/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.
*
* Copyright 1997-2009 Sun Microsystems, Inc. All rights reserved.
* Copyright (c) Ericsson AB, 2004-2008. All rights reserved.
*
* The contents of this file are subject to the terms of either the GNU
* General Public License Version 2 only ("GPL") or the Common Development
* and Distribution License("CDDL") (collectively, the "License"). You
* may not use this file except in compliance with the License. You can obtain
* a copy of the License at https://glassfish.dev.java.net/public/CDDL+GPL.html
* or glassfish/bootstrap/legal/LICENSE.txt. See the License for the specific
* language governing permissions and limitations under the License.
*
* When distributing the software, include this License Header Notice in each
* file and include the License file at glassfish/bootstrap/legal/LICENSE.txt.
* Sun designates this particular file as subject to the "Classpath" exception
* as provided by Sun in the GPL Version 2 section of the License file that
* accompanied this code. If applicable, add the following below the License
* Header, with the fields enclosed by brackets [] replaced by your own
* identifying information: "Portions Copyrighted [year]
* [name of copyright owner]"
*
* Contributor(s):
*
* If you wish your version of this file to be governed by only the CDDL or
* only the GPL Version 2, indicate your decision by adding "[Contributor]
* elects to include this software in this distribution under the [CDDL or GPL
* Version 2] license." If you don't indicate a single choice of license, a
* recipient has the option to distribute your version of this file under
* either the CDDL, the GPL Version 2 or to extend the choice of license to
* its licensees as provided above. However, if you add GPL Version 2 code
* and therefore, elected the GPL Version 2 license, then the option applies
* only if the new code is made subject to such option by the copyright
* holder.
*/
package com.ericsson.ssa.container;
import java.io.IOException;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.logging.Level;
import javax.servlet.ServletException;
import org.jvnet.glassfish.comms.httplayers.HttpLayer;
import org.jvnet.glassfish.comms.util.LogUtil;
import java.util.logging.Logger;
import com.ericsson.ssa.config.ConfigFactory;
import com.ericsson.ssa.config.annotations.Configuration;
import com.ericsson.ssa.container.reporter.ReporterResolver;
import com.ericsson.ssa.container.reporter.Reporter;
import com.ericsson.ssa.fm.FmEventSender;
import com.ericsson.ssa.sip.Layer;
import com.ericsson.ssa.sip.LayerHelper;
import com.ericsson.ssa.sip.SipServletRequestImpl;
import com.ericsson.ssa.sip.SipServletResponseImpl;
import com.ericsson.ssa.sip.timer.GeneralTimer;
import com.ericsson.ssa.sip.timer.GeneralTimerListener;
import com.ericsson.ssa.sip.timer.TimerServiceImpl;
import com.ericsson.util.os.OSUtil;
import com.ericsson.util.os.OSUtilFactory;
import com.sun.grizzly.tcp.Request;
import com.sun.grizzly.tcp.Response;
/**
* Protects the container from overload. <br>
* When the container detects overload (see below for details on when this is) two
* actions can be taken:
* <list>
* <li>the request is rejected with a 503 response</li>
* <br>
* Status code 503 is
* indicating that the server is currently unable to handle the request due to a
* temporary overloading or maintenance of the server.
* <li>
* the request is silently dropped
* <br>This is done in case of high load, where a 'nice' handling of the
* request would still consume too many resource.
* </li>
* </list>
* <p>
* <br>
* Overload protection applies both to memory consumption and CPU usage
* <br>
* There are different thresholds defined for CPU and Memory usage, and different
* thresholds for HTTP and SIP traffic.
* Normally there are three counters in increasing order:<br>
* <list>
* <li>A CPU and memory threshold were initial requests are rejected (<code>IrThreshold</code>, <code>MemIrThreshold</code>, <code>HttpThreshold</code>, <code>HttpMemThreshold</code>)</li>
* <li>A CPU threshold were subsequent SIP requests are rejected (<code>SrThreshold</code>) This is not applicable for memory<
* since subsequent requests are expected to cause less memory consumption It is also not applicable to HTTP, since the concept of HTTP does not know subsequent requests.</li>
* <li>A threshold were all requests are dropped (<code>MmThreshold</code>, <code>MemMmThreshold</code>).
* These are shared between sip and http. The idea here is that after this threshold is exceeded, we can not spare even the load to send a 503 error response.</li>
* </list>
* <p><br>
* The actions taken by this manager (e.g., reject with 503 or drop) are <em>only</em>
* when the actual values exceed the thresholds for a consecutive number of
* times. This value is controlled by the <code>NumberOfSamples</code>
* parameter. The measurement interval is controlled by the <code>SampleRate</code>
* parameter. So in an overload it takes at least <code>NumberOfSample *
* SampleRate</code> seconds before the overload manager kicks in.
* <p><br>
* Overload protection can be dynamically enabled and disabled using the boolean parameters:
* <code>cpuOverloadRegulationEnabled</code> and <code>memOverloadRegulationEnabled</code>.
* <br>
* It should be noted that the overload protection layer is by default not inserted into the layer stack.
* To insert the OLPM the <code>OlpInserted</code> parameter should be set to true. This specific configuration change needs a restart to have any effect.
* The reason for this parameter is that if OLPM is not needed, we can avoid the entire layer. A inserted, but disabled layer will still add some (minimal) latency to all the requests and responses.
* <p><br>
* The retry-after time inserted in the 503 response can be configured using the <code>retryAfterInterval</code> parameter (int).
