Package com.badlogic.gdx.utils

Source Code of com.badlogic.gdx.utils.IdentityMap$Entries

/*******************************************************************************
* Copyright 2011 See AUTHORS file.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
******************************************************************************/

package com.badlogic.gdx.utils;

import java.util.Iterator;
import java.util.NoSuchElementException;

import com.badlogic.gdx.math.MathUtils;
import com.badlogic.gdx.utils.ArrayMap.Keys;
import com.badlogic.gdx.utils.ArrayMap.Values;

/** An unordered map that uses identity comparison for keys. This implementation is a cuckoo hash map using 3 hashes, random
* walking, and a small stash for problematic keys. Null keys are not allowed. Null values are allowed. No allocation is done
* except when growing the table size. <br>
* <br>
* This map performs very fast get, containsKey, and remove (typically O(1), worst case O(log(n))). Put may be a bit slower,
* depending on hash collisions. Load factors greater than 0.91 greatly increase the chances the map will have to rehash to the
* next higher POT size.
* @author Nathan Sweet */
public class IdentityMap<K, V> {
  private static final int PRIME1 = 0xbe1f14b1;
  private static final int PRIME2 = 0xb4b82e39;
  private static final int PRIME3 = 0xced1c241;

  public int size;

  K[] keyTable;
  V[] valueTable;
  int capacity, stashSize;

  private float loadFactor;
  private int hashShift, mask, threshold;
  private int stashCapacity;
  private int pushIterations;

  private Entries entries1, entries2;
  private Values values1, values2;
  private Keys keys1, keys2;

  /** Creates a new map with an initial capacity of 32 and a load factor of 0.8. This map will hold 25 items before growing the
   * backing table. */
  public IdentityMap () {
    this(32, 0.8f);
  }

  /** Creates a new map with a load factor of 0.8. This map will hold initialCapacity * 0.8 items before growing the backing
   * table. */
  public IdentityMap (int initialCapacity) {
    this(initialCapacity, 0.8f);
  }

  /** Creates a new map with the specified initial capacity and load factor. This map will hold initialCapacity * loadFactor items
   * before growing the backing table. */
  public IdentityMap (int initialCapacity, float loadFactor) {
    if (initialCapacity < 0) throw new IllegalArgumentException("initialCapacity must be >= 0: " + initialCapacity);
    if (initialCapacity > 1 << 30) throw new IllegalArgumentException("initialCapacity is too large: " + initialCapacity);
    capacity = MathUtils.nextPowerOfTwo(initialCapacity);

    if (loadFactor <= 0) throw new IllegalArgumentException("loadFactor must be > 0: " + loadFactor);
    this.loadFactor = loadFactor;

    threshold = (int)(capacity * loadFactor);
    mask = capacity - 1;
    hashShift = 31 - Integer.numberOfTrailingZeros(capacity);
    stashCapacity = Math.max(3, (int)Math.ceil(Math.log(capacity)) * 2);
    pushIterations = Math.max(Math.min(capacity, 8), (int)Math.sqrt(capacity) / 8);

    keyTable = (K[])new Object[capacity + stashCapacity];
    valueTable = (V[])new Object[keyTable.length];
  }

  public V put (K key, V value) {
    if (key == null) throw new IllegalArgumentException("key cannot be null.");
    K[] keyTable = this.keyTable;

    // Check for existing keys.
    int hashCode = System.identityHashCode(key);
    int index1 = hashCode & mask;
    K key1 = keyTable[index1];
    if (key1 == key) {
      V oldValue = valueTable[index1];
      valueTable[index1] = value;
      return oldValue;
    }

    int index2 = hash2(hashCode);
    K key2 = keyTable[index2];
    if (key2 == key) {
      V oldValue = valueTable[index2];
      valueTable[index2] = value;
      return oldValue;
    }

    int index3 = hash3(hashCode);
    K key3 = keyTable[index3];
    if (key3 == key) {
      V oldValue = valueTable[index3];
      valueTable[index3] = value;
      return oldValue;
    }

    // Update key in the stash.
    for (int i = capacity, n = i + stashSize; i < n; i++) {
      if (keyTable[i] == key) {
        V oldValue = valueTable[i];
        valueTable[i] = value;
        return oldValue;
      }
    }

