Package ptolemy.actor.lib.comm

Source Code of ptolemy.actor.lib.comm.Scrambler

/* Scramble an input bit sequence in a pseudo random way.

Copyright (c) 2003-2007 The Regents of the University of California.
All rights reserved.
Permission is hereby granted, without written agreement and without
license or royalty fees, to use, copy, modify, and distribute this
software and its documentation for any purpose, provided that the above
copyright notice and the following two paragraphs appear in all copies
of this software.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF
THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
CALIFORNIA HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.

PT_COPYRIGHT_VERSION_2
COPYRIGHTENDKEY

*/
package ptolemy.actor.lib.comm;

import ptolemy.actor.lib.Transformer;
import ptolemy.data.BooleanToken;
import ptolemy.data.IntToken;
import ptolemy.data.expr.Parameter;
import ptolemy.data.type.BaseType;
import ptolemy.kernel.CompositeEntity;
import ptolemy.kernel.util.Attribute;
import ptolemy.kernel.util.IllegalActionException;
import ptolemy.kernel.util.NameDuplicationException;

//////////////////////////////////////////////////////////////////////////
//// Scrambler

/**
Scramble the input bit sequence using a feedback shift register.
The initial state of the shift register is given by the <i>initialState</i>
parameter, which should be a non-negative integer.
The taps of the feedback shift register are given by the <i>polynomial</i>
parameter, which should be a positive integer.
The n-th bit of this integer indicates whether the n-th tap of the delay
line is fed back.
The low-order bit is called the 0-th bit, and should always be set.
The next low-order bit indicates whether the output of the first delay
should be fed back, etc.
The input port receives boolean tokens. "TRUE" is treated as 1 and "FALSE"
is treated as 0. All the bits that are fed back are exclusive-ored together
(i.e., their parity is computed), and the result is exclusive-ored with the
input bit. The result is produced at the output and shifted into the delay line.
<p>
With a proper choice of polynomial, the resulting output appears highly
random even if the input is highly non-random.
If the polynomial is a <i>primitive polynomial</i>, then the feedback
shift register is a so-called <i>maximal length feedback shift register</i>.
This means that with a constant input (or no input, which is equivalent
to a constant <i>false</i> input) the output will be a sequence with
period 2<sup><i>N</i></sup>-1, where <i>N</i> is the order of the
polynomial (the length of the shift register).
This is the longest possible sequence.
Moreover, within this period, the sequence will appear to be white,
in that a computed autocorrelation will be very nearly an impulse.
Thus, the scrambler with a constant input can be very effectively used
to generate a pseudo-random bit sequence.
<p>
The maximal-length feedback shift register with constant input will
pass through 2<sup><i>N</i></sup>-1 states before returning to a state
it has been in before.  This is one short of the 2<sup><i>N</i></sup>
states that a register with <i>N</i> bits can take on.  This one missing
state, in fact, is a <i>lock-up</i> state, in that if the input is
an appropriate constant, the scrambler will cease to produce random-looking
output, and will output a constant. For example, if the input is all zeros,
and the initial state of the scrambler is zero, then the outputs will be all
zero, hardly random. This is easily avoided by initializing the scrambler
to some non-zero state. The default value for the <i>shiftReg</i> is set to 1.
<p>
The <i>polynomial</i> must be carefully chosen. It must represent a
<i>primitive polynomial</i>, which is one that cannot be factored into two
(nontrivial) polynomials with binary coefficients.  See Lee and Messerschmitt
(Kluwer, 1994) for more details.  For convenience, we give here
a set of primitive polynomials
(expressed as octal numbers so that they are easily translated into taps
on shift register).  All of these will result in maximal-length pseudo-random
sequences if the input is constant and lock-up is avoided:
<pre>
order    polynomial
2        07
3        013
4        023
5        045
6        0103
7        0211
8        0435
9        01021
10       02011
11       04005
12       010123
13       020033
14       042103
15       0100003
16       0210013
17       0400011
18       01000201
19       02000047
20       04000011
21       010000005
22       020000003
23       040000041
24       0100000207
25       0200000011
26       0400000107
27       01000000047
28       02000000011
29       04000000005
30       010040000007
</pre>
<p>
The leading zero in the polynomial indicates an octal number.
Note also that reversing the order of the bits in any of these numbers
will also result in a primitive polynomial.
Thus, the default value for the polynomial parameter
is 0440001 in octal, or "100 100 000 000 000 001" in binary.
Reversing these bits we get "100 000 000 000 001 001" in binary, or
0400011 in octal.
This latter number is the one listed above as the primitive polynomial
of order 17.
The order is simply the index of the highest-order non-zero in the polynomial,
where the low-order bit has index zero.
<p>
Since the polynomial and the feedback shift register are both implemented
using type "int", the order of the polynomial is limited by the size of
the "int" data type.
For simplicity and portability, the polynomial is not allowed to be
interpreted as a negative integer, so the sign bit cannot be used.
Thus, if "int" is a 32-bit word, then the highest order polynomial allowed
is 30 (recall that indexing for the order starts at zero, and we cannot
use the sign bit).
Java has 32-bit integers, so we give the primitive
polynomials above only up to order 30.
<p>
For more information on scrambler, see Lee and Messerschmitt, Digital
Communication, Second Edition, Kluwer Academic Publishers, 1994, pp. 595-603.
<p>
@author Edward A. Lee and Ye Zhou
@version $Id: Scrambler.java,v 1.34 2007/12/06 18:27:19 cxh Exp $
@since Ptolemy II 3.0
@Pt.ProposedRating Red (eal)
@Pt.AcceptedRating Red (cxh)
*/
public class Scrambler extends Transformer {
    /** Construct an actor with the given container and name.
     *  The output and trigger ports are also constructed.
     *  @param container The container.
     *  @param name The name of this actor.
     *  @exception IllegalActionException If the entity cannot be contained
     *   by the proposed container.
     *  @exception NameDuplicationException If the container already has an
     *   actor with this name.
     */
    public Scrambler(CompositeEntity container, String name)
            throws NameDuplicationException, IllegalActionException {
        super(container, name);