* By default the one such interval value is added for every period where the load exceeded a threshold, under the expectation that the longer an overload is already in progress, the longer it is expected to last.
* There still is a way to configure a fixed retry-after, used regardless of the time the threshold has been exceeded.
* In that case you configure the parameter as a negative value. The absolute value will then be used in the 503 response.
* <p><br>
* All parameters can be changed with asadmin commands, like <code>asadmin set server-config.sip-container.property.<parameter>=<value>", e.g., <code>asadmin set server-config.sip-container.property.olpInserted=true</code>.
*
* @author ehsroha
* @author erikvandervelden
* @since 2006-mar-29
* @reviewed ehswolm 2007-mar-22
* @reviewed ehswolm 2007-jun-18
*/
public final class OverloadProtectionManager implements Layer,
GeneralTimerListener, HttpLayer {
/**
* Default threshold percentage level of the CPU for initial SIP requests.
*/
private static final int DEFAULT_IR_CPU_THRESHOLD = 70;
/**
* Default Threshold percentage level of the memory for initial SIP
* requests.
*/
private static final int DEFAULT_IR_MEM_THRESHOLD = 85;
/**
* Default threshold percentage level of the CPU for subsequent SIP
* requests.
*/
private static final int DEFAULT_SR_CPU_THRESHOLD = 90;
/**
* Default threshold percentage level of the CPU for all messages. Requests
* will be dropped above this threshold.
*/
private static final int DEFAULT_MM_CPU_THRESHOLD = 99;
/**
* Default threshold percentage level of the memory for all messages.
* Requests will be dropped above this threshold.
*/
private static final int MM_MEM_THRESHOLD = 99;
/**
* Default threshold percentage level of the CPU for HTTP requests.
*/
private static final int HTTP_CPU_THRESHOLD = 70;
/**
* Default threshold percentage level of the memory for HTTP requests.
*/
private static final int HTTP_MEM_THRESHOLD = 85;
/**
* Default sample rate in seconds.
*/
private static final int DEFAULT_SAMPLE_RATE = 2; // 2 seconds
/**
* Default number of samples the threshold is exceeded before concluding
* overload.
*/
private static final int DEFAULT_NR_OF_SAMPLES = 5; // 5 samples
private static final int DEFAULT_RETRY_AFTER_INTERVAL = 10; // 10 seconds
private static final Logger LOGGER = LogUtil.SIP_LOGGER.getLogger();
private static OverloadProtectionManager _singletonInstance = new OverloadProtectionManager();
private Layer _nextLayer = null;
private GeneralTimer _timer = null;
private boolean _cpuOverloadRegulationEnabled = false;
private boolean _memOverloadRegulationEnabled = false;
private int _sampleRate = DEFAULT_SAMPLE_RATE;
private int _numberOfSamples = DEFAULT_NR_OF_SAMPLES;
private int _initialRequestCPUThreshold = DEFAULT_IR_CPU_THRESHOLD;
private int _initialRequestMemThreshold = DEFAULT_IR_MEM_THRESHOLD;
private int _subsequentRequestCPUThreshold = DEFAULT_SR_CPU_THRESHOLD;
private int _maxMessageCPUThreshold = DEFAULT_MM_CPU_THRESHOLD;
private int _maxMessageMemThreshold = MM_MEM_THRESHOLD;
private int _httpCPUThreshold = HTTP_CPU_THRESHOLD;
private int _httpMemThreshold = HTTP_MEM_THRESHOLD;
private final OSUtil _osUtil;
private AtomicInteger _overloadDetectedInitialRequestCounter = new AtomicInteger(
0);
private AtomicInteger _memOverloadDetectedInitialRequestCounter = new AtomicInteger(
0);
private AtomicInteger _overloadDetectedSubsequentRequestCounter = new AtomicInteger(
0);
private AtomicInteger _overloadDetectedMaxLevelCounter = new AtomicInteger(
0);
private AtomicInteger _memOverloadDetectedMaxLevelCounter = new AtomicInteger(
0);
private AtomicInteger _overloadDetectedHttpCounter = new AtomicInteger(0);
private AtomicInteger _memOverloadDetectedHttpCounter = new AtomicInteger(0);
private boolean _alarmRaised = false;
private boolean _alarmRaisedMemory = false;
// private String _hostName = "";
private Reporter _reporter;
private boolean isStarted = false;
private int _retryAfterInterval = DEFAULT_RETRY_AFTER_INTERVAL;
private OverloadProtectionManager() {
String allProcess = System.getProperty("AllProcess");
// If AllProcess will be set to true default, if it not set as -D
// attribute.
String allProcessFlag = "true"; // non-null means set which is default
if ("false".equals(allProcess)) {
allProcessFlag = null; // unset the flag
}
if (LOGGER.isLoggable(Level.FINEST)) {
LOGGER.log(Level.FINEST, "logging cpu for all processes? "
+ ((allProcess == null) ? "false" : "true"));
}
_osUtil = OSUtilFactory.getOSUtil(allProcessFlag);
if (_osUtil == null) {
LOGGER.log(Level.WARNING, OverloadProtectionManager.class.getCanonicalName()
+ ".no_os_utils");
// lets ensure that this class is not used since no util class was
// found.
