Package jmt.engine.random

Source Code of jmt.engine.random.HyperExp

/**   
  * Copyright (C) 2006, Laboratorio di Valutazione delle Prestazioni - Politecnico di Milano

  * This program is free software; you can redistribute it and/or modify
  * it under the terms of the GNU General Public License as published by
  * the Free Software Foundation; either version 2 of the License, or
  * (at your option) any later version.

  * This program is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  * GNU General Public License for more details.

  * You should have received a copy of the GNU General Public License
  * along with this program; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  */

package jmt.engine.random;

import jmt.common.exception.IncorrectDistributionParameterException;

/**
*
* This is the Hyper Exponential distribution (see the constructor
* description for dettails).
*
* <br><br>Copyright (c) 2003
* <br>Politecnico di Milano - dipartimento di Elettronica e Informazione
* @author Fabrizio Frontera - ffrontera@yahoo.it
*/

public class HyperExp extends AbstractDistribution implements Distribution {

  protected Exponential expDistr;

  /**
   * This is the constructor. It creates a new hyper exponential distribution which
   * is constituted by N exponential "servers" chosen with probability alpha_i.
   *
   */
  public HyperExp() {
    expDistr = new Exponential();
  }

  //TODO: perchè pdf e cdf sono uguali a zero?? Devono essere ancora implementate
  /**
   * it returns the pdf of the distribution.
   * This method is used to obtain from the distribution his probability distribution
   * function evaluated where required by the user.
   *
   * @param x double indicating where to evaluate the pdf.
   * @param p parameter of the hyper exponential distribution.
   * @return double with the probability distribution function evaluated in x.
   */

  public double pdf(double x, Parameter p) { //other implementation may use p.check()
    return 0.0;
  }

  /**
   * it returns the cdf of the distribution.
   * This method is used to obtain from the distribution his cumulative distribution
   * function evaluated where required by the user.
   *
   * @param x double indicating where to evaluate the cdf.
   * @param p parameter of the hyper exponential distribution.
   * @return double with the cumulative distribution function evaluated in x.
   */

  public double cdf(double x, Parameter p) { //other implementation may use p.check()
    return 0.0;
  }

  /**
   * it returns the mean of the distribution.
   * This method is used to obtain from the distribution the value of his own
   * theoretic mean.
   *
   * @param p parameter of the hyper exponential distribution.
   * @throws IncorrectDistributionParameterException
   * @return double with the theoretic mean of the distribution.
   */

  public double theorMean(Parameter p) throws IncorrectDistributionParameterException {
    if (p.check()) {
      return ((HyperExpPar) p).getMean();
    } else {
      throw new IncorrectDistributionParameterException(
          "Remember: parameter mean, variance, lambda1 and lambda 2 must be gtz; p must be a number betwen 0 and 1");
    }
  }

  /**
   * it returns the variance of the distribution.
   * This method is used to obtain from the distribution his own theoretical
   * variance.
   *
   * @param p parameter of the hyper exponential distribution.
   * @throws IncorrectDistributionParameterException
   * @return double with the theoretic variance of the distribution.
   */
  public double theorVariance(Parameter p) throws IncorrectDistributionParameterException {
    if (p.check()) {
      return ((HyperExpPar) p).getVar();
    } else {
      throw new IncorrectDistributionParameterException(
          "Remember: parameter mean, variance, lambda1 and lambda 2 must be gtz; p must be a number betwen 0 and 1");
    }
  }

  /**
   * it returns the new random number.
   * This method is used to obtain from the distribution the next number distributed
   * according to the distribution parameter.
   *
   * @param p parameter of the hyper exponential distribution.
   * @throws IncorrectDistributionParameterException
   * @return double with the next random number of this distribution.
   */

  public double nextRand(Parameter p) throws IncorrectDistributionParameterException {
    if (p.check()) {
      if (engine.nextDouble() <= ((HyperExpPar) p).getP()) {
        return expDistr.nextRand(((HyperExpPar) p).getExpParam1());
      } else {
        return expDistr.nextRand(((HyperExpPar) p).getExpParam2());
      }
    } else {
      throw new IncorrectDistributionParameterException(
          "Remember: parameter mean, variance, lambda1 and lambda 2 must be gtz; p must be a number betwen 0 and 1");
    }
  }

}

// end HyperExp
TOP

Related Classes of jmt.engine.random.HyperExp

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.