/*
* Copyright 1996-2006 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
package com.zaranux.client.crypto;
//import java.io.ByteArrayInputStream;
//import java.io.IOException;
//import java.io.OutputStream;
import com.zaranux.client.crypto.util.BigInteger;
import com.zaranux.client.crypto.util.BigInteger2;
import java.util.Date;
//import sun.util.calendar.CalendarDate;
//import sun.util.calendar.CalendarSystem;
/**
* DER input buffer ... this is the main abstraction in the DER library
* which actively works with the "untyped byte stream" abstraction. It
* does so with impunity, since it's not intended to be exposed to
* anyone who could violate the "typed value stream" DER model and hence
* corrupt the input stream of DER values.
*
* @author David Brownell
*/
class DerInputBuffer extends ByteArrayInputStream implements Cloneable {
DerInputBuffer(byte[] buf) { super(buf); }
DerInputBuffer(byte[] buf, int offset, int len) {
super(buf, offset, len);
}
/*
DerInputBuffer dup() {
try {
DerInputBuffer retval = (DerInputBuffer)clone();
retval.mark(Integer.MAX_VALUE);
return retval;
} catch (CloneNotSupportedException e) {
throw new IllegalArgumentException(e.toString());
}
}
*/
byte[] toByteArray() {
int len = available();
if (len <= 0)
return null;
byte[] retval = new byte[len];
System.arraycopy(buf, pos, retval, 0, len);
return retval;
}
int peek() throws IOException {
if (pos >= count)
throw new IOException("out of data");
else
return buf[pos];
}
/**
* Compares this DerInputBuffer for equality with the specified
* object.
*/
public boolean equals(Object other) {
if (other instanceof DerInputBuffer)
return equals((DerInputBuffer)other);
else
return false;
}
boolean equals(DerInputBuffer other) {
if (this == other)
return true;
int max = this.available();
if (other.available() != max)
return false;
for (int i = 0; i < max; i++) {
if (this.buf[this.pos + i] != other.buf[other.pos + i]) {
return false;
}
}
return true;
}
/**
* Returns a hashcode for this DerInputBuffer.
*
* @return a hashcode for this DerInputBuffer.
*/
public int hashCode() {
int retval = 0;
int len = available();
int p = pos;
for (int i = 0; i < len; i++)
retval += buf[p + i] * i;
return retval;
}
void truncate(int len) throws IOException {
if (len > available())
throw new IOException("insufficient data");
count = pos + len;
}
/**
* Returns the integer which takes up the specified number
* of bytes in this buffer as a BigInteger.
* @param len the number of bytes to use.
* @param makePositive whether to always return a positive value,
* irrespective of actual encoding
* @return the integer as a BigInteger.
*/
BigInteger getBigInteger(int len, boolean makePositive) throws IOException {
if (len > available())
throw new IOException("short read of integer");
if (len == 0) {
throw new IOException("Invalid encoding: zero length Int value");
}
byte[] bytes = new byte[len];
System.arraycopy(buf, pos, bytes, 0, len);
skip(len);
if (makePositive) {
// Saman
// return new BigInteger(1, bytes);
return BigInteger.getBigInteger((new BigInteger2(1, bytes)).toString());
} else {
//Saman
//return new BigInteger(bytes);
return BigInteger.getBigInteger((new BigInteger2(bytes)).toString());
}
}
/**
* Returns the integer which takes up the specified number
* of bytes in this buffer.
* @throws IOException if the result is not within the valid
* range for integer, i.e. between Integer.MIN_VALUE and
* Integer.MAX_VALUE.
* @param len the number of bytes to use.
* @return the integer.