_cpuOverloadRegulationEnabled = false;
_memOverloadRegulationEnabled = false;
}
}
/**
* Note! The configuration are in preference tree under tm. A list of the
* parameter:<br> - CpuOverloadRegulation - MemOverloadRegulation -
* SampleRate - NumberOfSamples - HttpThreshold - MemHttpThreshold -
* IrThreshold - MemIrThreshold - SrThreshold - MmThreshold - MemMmThreshold
* <br>
* <br>
* -DAllProcess = false: Monitoring is sun specific monitoring for both
* linux and windows, which monitors the running jvm total cpu busy
* activity. <br>
* -DAllProcess=true, overrides the sunspecific behaviour and is only valid
* on Linux. It enables accumulated cpu busy monitoring for all process.
* <br>
* The default behaviour is equivalent to -DAllprocess = true
* @return the singleton
*/
public static OverloadProtectionManager getInstance() {
if (shouldInsertOLPM()) {
return _singletonInstance;
} else {
return null;
}
}
private static boolean shouldInsertOLPM() {
return "true".equals(ConfigFactory.getConfig().get("/SipContainer", "olpInserted"));
}
/**
* @see getInstance
* @return the singleton
*/
public static HttpLayer getHttpLayerInstance() {
if (shouldInsertOLPM()) {
return _singletonInstance;
} else {
return null;
}
}
/**
* Initializes this Singleton. It will start to monitor the CPU load in case
* of raising an alarm.
*/
public void start() {
if (LOGGER.isLoggable(Level.FINE)) {
LOGGER.log(Level.FINE,
"Starting OverloadProtection for CPU and/or Memory");
}
startSampleTimer();
isStarted = true;
}
/**
* stop the layer.
*/
public void stop() {
// XXX remove method when configuration activation is part of layer
// handling
isStarted = false;
ConfigFactory.instance().deactivateConfiguration(this);
if (LOGGER.isLoggable(Level.FINE)) {
LOGGER.log(Level.FINE,
"Stopped OverloadProtection for CPU and/or Memory");
}
}
/**
* start the timer if needed
*/
private synchronized void startSampleTimer() {
if (isEnabled() && (_timer == null)){
// Overload timer not started yet.
doStartSampleTimer();
}
}
private synchronized void doStartSampleTimer() {
try {
if (LOGGER.isLoggable(Level.FINEST)) {
LOGGER.log(Level.FINEST,
"Starting timer for OverloadProtection functionality, SampleRate: "
+ _sampleRate + " * 1000");
}
_timer = TimerServiceImpl.getInstance().createTimer(this,
_sampleRate * 1000, _sampleRate * 1000, true, null);
} catch (Exception e) {
LOGGER.log(Level.SEVERE, OverloadProtectionManager.class.getCanonicalName()
+ ".could_not_start_timer");
LOGGER.log(Level.SEVERE, e.getMessage(), e);
}
}
/**
* ensure that the timer is stopped
*/
private synchronized void stopSampleTimer() {
if (_timer != null) {
if (LOGGER.isLoggable(Level.FINEST)) {
LOGGER.log(Level.FINEST,
"Stopping timer for OverloadProtection functionality");
}
_timer.cancel();
_timer = null;
}
}
private boolean isEnabled() {
return (_osUtil != null)
&& (_cpuOverloadRegulationEnabled || _memOverloadRegulationEnabled);
}
private boolean isOverloadDetectedInitialRequest() {
return _overloadDetectedInitialRequestCounter.get() >= _numberOfSamples;
}
private boolean isMemOverloadDetectedInitialRequest() {
return _memOverloadDetectedInitialRequestCounter.get() >= _numberOfSamples;
}
private boolean isOverloadDetectedSubsequentRequest() {
return _overloadDetectedSubsequentRequestCounter.get() >= _numberOfSamples;
}
private boolean isOverloadDetectedHttpRequest() {
return _overloadDetectedHttpCounter.get() >= _numberOfSamples;
}
private boolean isMemOverloadDetectedHttpRequest() {
return _memOverloadDetectedHttpCounter.get() >= _numberOfSamples;
}
private boolean isOverloadDetectedMaxLevel() {
return _overloadDetectedMaxLevelCounter.get() >= _numberOfSamples;
}
private boolean isMemOverloadDetectedMaxLevel() {
return _memOverloadDetectedMaxLevelCounter.get() >= _numberOfSamples;
}
// EVDV replaced by req.isInitial()
// private boolean isInitial(SipServletMessageImpl m)
// {
// try
// {
// return m.getAddressHeader(Header.TO).getParameter(AddressImpl.TAG_PARAM)
// == null;
// }
// catch(ServletParseException e)
// {
// return true;
// }
// }
/**
* check on threshold violoations and:
* @see com.ericsson.ssa.sip.Layer#next(com.ericsson.ssa.sip.SipServletRequestImpl)
*/
public void next(final SipServletRequestImpl req) {
if (isEnabled()) {
if (LOGGER.isLoggable(Level.FINEST)) {
LOGGER.log(Level.FINEST, "Method next (req) counters "
+ printCounters());
}
if (!isOverloadDetectedMaxLevel()
&& !isMemOverloadDetectedMaxLevel()) {
boolean initial = req.isInitial();
if (initial) {
if (isOverloadDetectedInitialRequest()
|| isMemOverloadDetectedInitialRequest()) {
SipServletResponseImpl resp = req
.createTerminatingResponse(503);
resp.setHeader("Retry-After", calculateRetryAfter(_overloadDetectedInitialRequestCounter.get(), _memOverloadDetectedInitialRequestCounter.get()));
if (LOGGER.isLoggable(Level.FINE)) {
LOGGER
.log(Level.FINE,
"Method next (req): rejecting initial request with 503");
}
// TR HH52078
if (resp == null) {
return;
}
// Remote has been set when creating the terminating
// response
resp.popDispatcher().dispatch(resp);
incrEasOverloadRejectedSipRequests();
return;
}
} else {
// lets handle ACK as an initial request, it's a risk
// otherwise
// that INVITE is stopped but ACK is sent to next layer...