    // Check for empty buckets.
    if (key1 == null) {
      keyTable[index1] = key;
      valueTable[index1] = value;
      if (size++ >= threshold) resize(capacity << 1);
      return null;
    }

    if (key2 == null) {
      keyTable[index2] = key;
      valueTable[index2] = value;
      if (size++ >= threshold) resize(capacity << 1);
      return null;
    }

    if (key3 == null) {
      keyTable[index3] = key;
      valueTable[index3] = value;
      if (size++ >= threshold) resize(capacity << 1);
      return null;
    }

    push(key, value, index1, key1, index2, key2, index3, key3);
    return null;
  }

  /** Skips checks for existing keys. */
  private void putResize (K key, V value) {
    // Check for empty buckets.
    int hashCode = System.identityHashCode(key);
    int index1 = hashCode & mask;
    K key1 = keyTable[index1];
    if (key1 == null) {
      keyTable[index1] = key;
      valueTable[index1] = value;
      if (size++ >= threshold) resize(capacity << 1);
      return;
    }

    int index2 = hash2(hashCode);
    K key2 = keyTable[index2];
    if (key2 == null) {
      keyTable[index2] = key;
      valueTable[index2] = value;
      if (size++ >= threshold) resize(capacity << 1);
      return;
    }

    int index3 = hash3(hashCode);
    K key3 = keyTable[index3];
    if (key3 == null) {
      keyTable[index3] = key;
      valueTable[index3] = value;
      if (size++ >= threshold) resize(capacity << 1);
      return;
    }

    push(key, value, index1, key1, index2, key2, index3, key3);
  }

  private void push (K insertKey, V insertValue, int index1, K key1, int index2, K key2, int index3, K key3) {
    K[] keyTable = this.keyTable;
    V[] valueTable = this.valueTable;
    int mask = this.mask;

    // Push keys until an empty bucket is found.
    K evictedKey;
    V evictedValue;
    int i = 0, pushIterations = this.pushIterations;
    do {
      // Replace the key and value for one of the hashes.
      switch (MathUtils.random(2)) {
      case 0:
        evictedKey = key1;
        evictedValue = valueTable[index1];
        keyTable[index1] = insertKey;
        valueTable[index1] = insertValue;
        break;
      case 1:
        evictedKey = key2;
        evictedValue = valueTable[index2];
        keyTable[index2] = insertKey;
        valueTable[index2] = insertValue;
        break;
      default:
        evictedKey = key3;
        evictedValue = valueTable[index3];
        keyTable[index3] = insertKey;
        valueTable[index3] = insertValue;
        break;
      }

      // If the evicted key hashes to an empty bucket, put it there and stop.
      int hashCode = System.identityHashCode(evictedKey);
      index1 = hashCode & mask;
      key1 = keyTable[index1];
      if (key1 == null) {
        keyTable[index1] = evictedKey;
        valueTable[index1] = evictedValue;
        if (size++ >= threshold) resize(capacity << 1);
        return;
      }

      index2 = hash2(hashCode);
      key2 = keyTable[index2];
      if (key2 == null) {
        keyTable[index2] = evictedKey;
        valueTable[index2] = evictedValue;
        if (size++ >= threshold) resize(capacity << 1);
        return;
      }

      index3 = hash3(hashCode);
      key3 = keyTable[index3];
      if (key3 == null) {
        keyTable[index3] = evictedKey;
        valueTable[index3] = evictedValue;
        if (size++ >= threshold) resize(capacity << 1);
        return;
      }

      if (++i == pushIterations) break;

      insertKey = evictedKey;
      insertValue = evictedValue;
    } while (true);

    putStash(evictedKey, evictedValue);
  }

  private void putStash (K key, V value) {
    if (stashSize == stashCapacity) {
      // Too many pushes occurred and the stash is full, increase the table size.
      resize(capacity << 1);
      put(key, value);
      return;
    }
    // Store key in the stash.
    int index = capacity + stashSize;
    keyTable[index] = key;
    valueTable[index] = value;
    stashSize++;
    size++;
  }

  public V get (K key) {
    int hashCode = System.identityHashCode(key);
    int index = hashCode & mask;
    if (key != keyTable[index]) {
      index = hash2(hashCode);
      if (key != keyTable[index]) {
        index = hash3(hashCode);
        if (key != keyTable[index]) return getStash(key, null);
      }
    }
    return valueTable[index];
  }