        polynomial = new Parameter(this, "polynomial");
        polynomial.setTypeEquals(BaseType.INT);
        polynomial.setExpression("0440001");

        initialState = new Parameter(this, "initialState");
        initialState.setTypeEquals(BaseType.INT);
        initialState.setExpression("1");

        // Create input port and declare data types.
        //input = new TypedIOPort(this, "input", true, false);
        input.setTypeEquals(BaseType.BOOLEAN);
        output.setTypeEquals(BaseType.BOOLEAN);
    }

    ///////////////////////////////////////////////////////////////////
    ////                     ports and parameters                  ////

    /** Integer defining a polynomial with binary coefficients.
     *  The coefficients indicate the presence (1) or absence (0)
     *  of a tap in a feedback shift register. This parameter should
     *  contain a positive integer with the lower-order bit being 1.
     *  Its default value is the integer 0440001.
     */
    public Parameter polynomial;

    /** Integer defining the initial state of the shift register.
     *  The n-th bit of the integer indicates the value of the
     *  n-th register. This parameter should be a non-negative
     *  integer. Its default value is the integer 1.
     */
    public Parameter initialState;

    ///////////////////////////////////////////////////////////////////
    ////                         public methods                    ////

    /** If the attribute being changed is <i>polynomial</i>, then
     *  verify that is a positive integer and the lower-order bit is 1.
     *  @param attribute The attribute that changed.
     *  @exception IllegalActionException If <i>polynomial</i> is
     *  non-positive or the lower-order bit is not 1.
     */
    public void attributeChanged(Attribute attribute)
            throws IllegalActionException {
        if (attribute == polynomial) {
            int mask = ((IntToken) polynomial.getToken()).intValue();

            if (mask <= 0) {
                throw new IllegalActionException(this,
                        "Polynomial is required to be strictly positive.");
            }

            if ((mask & 1) == 0) {
                throw new IllegalActionException(this,
                        "The low-order bit of the the polynomial is not set.");
            }
        } else {
            super.attributeChanged(attribute);
        }
    }

    /** Read a bit from the input port and shift it into the shift register
     *  to scramble. Compute the parity and send <i>true</i> to the output
     *  port if it is 1; otherwise send <i>false</i> to the output port.
     *  The parity is shifted into the delay line for the next iteration.
     */
    public void fire() throws IllegalActionException {
        super.fire();
        _latestShiftReg = _shiftReg;

        int mask = ((IntToken) polynomial.getToken()).intValue();
        int reg = _latestShiftReg << 1;
        int masked = mask & reg;

        // Find the parity of the "masked".
        int parity = 0;

        // Calculate the parity of the masked word.
        while (masked > 0) {
            parity = parity ^ (masked & 1);
            masked = masked >> 1;
        }

        // Exclusive-or with the input if there is any.
        for (int i = 0; i < input.getWidth(); i++) {
            if (input.hasToken(0)) {
                BooleanToken inputToken = (BooleanToken) input.get(0);
                boolean inputTokenValue = inputToken.booleanValue();
                parity = parity ^ (inputTokenValue ? 1 : 0);
            }
        }

        _latestShiftReg = reg | parity;

        if (parity == 1) {
            output.broadcast(BooleanToken.TRUE);
        } else {
            output.broadcast(BooleanToken.FALSE);
        }
    }

    /** Initialize the actor by resetting the shift register state
     *  equal to the value of <i>initialState</i>.
     *  @exception IllegalActionException If the parent class throws it.
     */
    public void initialize() throws IllegalActionException {
        super.initialize();
        _latestShiftReg = _shiftReg = ((IntToken) initialState.getToken())
                .intValue();
    }

    /** Record the most recent shift register state as the new
     *  initial state for the next iteration.
     *  @exception IllegalActionException If the base class throws it
     */
    public boolean postfire() throws IllegalActionException {
        _shiftReg = _latestShiftReg;
        return super.postfire();
    }

    ///////////////////////////////////////////////////////////////////
    ////                         private variables                 ////
    // Record the state of the shift register.
    private int _shiftReg;

    // Updated state of the shift register.
    private int _latestShiftReg;
}
TOP

Related Classes of ptolemy.actor.lib.comm.Scrambler

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.