if (req.getMethod().equals("ACK")) {
if (isOverloadDetectedInitialRequest()
|| isMemOverloadDetectedInitialRequest()) {
// drop ACK
if (LOGGER.isLoggable(Level.FINE)) {
LOGGER.log(Level.FINE,
"Method next (req): dropping ACK ");
}
incrEasOverloadRejectedSipRequests();
return;
}
} else if (isOverloadDetectedSubsequentRequest()) {
// TR HH52078
SipServletResponseImpl resp = req
.createTerminatingResponse(503);
resp.setHeader("Retry-After", calculateRetryAfter(_overloadDetectedSubsequentRequestCounter.get(),0));
if (resp == null) {
return;
}
if (LOGGER.isLoggable(Level.FINE)) {
LOGGER
.log(Level.FINE,
"Method next (req): rejecting subsequent request with 503");
}
resp.popDispatcher().dispatch(resp);
incrEasOverloadRejectedSipRequests();
return;
}
}
} else {
if (LOGGER.isLoggable(Level.FINE)) {
LOGGER
.log(Level.FINE,
"Max load, drop all sip requests");
}
incrEasOverloadRejectedSipRequests();
return;
}
}
LayerHelper.next(req, this, _nextLayer);
}
public void next(final SipServletResponseImpl resp) {
if (isEnabled() && (isOverloadDetectedMaxLevel() || isMemOverloadDetectedMaxLevel())) {
if (LOGGER.isLoggable(Level.FINEST)) {
LOGGER.log(Level.FINEST, "Method next (resp) counters "
+ printCounters());
}
if (LOGGER.isLoggable(Level.FINE)) {
LOGGER
.log(
Level.FINE,
"Method next (resp):"
+ "Max load, drop all sip responses");
}
return;
}
LayerHelper.next(resp, this, _nextLayer);
}
public void registerNext(final Layer layer) {
_nextLayer = layer;
}
public void dispatch(final SipServletRequestImpl req) {
req.popDispatcher().dispatch(req);
}
public void dispatch(final SipServletResponseImpl resp) {
resp.peekDispatcher().dispatch(resp);
}
/**
* Calculates threshold for memory or cpu usage If the given threshold has
* been exceeded, a counter is incremented.
*
*/
private void calculateThreshold(final int usage,
final AtomicInteger levelCounter, final Integer threshold,
final String typeOfThreshold) {
if (LOGGER.isLoggable(Level.FINEST)) {
LOGGER.log(Level.FINEST, "calculateThreshold: Type="
+ typeOfThreshold + " Usage(%)=" + usage + " levelCounter="
+ levelCounter.toString() + " threshold="
+ threshold.toString());
}
if (usage > threshold) {
levelCounter.incrementAndGet();
} else {
levelCounter.set(0);
}
}
/**
* With the set sample rate the overload levels will be re-calculated
* periodically and a flag will be raised per level if the levels are higher
* than the protection levels that are set.
*/
public void timeout(final GeneralTimer timer) {
if (_cpuOverloadRegulationEnabled) {
int busy = cpuBusy(); // fetch cpu level from os...
if (LOGGER.isLoggable(Level.FINEST)) {
LOGGER.log(Level.FINEST, "timeout - cpu: " + busy);
}
// calculate thresholds...
calculateThreshold(busy, _overloadDetectedInitialRequestCounter,
_initialRequestCPUThreshold, "CPU_SIP_IR");
calculateThreshold(busy, _overloadDetectedSubsequentRequestCounter,
_subsequentRequestCPUThreshold, "CPU_SIP_SR");
calculateThreshold(busy, _overloadDetectedHttpCounter,
_httpCPUThreshold, "CPU_HTTP");
calculateThreshold(busy, _overloadDetectedMaxLevelCounter,
_maxMessageCPUThreshold, "CPU_MAX");
handleCpuAlarm(busy);
}
if (_memOverloadRegulationEnabled) {
int memoryusage = memUsage(); // fetch memory
// usage...
if (LOGGER.isLoggable(Level.FINEST)) {
LOGGER.log(Level.FINEST, "timeout - memory: " + memoryusage);
}
// calculate thresholds...
calculateThreshold(memoryusage,
_memOverloadDetectedInitialRequestCounter,
_initialRequestMemThreshold, "MEM_SIP_IR");
calculateThreshold(memoryusage, _memOverloadDetectedHttpCounter,
_httpMemThreshold, "MEM_HTTP");
calculateThreshold(memoryusage,
_memOverloadDetectedMaxLevelCounter,
_maxMessageMemThreshold, "MEM_MAX");
handleMemoryAlarm(memoryusage);
}
}
private void handleMemoryAlarm(int anMemoryusage) {
// Check if any threshold has been exceeded, if so raise alarm, if not
// (and alarm is raised), cease it.
if (isMemOverloadDetectedInitialRequest()
|| isMemOverloadDetectedHttpRequest()
|| isMemOverloadDetectedMaxLevel()) {
raiseMemoryAlarm(anMemoryusage);
} else { // No threshold exceeded
clearMemoryAlarm();
}
}
private void clearMemoryAlarm() {
if (_alarmRaisedMemory) { // An alarm has been raised, cease it.
if (LOGGER.isLoggable(Level.INFO)) {
LOGGER
.info("The memory overload limit is below the threshold, will clear an alarm.");
}
FmEventSender.clearAlarmMemoryLoadLimitExceeded();
_alarmRaisedMemory = false;
}
}
private void raiseMemoryAlarm(int anMemoryusage) {
if (!_alarmRaisedMemory) {
try {
if (LOGGER.isLoggable(Level.INFO)) {
LOGGER
.info("The Memory overload limit is exceeded, will raise an alarm.");
}
} catch (Throwable e) {
System.err.println("WHAAAAAAAAA");
e.printStackTrace();
}
_alarmRaisedMemory = true;
// Raise the alarm.
