) {
double a00, a01, a02;
double a10, a11, a12;
double a20, a21, a22;
int B11 = B_index;
int A02 = A_index - A_rs - A_cs;
int A12 = A02 + A_rs;
int A22 = A12 + A_rs;
// in each step six cells can be remembered in registers - they don't need to be reread from slow memory
a00=elems[A02]; A02+=A_cs; a01=elems[A02]; //A02+=A_cs;
a10=elems[A12]; A12+=A_cs; a11=elems[A12]; //A12+=A_cs;
a20=elems[A22]; A22+=A_cs; a21=elems[A22]; //A22+=A_cs;
for (int j=1; j<c; j++) {
//in each step 3 instead of 9 cells need to be read from memory.
a02=elems[A02+=A_cs];
a12=elems[A12+=A_cs];
a22=elems[A22+=A_cs];
B_elems[B11] = function.apply(
a00, a01, a02,
a10, a11, a12,
a20, a21, a22);
B11 += B_cs;
// move remembered cells
a00=a01; a01=a02;
a10=a11; a11=a12;
a20=a21; a21=a22;
}
A_index += A_rs;
B_index += B_rs;
}
}
public DoubleMatrix1D zMult(DoubleMatrix1D y, DoubleMatrix1D z, double alpha, double beta, boolean transposeA) {
if (transposeA) return viewDice().zMult(y,z,alpha,beta,false);
if (z==null) z = new DenseDoubleMatrix1D(this.rows);
if (!(y instanceof DenseDoubleMatrix1D && z instanceof DenseDoubleMatrix1D)) return super.zMult(y,z,alpha,beta,transposeA);
if (columns != y.size || rows > z.size)
throw new IllegalArgumentException("Incompatible args: "+toStringShort()+", "+y.toStringShort()+", "+z.toStringShort());
DenseDoubleMatrix1D yy = (DenseDoubleMatrix1D) y;
DenseDoubleMatrix1D zz = (DenseDoubleMatrix1D) z;
final double[] AElems = this.elements;
final double[] yElems = yy.elements;
final double[] zElems = zz.elements;
if (AElems==null || yElems==null || zElems==null) throw new InternalError();
int As = this.columnStride;
int ys = yy.stride;
int zs = zz.stride;
int indexA = index(0,0);
int indexY = yy.index(0);
int indexZ = zz.index(0);
int cols = columns;
for (int row=rows; --row >= 0; ) {
double sum = 0;
/*
// not loop unrolled
for (int i=indexA, j=indexY, column=columns; --column >= 0; ) {
sum += AElems[i] * yElems[j];
i += As;
j += ys;
}
*/
// loop unrolled
int i = indexA - As;
int j = indexY - ys;
for (int k=cols%4; --k >= 0; ) {
sum += AElems[i += As] * yElems[j += ys];
}
for (int k=cols/4; --k >= 0; ) {
sum += AElems[i += As] * yElems[j += ys] +
AElems[i += As] * yElems[j += ys] +
AElems[i += As] * yElems[j += ys] +
AElems[i += As] * yElems[j += ys];
}
zElems[indexZ] = alpha*sum + beta*zElems[indexZ];
indexA += this.rowStride;
indexZ += zs;
}
return z;
}
public DoubleMatrix2D zMult(DoubleMatrix2D B, DoubleMatrix2D C, double alpha, double beta, boolean transposeA, boolean transposeB) {
// overriden for performance only
if (transposeA) return viewDice().zMult(B,C,alpha,beta,false,transposeB);
if (B instanceof SparseDoubleMatrix2D || B instanceof RCDoubleMatrix2D) {
// exploit quick sparse mult
// A*B = (B' * A')'
if (C==null) {
return B.zMult(this, null, alpha,beta,!transposeB,true).viewDice();
}
else {
B.zMult(this, C.viewDice(), alpha,beta,!transposeB,true);
return C;
}
/*
final RCDoubleMatrix2D transB = new RCDoubleMatrix2D(B.columns,B.rows);
B.forEachNonZero(