*/
public int getInteger(int len) throws IOException {
BigInteger result = getBigInteger(len, false);
// if (result.compareTo(BigInteger.valueOf(Integer.MIN_VALUE)) < 0) {
if (result.compareTo(BigInteger.getBigInteger(Integer.toString((Integer.MIN_VALUE)))) < 0) {
throw new IOException("Integer below minimum valid value");
}
// if (result.compareTo(BigInteger.valueOf(Integer.MAX_VALUE)) > 0) {
if (result.compareTo(BigInteger.getBigInteger(Integer.toString((Integer.MAX_VALUE)))) > 0) {
throw new IOException("Integer exceeds maximum valid value");
}
// return result.intValue();
return Integer.parseInt(result.toString());
}
/**
* Returns the bit string which takes up the specified
* number of bytes in this buffer.
*/
public byte[] getBitString(int len) throws IOException {
if (len > available())
throw new IOException("short read of bit string");
if (len == 0) {
throw new IOException("Invalid encoding: zero length bit string");
}
int numOfPadBits = buf[pos];
if ((numOfPadBits < 0) || (numOfPadBits > 7)) {
throw new IOException("Invalid number of padding bits");
}
// minus the first byte which indicates the number of padding bits
byte[] retval = new byte[len - 1];
System.arraycopy(buf, pos + 1, retval, 0, len - 1);
if (numOfPadBits != 0) {
// get rid of the padding bits
retval[len - 2] &= (0xff << numOfPadBits);
}
skip(len);
return retval;
}
/**
* Returns the bit string which takes up the rest of this buffer.
*/
byte[] getBitString() throws IOException {
return getBitString(available());
}
/**
* Returns the bit string which takes up the rest of this buffer.
* The bit string need not be byte-aligned.
*/
BitArray getUnalignedBitString() throws IOException {
if (pos >= count)
return null;
/*
* Just copy the data into an aligned, padded octet buffer,
* and consume the rest of the buffer.
*/
int len = available();
int unusedBits = buf[pos] & 0xff;
if (unusedBits > 7 ) {
throw new IOException("Invalid value for unused bits: " + unusedBits);
}
byte[] bits = new byte[len - 1];
// number of valid bits
int length = (bits.length == 0) ? 0 : bits.length * 8 - unusedBits;
System.arraycopy(buf, pos + 1, bits, 0, len - 1);
BitArray bitArray = new BitArray(length, bits);
pos = count;
return bitArray;
}
/**
* Returns the UTC Time value that takes up the specified number
* of bytes in this buffer.
* @param len the number of bytes to use
*/
/*
public Date getUTCTime(int len) throws IOException {
if (len > available())
throw new IOException("short read of DER UTC Time");
if (len < 11 || len > 17)
throw new IOException("DER UTC Time length error");
return getTime(len, false);
}
*/
/**
* Returns the Generalized Time value that takes up the specified
* number of bytes in this buffer.
* @param len the number of bytes to use
*/
/*
Date getGeneralizedTime(int len) throws IOException {
if (len > available())
throw new IOException("short read of DER Generalized Time");
if (len < 13 || len > 23)
throw new IOException("DER Generalized Time length error");
return getTime(len, true);
}
*/
/**
* Private helper routine to extract time from the der value.
* @param len the number of bytes to use
* @param generalized true if Generalized Time is to be read, false
* if UTC Time is to be read.
*/
// private Date getTime(int len, boolean generalized) throws IOException {
/*
* UTC time encoded as ASCII chars:
* YYMMDDhhmmZ
* YYMMDDhhmmssZ
* YYMMDDhhmm+hhmm
* YYMMDDhhmm-hhmm
* YYMMDDhhmmss+hhmm
* YYMMDDhhmmss-hhmm
* UTC Time is broken in storing only two digits of year.
* If YY < 50, we assume 20YY;
* if YY >= 50, we assume 19YY, as per RFC 3280.
*
* Generalized time has a four-digit year and allows any
* precision specified in ISO 8601. However, for our purposes,
* we will only allow the same format as UTC time, except that
* fractional seconds (millisecond precision) are supported.