// HH34467 remove reason from raiseAlarmCpuLoadLimitExceeded
FmEventSender.raiseAlarmMemoryLoadLimitExceeded("measured usage: " + anMemoryusage);
}
}
/**
* Raises the alarm(s) if a threshold has been exceeded. Ceases the alarm(s)
* if level falls below the thresholds
* @param anBusy
*
*/
private void handleCpuAlarm(int anBusy) {
// Check if any threshold has been exceeded, if so raise alarm, if not
// (and alarm is raised), cease it.
if (isOverloadDetectedInitialRequest()
|| isOverloadDetectedSubsequentRequest()
|| isOverloadDetectedHttpRequest()
|| isOverloadDetectedMaxLevel()) {
raiseCpuAlarm(anBusy);
} else { // No threshold exceeded
clearCpuAlarm();
}
}
private void clearCpuAlarm() {
if (_alarmRaised) { // An alarm has been raised, cease it.
if (LOGGER.isLoggable(Level.INFO)) {
LOGGER
.info("The CPU overload limit is below the threshold, will clear an alarm.");
}
FmEventSender.clearAlarmCpuLoadLimitExceeded();
_alarmRaised = false;
}
}
private void raiseCpuAlarm(int anBusy) {
if (!_alarmRaised) {
if (LOGGER.isLoggable(Level.INFO)) {
LOGGER
.info("The CPU overload limit is exceeded, will raise an alarm.");
}
_alarmRaised = true;
// Raise the alarm.
// HH34467 remove reason from raiseAlarmCpuLoadLimitExceeded
FmEventSender.raiseAlarmCpuLoadLimitExceeded("measured load: " + anBusy);
}
}
private int cpuBusy() {
return (_osUtil != null) ? _osUtil.cpuBusy() : 0;
}
private int memUsage() {
return (_osUtil != null) ? _osUtil.memUsage() : 0;
}
void incrEasOverloadRejectedSipRequests() {
OverloadManager.getInstance().incrEasOverloadRejectedSipRequests();
}
void incrEasOverloadRejectedHttpRequests() {
OverloadManager.getInstance().incrEasOverloadRejectedHttpRequests();
}
/**
* Returns the threshold of the cpu for initial SIP requests (range 0-100%). A
* 503 response will be returned when this level is reached. Default
* IR_CPU_THRESHOLD.
* @return the threshold of the cpu for initial requests.
*/
public Integer getIrThreshold() {
if (LOGGER.isLoggable(Level.FINE)) {
LOGGER.log(Level.FINE, "IrThreshold: "
+ _initialRequestCPUThreshold);
}
return _initialRequestCPUThreshold;
}
/**
* The retry-after value returned in a 503 response is this value times
* the number of consecutive periods the threshold was exceeded after the
* alarm was first raised. Default
* DEFAULT_RETRY_AFTER_INTERVAL
* <br>
* When a negative value is returned, this absolute value is used in all 503
* responses, regardless of the number periods the threshold was exceeded.
* @return the retry-after interval used as base
*/
public Integer getRetryAfterInterval() {
if (LOGGER.isLoggable(Level.FINE)) {
LOGGER.log(Level.FINE, "Retry-After interval: "
+ _retryAfterInterval);
}
return _retryAfterInterval;
}
/**
* The retry-after value returned in a 503 response is this value times
* the number of consecutive periods the threshold was exceeded after the
* alarm was first raised. Default
* DEFAULT_RETRY_AFTER_INTERVAL
* <br>
* When a negative value is returned, this absolute value is used in all 503
* responses, regardless of the number periods the threshold was exceeded.
* @param retryAfterInterval the retry-after interval used as base
*/
@Configuration(key="RetryAfterInterval", node = "/SipContainer")
public void setRetryAfterInterval(final Integer retryAfterInterval) {
if (LOGGER.isLoggable(Level.INFO)) {
LOGGER.log(Level.INFO, "Retry-After interval value will be set to "
+ retryAfterInterval.intValue());
}
_retryAfterInterval = retryAfterInterval;
}
/**
* Sets the threshold of the cpu for initial requests (range 0-100%). A 503
* response will be returned when this level is reached. Default
* IR_CPU_THRESHOLD.
* @param threshold
* The threshold to set.
*/
@Configuration(key = "IrThreshold", node = "/SipContainer")
public void setIrThreshold(final Integer threshold) {
if (LOGGER.isLoggable(Level.INFO)) {
LOGGER.log(Level.INFO, "IrThreshold value will be set to "
+ threshold.intValue());
}
// default IR_CPU_THRESHOLD, answer 503
if ((threshold >= 0) && (threshold <= 100)) {
_initialRequestCPUThreshold = threshold;
} else {
LOGGER.log(Level.WARNING, OverloadProtectionManager.class.getCanonicalName()
+ ".illegal_param_value",
new Object[] { threshold.intValue(), "IrThreshold" });
}
}
/**
* Returns the threshold of the memory for initial requests (range 0-100%).
