Package jmt.engine.random

Source Code of jmt.engine.random.Normal

/**   
  * Copyright (C) 2006, Laboratorio di Valutazione delle Prestazioni - Politecnico di Milano

  * This program is free software; you can redistribute it and/or modify
  * it under the terms of the GNU General Public License as published by
  * the Free Software Foundation; either version 2 of the License, or
  * (at your option) any later version.

  * This program is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  * GNU General Public License for more details.

  * You should have received a copy of the GNU General Public License
  * along with this program; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  */

package jmt.engine.random;

import jmt.common.exception.IncorrectDistributionParameterException;
import jmt.engine.math.Probability;

/**
*
* This is the Normal distribution (see the constructor
* description for his pdf definition).
*
* <br><br>Copyright (c) 2003
* <br>Politecnico di Milano - dipartimento di Elettronica e Informazione
* @author Fabrizio Frontera - ffrontera@yahoo.it
* @author Modified by Stefano Omini, 7/5/2004
* @author Modified by Bertoli Marco, 8/9/2005
*/

public class Normal extends AbstractDistribution implements Distribution {

  protected double cache; // cache for Box-Mueller algorithm
  protected boolean cacheFilled; // Box-Mueller

  /**
   * This is the constructor. It creates a new normal distribution which is
   * defined  from is pdf:
   * <pre>               1                   (x-m)^2
   * pdf(x) = -------------- * exp (- ----------- )
   *           sqrt(2*pi)*v              2v^2</pre>
   * where v^2 is the variance and m is the mean of the distribution
   * pi is the pi-greco constant.
   */

  public Normal() {
  }

  /**
   * it returns the pdf of the distribution.
   * This method is used to obtain from the distribution his probability distribution
   * function evaluated where required by the user.
   *
   * @param x double indicating where to evaluate the pdf.
   * @param p parameter of the normal distribution.
   * @throws IncorrectDistributionParameterException
   * @return double with the probability distribution function evaluated in x.
   */

  //OLD
  //public double pdf(double x, NormalPar p)
  public double pdf(double x, Parameter p) throws IncorrectDistributionParameterException {
    if (p.check()) {
      //OLD
      //double variance = p.getStandardDeviation() * p.getStandardDeviation();
      //double SQRT_INV = 1.0 / Math.sqrt(2.0 * Math.PI * variance);
      //double mean = p.getMean();
      double variance = ((NormalPar) p).getStandardDeviation() * ((NormalPar) p).getStandardDeviation();
      double SQRT_INV = 1.0 / Math.sqrt(2.0 * Math.PI * variance);
      double mean = ((NormalPar) p).getMean();
      double diff = x - mean;
      return SQRT_INV * Math.exp(-(diff * diff) / (2.0 * variance));
    } else {
      throw new IncorrectDistributionParameterException("Remember: standardDeviation must be gtz");
    }
  }

  /**
   * it returns the cdf of the distribution.
   * This method is used to obtain from the distribution his cumulative distribution
   * function evaluated where required by the user.
   *
   * @param x double indicating where to evaluate the cdf.
   * @param p parameter of the normal distribution.
   * @throws IncorrectDistributionParameterException
   * @return double with the cumulative distribution function evaluated in x.
   */

  //OLD
  //public double cdf(double x, NormalPar p)
  public double cdf(double x, Parameter p) throws IncorrectDistributionParameterException {
    if (p.check()) {
      //OLD
      //double mean = p.getMean();
      //double variance = p.getStandardDeviation() * p.getStandardDeviation();
      double mean = ((NormalPar) p).getMean();
      double variance = ((NormalPar) p).getStandardDeviation() * ((NormalPar) p).getStandardDeviation();
      return Probability.normal(mean, variance, x);
    } else {
      throw new IncorrectDistributionParameterException("Remember: standardDeviation must be gtz");
    }
  }

  /**
   * it returns the mean of the distribution.
   * This method is used to obtain from the distribution the value of his own
   * theoretic mean.
   *
   * @param p parameter of the normal distribution.
   * @throws IncorrectDistributionParameterException
   * @return double with the theoretic mean of the distribution.
   */

  //OLD
  //public double theorMean(NormalPar p)
  public double theorMean(Parameter p) throws IncorrectDistributionParameterException {
    if (p.check()) {
      //OLD
      //double mean = p.getMean();
      double mean = ((NormalPar) p).getMean();
      return mean;
    } else {
      throw new IncorrectDistributionParameterException("Remember: standardDeviation must be gtz");
    }
  }

  /**
   * it returns the variance of the distribution.
   * This method is used to obtain from the distribution his own theoretical
   * variance.
   *
   * @param p parameter of the normal distribution.
   * @throws IncorrectDistributionParameterException
   * @return double with the theoretic variance of the distribution.
   */

  //OLD
  //public double theorVariance(NormalPar p)
  public double theorVariance(Parameter p) throws IncorrectDistributionParameterException {
    if (p.check()) {
      //OLD
      //double variance = (p.getStandardDeviation() * p.getStandardDeviation());
      double variance = ((NormalPar) p).getStandardDeviation() * ((NormalPar) p).getStandardDeviation();
      return variance;
    } else {
      throw new IncorrectDistributionParameterException("Remember: standardDeviation must be gtz");
    }
  }

  /**
   * in returns the new random number.
   * This method is used to obtain from the distribution the next number distributed
   * according to the distribution parameter.
   *
   * @param p parameter of the normal distribution.
   * @throws IncorrectDistributionParameterException
   * @return double with the next random number of this distribution.
   */

  public double nextRand(Parameter p) throws IncorrectDistributionParameterException {
    if (p.check()) {
      double mean = ((NormalPar) p).getMean();
      double standardDeviation = ((NormalPar) p).getStandardDeviation();
      // Uses polar Box-Muller transformation.
      if (cacheFilled) {
        cacheFilled = false;
        // If generated number is in the past, reruns this method
        return (cache > 0) ? cache : nextRand(p);
      };
      double x, y, r, z;
      do {
        x = 2.0 * engine.raw() - 1.0;
        y = 2.0 * engine.raw() - 1.0;
        r = x * x + y * y;
      } while (r >= 1.0);
      z = Math.sqrt(-2.0 * Math.log(r) / r);
      cache = mean + standardDeviation * x * z;
      cacheFilled = true;
      // If generated number is in the past, reruns this method
      double ret = mean + standardDeviation * y * z;
      return (ret > 0) ? ret : nextRand(p);
    } else {
      throw new IncorrectDistributionParameterException("Remember: standardDeviation must be gtz");
    }
  }

} // end Normal
TOP

Related Classes of jmt.engine.random.Normal

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.