/* Calculates the discrete Fourier transform of a RenderedOp.
@Copyright (c) 2002-2005 The Regents of the University of California.
All rights reserved.
Permission is hereby granted, without written agreement and without
license or royalty fees, to use, copy, modify, and distribute this
software and its documentation for any purpose, provided that the
above copyright notice and the following two paragraphs appear in all
copies of this software.
IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF
THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.
THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
CALIFORNIA HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.
PT_COPYRIGHT_VERSION 2
COPYRIGHTENDKEY
*/
package ptolemy.actor.lib.jai;
import java.awt.image.renderable.ParameterBlock;
import javax.media.jai.JAI;
import javax.media.jai.RenderedOp;
import javax.media.jai.operator.DFTDescriptor;
import ptolemy.actor.lib.Transformer;
import ptolemy.data.type.BaseType;
import ptolemy.kernel.CompositeEntity;
import ptolemy.kernel.util.Attribute;
import ptolemy.kernel.util.IllegalActionException;
import ptolemy.kernel.util.NameDuplicationException;
import ptolemy.kernel.util.StringAttribute;
//////////////////////////////////////////////////////////////////////////
//// JAIDFT
/**
Calculate the discrete Fourier transform of an image. If the input
is real, then the output has twice as many bands as the input (the
dataNature parameter should be set to <i>realToComplex</i>). Band 0
in the input gets mapped to bands 0 and 1 in the output (band 0
contains the real information, band 1 contains the imaginary
information). Band 1 in the input gets mapped to bands 1 and 2, etc.
<p>
If the input is complex, then the output has the same amount of bands
as the input (the dataNature parameter should be set to
"complexToComplex", "complexToReal should never be used").
<p>
The image is zero-padded to the next highest power of 2 (unless it
already is a power of 2, in which case nothing happens).
<p>
The output of this actor may not be suitable for displaying or saving
because of the increase in the number of bands, as well as the high
resolution of the data (doubles).
@see JAIIDFT
@author James Yeh
@version $Id: JAIDFT.java,v 1.27 2005/07/08 19:56:26 cxh Exp $
@since Ptolemy II 3.0
@Pt.ProposedRating Red (cxh)
@Pt.AcceptedRating Red (cxh)
*/
public class JAIDFT extends Transformer {
/** Construct an actor with the given container and name.
* @param container The container.
* @param name The name of this actor.
* @exception IllegalActionException If the actor cannot be contained
* by the proposed container.
* @exception NameDuplicationException If the container already has an
* actor with this name.
*/
public JAIDFT(CompositeEntity container, String name)
throws IllegalActionException, NameDuplicationException {
super(container, name);
scalingType = new StringAttribute(this, "scalingType");
scalingType.setExpression("none");
_scalingType = _NONE;
dataNature = new StringAttribute(this, "dataNature");
dataNature.setExpression("realToComplex");
_dataNature = _REAL_TO_COMPLEX;
input.setTypeEquals(BaseType.OBJECT);
output.setTypeEquals(BaseType.OBJECT);
}
///////////////////////////////////////////////////////////////////
//// ports and parameters ////
/** A parameter that describes the nature of the input and output
* data. The default is <i>realToComplex</i>. If the input is
* complex, then <i>complexToComplex</i> should be used. The
* setting <i>complexToReal</i> should probably not be used.
*/
public StringAttribute dataNature;
/** The scaling to be done on the output. There are three options,
* <i>none</i> (the default, does no scaling), <i>unitary</i>
* (multiplies by square root of the product of the dimensions),
* and <i>dimensions</i> (multiplies by the product of the
* dimensions). In a DFT-IDFT chain, the overall scaling should
* equal the product of the dimensions.
*/
public StringAttribute scalingType;
///////////////////////////////////////////////////////////////////
//// public methods ////
/** Override the base class and set the parameters.
* @param attribute The attribute that changed.
* @exception IllegalActionException If the function is not recognized.
*/
public void attributeChanged(Attribute attribute)
throws IllegalActionException {
if (attribute == dataNature) {
String natureName = dataNature.getExpression();
if (natureName.equals("complexToComplex")) {
_dataNature = _COMPLEX_TO_COMPLEX;
} else if (natureName.equals("complexToReal")) {
_dataNature = _COMPLEX_TO_REAL;
} else if (natureName.equals("realToComplex")) {
_dataNature = _REAL_TO_COMPLEX;
} else {
throw new IllegalActionException(this,
"Unrecognized dataNature type: " + natureName);
}
} else if (attribute == scalingType) {
String typeName = scalingType.getExpression();
if (typeName.equals("dimensions")) {
_scalingType = _DIMENSIONS;
} else if (typeName.equals("unitary")) {
_scalingType = _UNITARY;
} else if (typeName.equals("none")) {
_scalingType = _NONE;
} else {
throw new IllegalActionException(this,
"Unrecognized scaling type: " + typeName);
}
} else {
super.attributeChanged(attribute);
}
}
/** Fire this actor.
* Output the discrete Fourier transform of the inputted image.
* @exception IllegalActionException If a contained method throws it,
* or if there is an invalid scaling type, or an invalid data nature
* set.
*/
public void fire() throws IllegalActionException {
super.fire();
ParameterBlock dftParameters = new ParameterBlock();
JAIImageToken jaiImageToken = (JAIImageToken) input.get(0);
RenderedOp oldImage = jaiImageToken.getValue();
dftParameters.addSource(oldImage);
switch (_scalingType) {
case _DIMENSIONS:
dftParameters.add(DFTDescriptor.SCALING_DIMENSIONS);
break;
case _NONE:
dftParameters.add(DFTDescriptor.SCALING_NONE);
break;
case _UNITARY:
dftParameters.add(DFTDescriptor.SCALING_UNITARY);
break;
default:
throw new IllegalActionException("Invalid value for scaling type");
}
switch (_dataNature) {
case _COMPLEX_TO_COMPLEX:
dftParameters.add(DFTDescriptor.COMPLEX_TO_COMPLEX);
break;
case _COMPLEX_TO_REAL:
dftParameters.add(DFTDescriptor.COMPLEX_TO_REAL);
break;
case _REAL_TO_COMPLEX:
dftParameters.add(DFTDescriptor.REAL_TO_COMPLEX);
break;
default:
throw new IllegalActionException("Invalid data natures");
}
RenderedOp newImage = JAI.create("dft", dftParameters);
output.send(0, new JAIImageToken(newImage));
}
///////////////////////////////////////////////////////////////////
//// private variables ////
/** An indicator for the type of data being inputted and the type
* of data being outputted.
*/
private int _dataNature;
/** An indicator for the type of scaling done */
private int _scalingType;
/** Constants used for more efficient computation */
private static final int _COMPLEX_TO_COMPLEX = 0;
private static final int _COMPLEX_TO_REAL = 1;
private static final int _REAL_TO_COMPLEX = 2;
private static final int _DIMENSIONS = 0;
private static final int _NONE = 1;
private static final int _UNITARY = 2;
}