* A 503 response will be returned when this level is reached. Default
* IR_MEM_THRESHOLD.
* @return the threshold of the cpu for initial requests.
*/
public Integer getMemIrThreshold() {
if (LOGGER.isLoggable(Level.FINE)) {
LOGGER.log(Level.FINE, "MemIrThreshold: "
+ _initialRequestMemThreshold);
}
return _initialRequestMemThreshold;
}
/**
* Sets the threshold of the memory for initial requests (range 0-100%). A
* 503 response will be returned when this level is reached. Default
* IR_MEM_THRESHOLD.
* @param threshold
* The threshold to set.
*/
@Configuration(key = "MemIrThreshold", node = "/SipContainer")
public void setMemIrThreshold(final Integer threshold) {
if (LOGGER.isLoggable(Level.INFO)) {
LOGGER.log(Level.INFO, "MemIrThreshold value will be set to "
+ threshold.intValue());
}
// default IR_MEM_THRESHOLD, answer 503
if ((threshold >= 0) && (threshold <= 100)) {
_initialRequestMemThreshold = threshold;
} else {
LOGGER.log(Level.WARNING, OverloadProtectionManager.class.getCanonicalName()
+ ".illegal_param_value",
new Object[] { threshold.intValue(), "MemIrThreshold" });
}
}
/**
* Returns the threshold of the cpu for subsequent requests (range 0-100%).
* A 503 response will be returned when this level is reached. Default
* SR_CPU_THRESHOLD.
* @return the threshold of the cpu for subsequent requests.
*/
public Integer getSrThreshold() {
if (LOGGER.isLoggable(Level.FINE)) {
LOGGER.log(Level.FINE, "SrThreshold: "
+ _subsequentRequestCPUThreshold);
}
return _subsequentRequestCPUThreshold;
}
/**
* Sets the threshold of the cpu for subsequent requests (range 0-100%). A
* 503 response will be returned when this level is reached. Default
* SR_CPU_THRESHOLD.
* @param threshold
* The threshold to set.
*/
@Configuration(key = "SrThreshold", node = "/SipContainer")
public void setSrThreshold(final Integer threshold) {
if (LOGGER.isLoggable(Level.INFO)) {
LOGGER.log(Level.INFO, "SrThreshold value will be set to "
+ threshold.intValue());
}
// default HTTP_CPU_THRESHOLD, answer 503
if ((threshold >= 0) && (threshold <= 100)) {
_subsequentRequestCPUThreshold = threshold;
} else {
LOGGER.log(Level.WARNING, OverloadProtectionManager.class.getCanonicalName()
+ ".illegal_param_value",
new Object[] { threshold.intValue(), "SrThreshold" });
}
}
/**
* Returns the threshold of the cpu for http requests (range 0-100%). A 503
* response will be returned when this level is reached. Default
* HTTP_CPU_THRESHOLD.
* @return the threshold of the cpu for subsequent requests.
*/
public Integer getHttpThreshold() {
if (LOGGER.isLoggable(Level.FINE)) {
LOGGER.log(Level.FINE, "HttpThreshold: " + _httpCPUThreshold);
}
return _httpCPUThreshold;
}
/**
* Sets the threshold of the cpu for http requests (range 0-100%). A 503
* response will be returned when this level is reached. Default
* HTTP_CPU_THRESHOLD.
* @param threshold
* The threshold to set.
*/
@Configuration(key = "HttpThreshold", node = "/SipContainer")
public void setHttpThreshold(final Integer threshold) {
if (LOGGER.isLoggable(Level.INFO)) {
LOGGER.log(Level.INFO, "HttpThreshold value will be set to "
+ threshold.intValue());
}
// default SR_CPU_THRESHOLD, answer 503
if ((threshold >= 0) && (threshold <= 100)) {
_httpCPUThreshold = threshold;
} else {
LOGGER.log(Level.WARNING, OverloadProtectionManager.class.getCanonicalName()
+ ".illegal_param_value",
new Object[] { threshold.intValue(), "HttpThreshold" });
}
}
/**
* Returns the threshold of the memory for http requests (range 0-100%). A
* 503 response will be returned when this level is reached. Default
* HTTP_MEM_THRESHOLD.
* @return the threshold of the memory for subsequent requests.
*/
public Integer getMemHttpThreshold() {
if (LOGGER.isLoggable(Level.FINE)) {
LOGGER.log(Level.FINE, "MemHttpThreshold: " + _httpMemThreshold);
}
return _httpMemThreshold;
}
/**
* Sets the threshold of the memory for http requests (range 0-100%). A 503
* response will be returned when this level is reached. Default
* HTTP_MEM_THRESHOLD.
* @param threshold
* The threshold to set.
*/
@Configuration(key = "MemHttpThreshold", node = "/SipContainer")
public void setMemHttpThreshold(final Integer threshold) {
if (LOGGER.isLoggable(Level.INFO)) {
LOGGER.log(Level.INFO, "MemHttpThreshold value will be set to "
+ threshold.intValue());
}
// default HTTP_MEM_THRESHOLD, answer 503
if ((threshold >= 0) && (threshold <= 100)) {
_httpMemThreshold = threshold;
} else {
LOGGER.log(Level.WARNING, OverloadProtectionManager.class.getCanonicalName()
+ ".illegal_param_value",
new Object[] { threshold.intValue(), "MemHttpThreshold" });
}
}
/**
* Returns the threshold of the cpu for maximum load possible for handling
* messages (range 0-100%). All messages will be dropped when this level is
* reached. Default MM_CPU_THRESHOLD.