  public V get (K key, V defaultValue) {
    int hashCode = System.identityHashCode(key);
    int index = hashCode & mask;
    if (key != keyTable[index]) {
      index = hash2(hashCode);
      if (key != keyTable[index]) {
        index = hash3(hashCode);
        if (key != keyTable[index]) return getStash(key, defaultValue);
      }
    }
    return valueTable[index];
  }

  private V getStash (K key, V defaultValue) {
    K[] keyTable = this.keyTable;
    for (int i = capacity, n = i + stashSize; i < n; i++)
      if (keyTable[i] == key) return valueTable[i];
    return defaultValue;
  }

  public V remove (K key) {
    int hashCode = System.identityHashCode(key);
    int index = hashCode & mask;
    if (keyTable[index] == key) {
      keyTable[index] = null;
      V oldValue = valueTable[index];
      valueTable[index] = null;
      size--;
      return oldValue;
    }

    index = hash2(hashCode);
    if (keyTable[index] == key) {
      keyTable[index] = null;
      V oldValue = valueTable[index];
      valueTable[index] = null;
      size--;
      return oldValue;
    }

    index = hash3(hashCode);
    if (keyTable[index] == key) {
      keyTable[index] = null;
      V oldValue = valueTable[index];
      valueTable[index] = null;
      size--;
      return oldValue;
    }

    return removeStash(key);
  }

  V removeStash (K key) {
    K[] keyTable = this.keyTable;
    for (int i = capacity, n = i + stashSize; i < n; i++) {
      if (keyTable[i] == key) {
        V oldValue = valueTable[i];
        removeStashIndex(i);
        size--;
        return oldValue;
      }
    }
    return null;
  }

  void removeStashIndex (int index) {
    // If the removed location was not last, move the last tuple to the removed location.
    stashSize--;
    int lastIndex = capacity + stashSize;
    if (index < lastIndex) {
      keyTable[index] = keyTable[lastIndex];
      valueTable[index] = valueTable[lastIndex];
      valueTable[lastIndex] = null;
    } else
      valueTable[index] = null;
  }

  /** Reduces the size of the backing arrays to be the specified capacity or less. If the capacity is already less, nothing is
   * done. If the map contains more items than the specified capacity, the next highest power of two capacity is used instead. */
  public void shrink (int maximumCapacity) {
    if (maximumCapacity < 0) throw new IllegalArgumentException("maximumCapacity must be >= 0: " + maximumCapacity);
    if (size > maximumCapacity) maximumCapacity = size;
    if (capacity <= maximumCapacity) return;
    maximumCapacity = MathUtils.nextPowerOfTwo(maximumCapacity);
    resize(maximumCapacity);
  }

  /** Clears the map and reduces the size of the backing arrays to be the specified capacity if they are larger. */
  public void clear (int maximumCapacity) {
    if (capacity <= maximumCapacity) {
      clear();
      return;
    }
    size = 0;
    resize(maximumCapacity);
  }

  public void clear () {
    K[] keyTable = this.keyTable;
    V[] valueTable = this.valueTable;
    for (int i = capacity + stashSize; i-- > 0;) {
      keyTable[i] = null;
      valueTable[i] = null;
    }
    size = 0;
    stashSize = 0;
  }

  /** Returns true if the specified value is in the map. Note this traverses the entire map and compares every value, which may be
   * an expensive operation.
   * @param identity If true, uses == to compare the specified value with values in the map. If false, uses
   *           {@link #equals(Object)}. */
  public boolean containsValue (Object value, boolean identity) {
    V[] valueTable = this.valueTable;
    if (value == null) {
      K[] keyTable = this.keyTable;
      for (int i = capacity + stashSize; i-- > 0;)
        if (keyTable[i] != null && valueTable[i] == null) return true;
    } else if (identity) {
      for (int i = capacity + stashSize; i-- > 0;)
        if (valueTable[i] == value) return true;
    } else {
      for (int i = capacity + stashSize; i-- > 0;)
        if (value.equals(valueTable[i])) return true;
    }
    return false;
  }

  public boolean containsKey (K key) {
    int hashCode = System.identityHashCode(key);
    int index = hashCode & mask;
    if (key != keyTable[index]) {
      index = hash2(hashCode);
      if (key != keyTable[index]) {
        index = hash3(hashCode);
        if (key != keyTable[index]) return containsKeyStash(key);
      }
    }
    return true;
  }

  private boolean containsKeyStash (K key) {
    K[] keyTable = this.keyTable;
    for (int i = capacity, n = i + stashSize; i < n; i++)
      if (keyTable[i] == key) return true;
    return false;
  }

