Package jmt.engine.random

Source Code of jmt.engine.random.EmpiricalPar

/**   
  * Copyright (C) 2006, Laboratorio di Valutazione delle Prestazioni - Politecnico di Milano

  * This program is free software; you can redistribute it and/or modify
  * it under the terms of the GNU General Public License as published by
  * the Free Software Foundation; either version 2 of the License, or
  * (at your option) any later version.

  * This program is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  * GNU General Public License for more details.

  * You should have received a copy of the GNU General Public License
  * along with this program; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  */

package jmt.engine.random;

import jmt.common.exception.IncorrectDistributionParameterException;

/**
*
* This is the parameter that should be passed to the empirical
* distribution.
*
* <br><br>Copyright (c) 2003
* <br>Politecnico di Milano - dipartimento di Elettronica e Informazione
* @author Fabrizio Frontera - ffrontera@yahoo.it
*
*/

public class EmpiricalPar extends AbstractParameter implements Parameter {

  /** cumulative distribution function*/
  protected double[] cdf;
  /** probability distribution function*/
  protected double[] pdf;

  /** values of the parameter*/
  protected Object[] values;

  /**
   * This is the default constructor. It creates a new empty empirical parameter
   * that must be set with the setPDF method before being used.
   *
   */
  public EmpiricalPar() {
  }

  /**
   * It creates a new empirical parameter. It accepts an array of double greater or
   * equal to zero and verifies that the sum of all these data is one.
   *
   * @param pdf array of <code>double</code> for the new empirical distribution.
   * @throws IncorrectDistributionParameterException when any of the provided data
   *  is less than zero or the sum of all of them is not one.
   *
   */
  public EmpiricalPar(double[] pdf) throws IncorrectDistributionParameterException {
    setPDF(pdf);
  }

  /**
   * It creates a new empirical parameter. It accepts an array of Double greater or
   * equal to zero and verifies that the sum of all these data is one.
   *
   * @param wpdf array of <code>Double</code> for the new empirical distribution.
   * @throws IncorrectDistributionParameterException when any of the provided data
   * is less than zero or the sum of all of them is not one.
   *
   */
  public EmpiricalPar(Double[] wpdf) throws IncorrectDistributionParameterException {
    double[] wpdf2pdf = new double[wpdf.length];
    for (int i = 0; i < wpdf.length; i++) {
      wpdf2pdf[i] = wpdf[i].doubleValue();
    }
    this.setPDF(wpdf2pdf);
  }

  /**
   * Creates an empirical parameter with these entries (each entry contains
   * a value and a probability).
   * The Empirical can return not only an integer, but also directly
   * an object, given the right probability table.
   * @param entries Empirical entries
   * @throws IncorrectDistributionParameterException
   */
  public EmpiricalPar(EmpiricalEntry[] entries) throws IncorrectDistributionParameterException {
    values = new Object[entries.length];
    double prob[] = new double[entries.length];
    for (int i = 0; i < entries.length; i++) {
      EmpiricalEntry entry = entries[i];
      values[i] = entry.getValue();
      prob[i] = entry.getProbability();
    }
    setPDF(prob);
  }

  /**
   * it returns the pdf of the distribution.
   * It returns the value of the parameters for the empirical distribution, that is
   * the vector of double representing the probabilities provided by the user.
   *
   * @return  array of double with the probability distribution function tabulated.
   */

  public double[] getPDF() {
    return pdf;
  }

  /**
   * It returns the cdf of the distribution.
   * It returns the value of the parameters for the empirical distribution, that is
   * the vector of double reppresenting the cumulative distribution function tabulated.
   *
   * @return  array of double with the cumulative distribution function tabulated.
   */

  public double[] getCDF() {
    return cdf;
  }

  /**
   * it changes the pdf of the distribution.
   * It allows the user to change the value of the parameter of the empirical distribution.
   * Takes an existent array of pdf and tries to convert it in a pdf for
   * an empirical distribution, checking the conditions which must be respected.
   *
   * @param pdf array of double containing an existent pdf.
   * @throws IncorrectDistributionParameterException if, among the provided data, there is
   * a value less than zero or the sum of all of them is not 1.
   *
   */
  public void setPDF(double[] pdf) throws IncorrectDistributionParameterException {
    double sumProb = 0;
    this.pdf = new double[pdf.length];
    for (int i = 0; i < pdf.length; i++) {
      //OLD
      //if (pdf[i] > 0) {
      //NEW
      //TODO:debug!!!! Vedere se il valore zero crea problemi...
      if (pdf[i] >= 0) {
        this.pdf[i] = pdf[i];
        sumProb += this.pdf[i];
      } else {
        //negative probability not allowed
        throw new IncorrectDistributionParameterException("Found a probability less than zero. Only value gtz allowed.");
      }
    }

    if (Math.abs(sumProb - 1.0) > 1E-14) {
      //total probability must be near 1 (10exp(-14) error allowed)
      throw new IncorrectDistributionParameterException("The sum of all the given probability must be 1.0");
    }

    //sets the cdf with the new probabilities
    setCDF();
  }

  /**
   * Generate the CDF from the PDF. This is only a service method for setPdf.
   * Each new cdf value is the sum of the previous cdf value and the current pdf value.
   *
   */
  private void setCDF() {
    int nBins = pdf.length;
    this.cdf = new double[nBins + 1];
    this.cdf[0] = 0;
    //TODO: cambia qualcosa per il ++ptn ??
    //OLD
    //for (int ptn = 0; ptn < nBins; ++ptn)
    //NEW
    for (int ptn = 0; ptn < nBins; ptn++) {
      this.cdf[ptn + 1] = cdf[ptn] + pdf[ptn];
    }
  }

  /**
   * It controls whether the parameter is correct or not.
   * For the empirical distribution, the parameter is correct if the
   * values in the pdf array are greater than zero and they sum to 1.0.
   *
   * @return boolean, indicating whether the parameter is correct or not.
   *
   */
  @Override
  public boolean check() {
    /*
    The gtz condition and the sum to 1 condition are actually controlled
    * by the setPDF, therefore it is sufficient to control that the CDF is not empty.
    */
    return (!(cdf == null));
  }

  // 11/09/03 - Massimo Cattai //

  //TODO: è permesso il valore 0 delle probabilità??

  /**
   * Checks whether a parameter value is correct
   * @param parameterName
   * @param value
   */
  public static boolean guiCheck(String parameterName, Double value) {
    if (parameterName.compareTo("pdf") == 0) {
      //the string parameterName is equal to "pdf"
      if ((value.doubleValue() >= 0) && (value.doubleValue() <= 1)) {
        return true;
      }
    }
    return false;
  }

  public static String guiGetErrorMsg(String parameterName) {
    if (parameterName.compareTo("pdf") == 0) {
      //the string parameterName is equal to "pdf"
      return "<html>The parameter <font color=#0000ff><b>" + parameterName
          + "</b></font> must be <font color=#ff0000><b> in [0, 1]</b></font>.</html>";
    }
    return "";
  }

  /**
   * Returns the value in the corrisponding position: generally only the
   * empirical distribution needs to access this method (generates the random
   * number then ask for the corresponding value).
   *
   * @param position
   * @return the vaue
   */
  Object getValue(int position) {
    return values[position];
  }

  /**
   * Returns all the values.
   */

  public Object[] getValues() {
    return values;
  }
  // 11/09/03 - end /////////////////////////////////////////////////////

} // end EmpiricalPar
TOP

Related Classes of jmt.engine.random.EmpiricalPar

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.