Package eas.simulation.brain.neural

Source Code of eas.simulation.brain.neural.NeuroBrain

/*
* File name:        NeuronBrain.java (package eas.simulation.brain.neural)
* Author(s):        Lukas König
* Java version:     6.0
* Generation date:  02.08.2011 (15:31:36)
*
* (c) This file and the EAS (Easy Agent Simulation) framework containing it
* is protected by Creative Commons by-nc-sa license. Any altered or
* further developed versions of this file have to meet the agreements
* stated by the license conditions.
*
* In a nutshell
* -------------
* You are free:
* - to Share -- to copy, distribute and transmit the work
* - to Remix -- to adapt the work
*
* Under the following conditions:
* - Attribution -- You must attribute the work in the manner specified by the
*   author or licensor (but not in any way that suggests that they endorse
*   you or your use of the work).
* - Noncommercial -- You may not use this work for commercial purposes.
* - Share Alike -- If you alter, transform, or build upon this work, you may
*   distribute the resulting work only under the same or a similar license to
*   this one.
*
* + Detailed license conditions (Germany):
*   http://creativecommons.org/licenses/by-nc-sa/3.0/de/
* + Detailed license conditions (unported):
*   http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
*
* This header must be placed in the beginning of any version of this file.
*/

package eas.simulation.brain.neural;

import java.awt.image.BufferedImage;
import java.util.HashMap;

import eas.simulation.Wink;
import eas.simulation.agent.AbstractAgent;
import eas.simulation.agent.GenericActuator;
import eas.simulation.agent.GenericRealValueDrivenActuator;
import eas.simulation.agent.GenericRealValuedSensor;
import eas.simulation.agent.GenericSensor;
import eas.simulation.brain.AbstractBrain;
import eas.simulation.brain.neural.functions.ActivationFunctionConstant;
import eas.simulation.brain.neural.functions.ActivationFunctionSigmoid;
import eas.simulation.standardEnvironments.AbstractEnvironment;
import eas.startSetup.ParCollection;

/**
* @author Lukas König
*
*/
public class NeuroBrain<AgentType extends AbstractAgent<?>> extends AbstractBrain<AgentType> {

    private static final long serialVersionUID = 3949741176477074588L;

    private GeneralNeuralNetwork neuralNet;
   
    private ParCollection pars;
   
    private HashMap<Integer, GenericRealValueDrivenActuator<AbstractEnvironment<?>, AbstractAgent<?>>> actuators
        = new HashMap<Integer, GenericRealValueDrivenActuator<AbstractEnvironment<?>,AbstractAgent<?>>>();
   
    private HashMap<Integer, GenericRealValuedSensor<AbstractEnvironment<?>, AbstractAgent<?>>> sensors
        = new HashMap<Integer, GenericRealValuedSensor<AbstractEnvironment<?>,AbstractAgent<?>>>();
   
    @SuppressWarnings({ "unchecked", "rawtypes" })
    public NeuroBrain(AgentType brainsBody, ParCollection params) {
        super(brainsBody);
        this.pars = params;
        neuralNet = new GeneralNeuralNetwork(this.pars);
        neuralNet.setStandardActFct(new ActivationFunctionSigmoid(1));

        // Bias neuron.
        this.neuralNet.addNeuron(new ActivationFunctionConstant(1), Neuron.INPUT_NEURON);
       
        for (GenericSensor<Object, ?, AbstractAgent<?>> sens : this.getMyBody().getSensors()) {
            try {
                GenericRealValuedSensor<AbstractEnvironment<?>, AbstractAgent<?>> sensor
                    = (GenericRealValuedSensor) sens;
                int id = neuralNet.addNeuron(Neuron.INPUT_NEURON);
                sensors.put(id, sensor);
            } catch (Exception e) {
            }
        }

        this.neuralNet.addNeuron(new ActivationFunctionSigmoid(0.001), Neuron.HIDDEN_NEURON); // TODO: Delete this line!

        for (GenericActuator<?, AbstractAgent<?>> akt : this.getMyBody().getActuators()) {
            try {
                GenericRealValueDrivenActuator<AbstractEnvironment<?>, AbstractAgent<?>> actuator
                    = (GenericRealValueDrivenActuator<AbstractEnvironment<?>, AbstractAgent<?>>) akt;
                int id = neuralNet.addNeuron(Neuron.OUTPUT_NEURON);
                actuator.setMaxRange(2);
                actuator.setMinRange(-2);
                actuators.put(id, actuator);
            } catch (Exception e) {
            }
        }
       
        this.neuralNet.addLink(1, 2, -2); // TODO: Delete this line!
        this.neuralNet.addLink(2, 4, 1); // TODO: Delete this line!
        this.neuralNet.addLink(1, 3, 0.5); // TODO: Delete this line!
    }

    @Override
    public BufferedImage generateMRTImage() {
        return this.neuralNet.generateNeuroImage(400);
    }
   
    @Override
    public void decideAndReact(Wink time) {
        for (int i : this.sensors.keySet()) {
            this.neuralNet.setInput(i, this.sensors.get(i).sense(this.getMyBody().getEnvironment(), this.getMyBody()));
        }
        this.neuralNet.propagate();
       
        for (int i : this.actuators.keySet()) {
            GenericRealValueDrivenActuator<AbstractEnvironment<?>, AbstractAgent<?>> actuator = this.actuators.get(i);
            actuator.setActuatorValue(neuralNet.getNeuron(i).getNetOutput());
            actuator.actuate(this.getMyBody().getEnvironment(), this.getMyBody());
        }
    }
}
TOP

Related Classes of eas.simulation.brain.neural.NeuroBrain

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.