new cern.colt.function.IntIntDoubleFunction() {
public double apply(int i, int j, double value) {
transB.setQuick(j,i,value);
return value;
}
}
);
return transB.zMult(this.viewDice(),C.viewDice()).viewDice();
*/
}
if (transposeB) return this.zMult(B.viewDice(),C,alpha,beta,transposeA,false);
int m = rows;
int n = columns;
int p = B.columns;
if (C==null) C = new DenseDoubleMatrix2D(m,p);
if (!(C instanceof DenseDoubleMatrix2D)) return super.zMult(B,C,alpha,beta,transposeA,transposeB);
if (B.rows != n)
throw new IllegalArgumentException("Matrix2D inner dimensions must agree:"+toStringShort()+", "+B.toStringShort());
if (C.rows != m || C.columns != p)
throw new IllegalArgumentException("Incompatibel result matrix: "+toStringShort()+", "+B.toStringShort()+", "+C.toStringShort());
if (this == C || B == C)
throw new IllegalArgumentException("Matrices must not be identical");
DenseDoubleMatrix2D BB = (DenseDoubleMatrix2D) B;
DenseDoubleMatrix2D CC = (DenseDoubleMatrix2D) C;
final double[] AElems = this.elements;
final double[] BElems = BB.elements;
final double[] CElems = CC.elements;
if (AElems==null || BElems==null || CElems==null) throw new InternalError();
int cA = this.columnStride;
int cB = BB.columnStride;
int cC = CC.columnStride;
int rA = this.rowStride;
int rB = BB.rowStride;
int rC = CC.rowStride;
/*
A is blocked to hide memory latency
xxxxxxx B
xxxxxxx
xxxxxxx
A
xxx xxxxxxx C
xxx xxxxxxx
--- -------
xxx xxxxxxx
xxx xxxxxxx
--- -------
xxx xxxxxxx
*/
final int BLOCK_SIZE = 30000; // * 8 == Level 2 cache in bytes
//if (n+p == 0) return C;
//int m_optimal = (BLOCK_SIZE - n*p) / (n+p);
int m_optimal = (BLOCK_SIZE - n) / (n+1);
if (m_optimal <= 0) m_optimal = 1;
int blocks = m/m_optimal;
int rr = 0;
if (m%m_optimal != 0) blocks++;
for (; --blocks >= 0; ) {
int jB = BB.index(0,0);
int indexA = index(rr,0);
int jC = CC.index(rr,0);
rr += m_optimal;
if (blocks==0) m_optimal += m - rr;
for (int j = p; --j >= 0; ) {
int iA = indexA;
int iC = jC;
for (int i = m_optimal; --i >= 0; ) {
int kA = iA;
int kB = jB;
double s = 0;
/*
// not unrolled:
for (int k = n; --k >= 0; ) {
//s += getQuick(i,k) * B.getQuick(k,j);
s += AElems[kA] * BElems[kB];
kB += rB;
kA += cA;
}
*/
// loop unrolled
kA -= cA;
kB -= rB;
for (int k=n%4; --k >= 0; ) {
s += AElems[kA += cA] * BElems[kB += rB];
}
for (int k=n/4; --k >= 0; ) {
s += AElems[kA += cA] * BElems[kB += rB] +
AElems[kA += cA] * BElems[kB += rB] +
AElems[kA += cA] * BElems[kB += rB] +
AElems[kA += cA] * BElems[kB += rB];
}
CElems[iC] = alpha*s + beta*CElems[iC];
iA += rA;
iC += rC;
}
jB += cB;
jC += cC;
}
}
return C;
}
/**
* Returns the sum of all cells; <tt>Sum( x[i,j] )</tt>.
* @return the sum.
*/
public double zSum() {
double sum = 0;
final double[] elems = this.elements;
if (elems==null) throw new InternalError();
int index = index(0,0);
int cs = this.columnStride;
int rs = this.rowStride;
for (int row=rows; --row >= 0; ) {
for (int i=index, column=columns; --column >= 0; ) {
sum += elems[i];
i += cs;
}
index += rs;
}
return sum;
}
}