  /** Returns the key for the specified value, or null if it is not in the map. Note this traverses the entire map and compares
   * every value, which may be an expensive operation.
   * @param identity If true, uses == to compare the specified value with values in the map. If false, uses
   *           {@link #equals(Object)}. */
  public K findKey (Object value, boolean identity) {
    V[] valueTable = this.valueTable;
    if (value == null) {
      K[] keyTable = this.keyTable;
      for (int i = capacity + stashSize; i-- > 0;)
        if (keyTable[i] != null && valueTable[i] == null) return keyTable[i];
    } else if (identity) {
      for (int i = capacity + stashSize; i-- > 0;)
        if (valueTable[i] == value) return keyTable[i];
    } else {
      for (int i = capacity + stashSize; i-- > 0;)
        if (value.equals(valueTable[i])) return keyTable[i];
    }
    return null;
  }

  /** Increases the size of the backing array to acommodate the specified number of additional items. Useful before adding many
   * items to avoid multiple backing array resizes. */
  public void ensureCapacity (int additionalCapacity) {
    int sizeNeeded = size + additionalCapacity;
    if (sizeNeeded >= threshold) resize(MathUtils.nextPowerOfTwo((int)(sizeNeeded / loadFactor)));
  }

  private void resize (int newSize) {
    int oldEndIndex = capacity + stashSize;

    capacity = newSize;
    threshold = (int)(newSize * loadFactor);
    mask = newSize - 1;
    hashShift = 31 - Integer.numberOfTrailingZeros(newSize);
    stashCapacity = Math.max(3, (int)Math.ceil(Math.log(newSize)) * 2);
    pushIterations = Math.max(Math.min(newSize, 8), (int)Math.sqrt(newSize) / 8);

    K[] oldKeyTable = keyTable;
    V[] oldValueTable = valueTable;

    keyTable = (K[])new Object[newSize + stashCapacity];
    valueTable = (V[])new Object[newSize + stashCapacity];

    int oldSize = size;
    size = 0;
    stashSize = 0;
    if (oldSize > 0) {
      for (int i = 0; i < oldEndIndex; i++) {
        K key = oldKeyTable[i];
        if (key != null) putResize(key, oldValueTable[i]);
      }
    }
  }

  private int hash2 (int h) {
    h *= PRIME2;
    return (h ^ h >>> hashShift) & mask;
  }

  private int hash3 (int h) {
    h *= PRIME3;
    return (h ^ h >>> hashShift) & mask;
  }

  public String toString () {
    if (size == 0) return "[]";
    StringBuilder buffer = new StringBuilder(32);
    buffer.append('[');
    K[] keyTable = this.keyTable;
    V[] valueTable = this.valueTable;
    int i = keyTable.length;
    while (i-- > 0) {
      K key = keyTable[i];
      if (key == null) continue;
      buffer.append(key);
      buffer.append('=');
      buffer.append(valueTable[i]);
      break;
    }
    while (i-- > 0) {
      K key = keyTable[i];
      if (key == null) continue;
      buffer.append(", ");
      buffer.append(key);
      buffer.append('=');
      buffer.append(valueTable[i]);
    }
    buffer.append(']');
    return buffer.toString();
  }

  /** Returns an iterator for the entries in the map. Remove is supported. Note that the same iterator instance is returned each
   * time this method is called. Use the {@link Entries} constructor for nested or multithreaded iteration. */
  public Entries<K, V> entries () {
    if (entries1 == null) {
      entries1 = new Entries(this);
      entries2 = new Entries(this);
    }
    if (!entries1.valid) {
      entries1.reset();
      entries1.valid = true;
      entries2.valid = false;
      return entries1;
    }
    entries2.reset();
    entries2.valid = true;
    entries1.valid = false;
    return entries2;
  }

  /** Returns an iterator for the values in the map. Remove is supported. Note that the same iterator instance is returned each
   * time this method is called. Use the {@link Entries} constructor for nested or multithreaded iteration. */
  public Values<V> values () {
    if (values1 == null) {
      values1 = new Values(this);
      values2 = new Values(this);
    }
    if (!values1.valid) {
      values1.reset();
      values1.valid = true;
      values2.valid = false;
      return values1;
    }
    values2.reset();
    values2.valid = true;
    values1.valid = false;
    return values2;
  }