* @return the threshold of the cpu for max messages
*/
public Integer getMmThreshold() {
if (LOGGER.isLoggable(Level.FINE)) {
LOGGER
.log(Level.FINE, "MmThreshold: "
+ _maxMessageCPUThreshold);
}
return _maxMessageCPUThreshold;
}
/**
* Sets the threshold of the cpu for max load possible for handling messages
* (range 0-100%). All messages will be dropped when this level is reached.
* Default MM_CPU_THRESHOLD.
* @param threshold
* The threshold to set.
*/
@Configuration(key = "MmThreshold", node = "/SipContainer")
public void setMmThreshold(final Integer threshold) {
if (LOGGER.isLoggable(Level.INFO)) {
LOGGER.log(Level.INFO, "MmThreshold value will be set to "
+ threshold.intValue());
}
// default MM_CPU_THRESHOLD, drop all messages
if ((threshold >= 0) && (threshold <= 100)) {
_maxMessageCPUThreshold = threshold;
} else {
LOGGER.log(Level.WARNING, OverloadProtectionManager.class.getCanonicalName()
+ ".illegal_param_value",
new Object[] { threshold.intValue(), "MmThreshold" });
}
}
/**
* Returns the threshold of the memory for maximum load possible for
* handling messages (range 0-100%). All messages will be dropped when this
* level is reached. Default MM_MEM_THRESHOLD.
* @return the threshold of the cpu for max messages
*/
public Integer getMemMmThreshold() {
if (LOGGER.isLoggable(Level.FINE)) {
LOGGER.log(Level.FINE, "MemMmThreshold: "
+ _maxMessageMemThreshold);
}
return _maxMessageMemThreshold;
}
/**
* Sets the threshold of the memory for max load possible for handling
* messages (range 0-100%). All messages will be dropped when this level is
* reached. Default MM_MEM_THRESHOLD.
* @param threshold
* The threshold to set.
*/
@Configuration(key = "MemMmThreshold", node = "/SipContainer")
public void setMemMmThreshold(final Integer threshold) {
if (LOGGER.isLoggable(Level.INFO)) {
LOGGER.log(Level.INFO, "MemMmThreshold value will be set to "
+ threshold.intValue());
}
// default MM_MEM_THRESHOLD, drop all messages
if ((threshold >= 0) && (threshold <= 100)) {
_maxMessageMemThreshold = threshold;
} else {
LOGGER.log(Level.WARNING, OverloadProtectionManager.class.getCanonicalName()
+ ".illegal_param_value",
new Object[] { threshold.intValue(), "MemMmThreshold" });
}
}
/**
* Returns whether overload protection is used. If true overload protection
* is turned on.
* @return whether overload protection is turned on.
*/
public Boolean getCpuOverloadRegulation() {
if (LOGGER.isLoggable(Level.FINE)) {
LOGGER.log(Level.FINE, "CpuOverloadRegulation: "
+ _cpuOverloadRegulationEnabled);
}
return _cpuOverloadRegulationEnabled;
}
/**
* Enable/disable the overload Regulation.
* @param enabled
* if true over load protection is used
*/
@Configuration(key = "CpuOverloadRegulation", node = "/SipContainer")
synchronized public void setCpuOverloadRegulation(final Boolean enabled) {
_cpuOverloadRegulationEnabled = enabled.booleanValue();
if (LOGGER.isLoggable(Level.INFO)) {
LOGGER.log(Level.INFO, "CpuOverloadRegulation will be changed to "
+ _cpuOverloadRegulationEnabled);
}
if (isStarted) {
if (!isEnabled()) {
stopSampleTimer();
}
if (!_cpuOverloadRegulationEnabled) {
resetCpuCounters();
clearCpuAlarm();
}
startSampleTimer();
}
}
private void resetCpuCounters() {
_overloadDetectedInitialRequestCounter.set(0);
_overloadDetectedSubsequentRequestCounter.set(0);
_overloadDetectedHttpCounter.set(0);
_overloadDetectedMaxLevelCounter.set(0);
}
/**
* Returns the sample rate of updating the overload protection levels.
* @return the sample rate of updating the overload protection levels.
*/
public Integer getSampleRate() {
if (LOGGER.isLoggable(Level.FINE)) {
LOGGER.log(Level.FINE, "SampleRate: " + _sampleRate);
}
return _sampleRate;
}
/**
* Sets the sample rate of updating the overload protection levels. Must be
* a positive value.
* @param rate
*/
@Configuration(key = "SampleRate", node = "/SipContainer")
public void setSampleRate(final Integer rate) {
if (LOGGER.isLoggable(Level.INFO)) {
LOGGER.log(Level.INFO, "SampleRate value will be set to "
+ rate.intValue());
}
if (rate > 0) {
_sampleRate = rate;
// take into account at next timeout.
// XXX
// alt: cancel the current timer and start a new one.
}
}
/**
* Returns the number of consequence samples that is needed before overload
* is raised.
* @return the number of consequence samples that is needed before overload
* is raised.
*/
public Integer getNumberOfSamples() {
if (LOGGER.isLoggable(Level.FINE)) {
LOGGER.log(Level.FINE, "NumberOfSamples: " + _numberOfSamples);
}
return _numberOfSamples;
}
/**
* Sets the number of consequence samples that is needed before overload is
* raised. The sample rate could minimum be set to 2.