*/
/*
int year, month, day, hour, minute, second, millis;
String type = null;
if (generalized) {
type = "Generalized";
year = 1000 * Character.digit((char)buf[pos++], 10);
year += 100 * Character.digit((char)buf[pos++], 10);
year += 10 * Character.digit((char)buf[pos++], 10);
year += Character.digit((char)buf[pos++], 10);
len -= 2; // For the two extra YY
} else {
type = "UTC";
year = 10 * Character.digit((char)buf[pos++], 10);
year += Character.digit((char)buf[pos++], 10);
if (year < 50) // origin 2000
year += 2000;
else
year += 1900; // origin 1900
}
month = 10 * Character.digit((char)buf[pos++], 10);
month += Character.digit((char)buf[pos++], 10);
day = 10 * Character.digit((char)buf[pos++], 10);
day += Character.digit((char)buf[pos++], 10);
hour = 10 * Character.digit((char)buf[pos++], 10);
hour += Character.digit((char)buf[pos++], 10);
minute = 10 * Character.digit((char)buf[pos++], 10);
minute += Character.digit((char)buf[pos++], 10);
len -= 10; // YYMMDDhhmm
*/
/*
* We allow for non-encoded seconds, even though the
* IETF-PKIX specification says that the seconds should
* always be encoded even if it is zero.
*/
/*
millis = 0;
if (len > 2 && len < 12) {
second = 10 * Character.digit((char)buf[pos++], 10);
second += Character.digit((char)buf[pos++], 10);
len -= 2;
// handle fractional seconds (if present)
if (buf[pos] == '.' || buf[pos] == ',') {
len --;
pos++;
// handle upto milisecond precision only
int precision = 0;
int peek = pos;
while (buf[peek] != 'Z' &&
buf[peek] != '+' &&
buf[peek] != '-') {
peek++;
precision++;
}
switch (precision) {
case 3:
millis += 100 * Character.digit((char)buf[pos++], 10);
millis += 10 * Character.digit((char)buf[pos++], 10);
millis += Character.digit((char)buf[pos++], 10);
break;
case 2:
millis += 100 * Character.digit((char)buf[pos++], 10);
millis += 10 * Character.digit((char)buf[pos++], 10);
break;
case 1:
millis += 100 * Character.digit((char)buf[pos++], 10);
break;
default:
throw new IOException("Parse " + type +
" time, unsupported precision for seconds value");
}
len -= precision;
}
} else
second = 0;
if (month == 0 || day == 0
|| month > 12 || day > 31
|| hour >= 24 || minute >= 60 || second >= 60)
throw new IOException("Parse " + type + " time, invalid format");
*/
/*
* Generalized time can theoretically allow any precision,
* but we're not supporting that.
*/
/*
CalendarSystem gcal = CalendarSystem.getGregorianCalendar();
CalendarDate date = gcal.newCalendarDate(null); // no time zone
date.setDate(year, month, day);
date.setTimeOfDay(hour, minute, second, millis);
long time = gcal.getTime(date);
*/
/*
* Finally, "Z" or "+hhmm" or "-hhmm" ... offsets change hhmm
*/
/* if (! (len == 1 || len == 5))
throw new IOException("Parse " + type + " time, invalid offset");
int hr, min;
switch (buf[pos++]) {
case '+':
hr = 10 * Character.digit((char)buf[pos++], 10);
hr += Character.digit((char)buf[pos++], 10);
min = 10 * Character.digit((char)buf[pos++], 10);
min += Character.digit((char)buf[pos++], 10);
if (hr >= 24 || min >= 60)
throw new IOException("Parse " + type + " time, +hhmm");
time -= ((hr * 60) + min) * 60 * 1000;
break;
case '-':
hr = 10 * Character.digit((char)buf[pos++], 10);
hr += Character.digit((char)buf[pos++], 10);
min = 10 * Character.digit((char)buf[pos++], 10);
min += Character.digit((char)buf[pos++], 10);
if (hr >= 24 || min >= 60)
throw new IOException("Parse " + type + " time, -hhmm");
time += ((hr * 60) + min) * 60 * 1000;
break;
case 'Z':
break;
default:
throw new IOException("Parse " + type + " time, garbage offset");
}
return new Date(time);
}
*/
}