  /** Returns an iterator for the keys in the map. Remove is supported. Note that the same iterator instance is returned each time
   * this method is called. Use the {@link Entries} constructor for nested or multithreaded iteration. */
  public Keys<K> keys () {
    if (keys1 == null) {
      keys1 = new Keys(this);
      keys2 = new Keys(this);
    }
    if (!keys1.valid) {
      keys1.reset();
      keys1.valid = true;
      keys2.valid = false;
      return keys1;
    }
    keys2.reset();
    keys2.valid = true;
    keys1.valid = false;
    return keys2;
  }

  static public class Entry<K, V> {
    public K key;
    public V value;

    public String toString () {
      return key + "=" + value;
    }
  }

  static private class MapIterator<K, V> {
    public boolean hasNext;

    final IdentityMap<K, V> map;
    int nextIndex, currentIndex;
    boolean valid = true;

    public MapIterator (IdentityMap<K, V> map) {
      this.map = map;
      reset();
    }

    public void reset () {
      currentIndex = -1;
      nextIndex = -1;
      findNextIndex();
    }

    void findNextIndex () {
      hasNext = false;
      K[] keyTable = map.keyTable;
      for (int n = map.capacity + map.stashSize; ++nextIndex < n;) {
        if (keyTable[nextIndex] != null) {
          hasNext = true;
          break;
        }
      }
    }

    public void remove () {
      if (currentIndex < 0) throw new IllegalStateException("next must be called before remove.");
      if (currentIndex >= map.capacity) {
        map.removeStashIndex(currentIndex);
      } else {
        map.keyTable[currentIndex] = null;
        map.valueTable[currentIndex] = null;
      }
      currentIndex = -1;
      map.size--;
    }
  }

  static public class Entries<K, V> extends MapIterator<K, V> implements Iterable<Entry<K, V>>, Iterator<Entry<K, V>> {
    private Entry<K, V> entry = new Entry();

    public Entries (IdentityMap<K, V> map) {
      super(map);
    }

    /** Note the same entry instance is returned each time this method is called. */
    public Entry<K, V> next () {
      if (!hasNext) throw new NoSuchElementException();
      if (!valid) throw new GdxRuntimeException("#iterator() cannot be used nested.");
      K[] keyTable = map.keyTable;
      entry.key = keyTable[nextIndex];
      entry.value = map.valueTable[nextIndex];
      currentIndex = nextIndex;
      findNextIndex();
      return entry;
    }

    public boolean hasNext () {
      return hasNext;
    }

    public Iterator<Entry<K, V>> iterator () {
      return this;
    }
  }

  static public class Values<V> extends MapIterator<Object, V> implements Iterable<V>, Iterator<V> {
    public Values (IdentityMap<?, V> map) {
      super((IdentityMap<Object, V>)map);
    }

    public boolean hasNext () {
      return hasNext;
    }

    public V next () {
      if (!hasNext) throw new NoSuchElementException();
      if (!valid) throw new GdxRuntimeException("#iterator() cannot be used nested.");
      V value = map.valueTable[nextIndex];
      currentIndex = nextIndex;
      findNextIndex();
      return value;
    }

    public Iterator<V> iterator () {
      return this;
    }

    /** Returns a new array containing the remaining values. */
    public Array<V> toArray () {
      Array array = new Array(true, map.size);
      while (hasNext)
        array.add(next());
      return array;
    }

    /** Adds the remaining values to the specified array. */
    public void toArray (Array<V> array) {
      while (hasNext)
        array.add(next());
    }
  }

  static public class Keys<K> extends MapIterator<K, Object> implements Iterable<K>, Iterator<K> {
    public Keys (IdentityMap<K, ?> map) {
      super((IdentityMap<K, Object>)map);
    }

    public boolean hasNext () {
      return hasNext;
    }

    public K next () {
      if (!hasNext) throw new NoSuchElementException();
      if (!valid) throw new GdxRuntimeException("#iterator() cannot be used nested.");
      K key = map.keyTable[nextIndex];
      currentIndex = nextIndex;
      findNextIndex();
      return key;
    }

    public Iterator<K> iterator () {
      return this;
    }

    /** Returns a new array containing the remaining keys. */
    public Array<K> toArray () {
      Array array = new Array(true, map.size);
      while (hasNext)
        array.add(next());
      return array;
    }
  }
}
TOP

Related Classes of com.badlogic.gdx.utils.IdentityMap$Entries

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.