* @param rate
* the sample rate
*/
@Configuration(key = "NumberOfSamples", node = "/SipContainer")
public void setNumberOfSamples(final Integer rate) {
if (LOGGER.isLoggable(Level.INFO)) {
LOGGER.log(Level.INFO, "NumberOfSamples value will be set to "
+ rate.intValue());
}
_numberOfSamples = (rate < 2) ? 2 : rate;
}
/**
* Returns whether overload protection for memory is used. If true overload
* protection for memory is turned on.
* @return whether overload protection form memory is turned on.
*/
public Boolean getMemOverloadRegulation() {
if (LOGGER.isLoggable(Level.FINE)) {
LOGGER.log(Level.FINE, "MemOverloadRegulation: "
+ _memOverloadRegulationEnabled);
}
return _memOverloadRegulationEnabled;
}
/**
* Enable/disable the overload protection for memory.
* @param enabled
* if true over load protection for memory is used
*/
@Configuration(key = "MemOverloadRegulation", node = "/SipContainer")
synchronized public void setMemOverloadRegulation(final Boolean enabled) {
_memOverloadRegulationEnabled = enabled.booleanValue();
if (LOGGER.isLoggable(Level.INFO)) {
LOGGER.log(Level.INFO, "MemOverloadRegulation will be changed to "
+ _memOverloadRegulationEnabled);
}
if (isStarted) {
if (!isEnabled()) {
stopSampleTimer(); // both CPU and Mem OLP are not enabled
}
if (!_memOverloadRegulationEnabled) {
resetMemCounters();
clearMemoryAlarm();
}
startSampleTimer(); // will only start if mem and CPU OLP enabled
}
}
private void resetMemCounters() {
_memOverloadDetectedHttpCounter.set(0);
_memOverloadDetectedInitialRequestCounter.set(0);
_memOverloadDetectedMaxLevelCounter.set(0);
}
/**
* @return info
*/
public String getInfo() {
return "Overload Regulation for SIP&HTTP";
}
/* (non-Javadoc)
* @see org.jvnet.glassfish.comms.httplayers.HttpLayer#invoke(com.sun.grizzly.tcp.Request, com.sun.grizzly.tcp.Response)
*/
public boolean invoke(final Request request, final Response response) {
if (isEnabled()) {
if (LOGGER.isLoggable(Level.FINEST)) {
LOGGER.log(Level.FINEST,
"Method invoke: _cpuOverloadRegulationEnabled=true"
+ printCounters());
}
if (isOverloadDetectedMaxLevel()
|| isMemOverloadDetectedMaxLevel()) {
if (LOGGER.isLoggable(Level.FINE)) {
LOGGER.log(Level.FINE,
"Method invoke: Max load, drop all http messages");
}
// XXX check if this is OK and whether we should increase
// rejected
// the old code did not count dropped as rejected.
// but this is consistent with the SIP path
response.setStatus(503);
response.addHeader("Retry-after", calculateRetryAfter(_overloadDetectedMaxLevelCounter.get(), _memOverloadDetectedMaxLevelCounter.get()));
incrEasOverloadRejectedHttpRequests();
return false;
} else if (isOverloadDetectedHttpRequest()
|| isMemOverloadDetectedHttpRequest()) {
if (LOGGER.isLoggable(Level.FINE)) {
LOGGER
.log(Level.FINE,
"Method invoke: is(Mem)OverloadDetectedHttpRequest, return 503");
}
response.setStatus(503);
response.addHeader("Retry-after", calculateRetryAfter(_overloadDetectedHttpCounter.get(), _memOverloadDetectedHttpCounter.get()));
incrEasOverloadRejectedHttpRequests();
return false;
}
}
return true;
}
private String calculateRetryAfter(int counter1, int counter2) {
// special interpretation of negative retryAfter; these do not depend
// on the number of intervals that the threshold was exceeded
// just return the value
if (_retryAfterInterval <= 0) {
return String.valueOf(-_retryAfterInterval);
}
// if retryAfter > 0 then we take the number of exceeded intervals into account
int max = (counter1>counter2?counter1:counter2);
if (max >= _numberOfSamples) {
return String.valueOf((max+1-_numberOfSamples)*_retryAfterInterval);
}
// fallen below threshold in the mean time; retry immediately
return "0";
}
public void postInvoke(final Request request, final Response response)
throws IOException, ServletException {
//
}
public Reporter getReporter() {
return _reporter;
}
public void setReporters(final String reporters) {
_reporter = ReporterResolver.getInstance().getReporter(reporters);
}
private StringBuffer printCounters() {
StringBuffer result = new StringBuffer();
result.append("\nCPU").append("\nMAX:\t").append(
_overloadDetectedMaxLevelCounter).append("\nHTTP:\t").append(
_overloadDetectedHttpCounter).append("\nSIP Initial:\t")
.append(_overloadDetectedInitialRequestCounter).append(
"\nSIP subsequent:\t").append(
_overloadDetectedSubsequentRequestCounter).append(
"\nMEMORY").append("\nMAX:\t").append(
_memOverloadDetectedMaxLevelCounter)
.append("\nHTTP:\t").append(_memOverloadDetectedHttpCounter)
.append("\nSIP Initial:\t").append(
_memOverloadDetectedInitialRequestCounter);
return result;
}
public void onDestroy(){
//TBD
}
}