Package org.neuroph.nnet

Source Code of org.neuroph.nnet.SupervisedHebbianNetwork

/**
* Copyright 2010 Neuroph Project http://neuroph.sourceforge.net
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.neuroph.nnet;

import org.neuroph.core.Layer;
import org.neuroph.core.NeuralNetwork;
import org.neuroph.nnet.learning.SupervisedHebbianLearning;
import org.neuroph.util.ConnectionFactory;
import org.neuroph.util.LayerFactory;
import org.neuroph.util.NeuralNetworkFactory;
import org.neuroph.util.NeuralNetworkType;
import org.neuroph.util.NeuronProperties;
import org.neuroph.util.TransferFunctionType;

/**
* Hebbian neural network with supervised Hebbian learning algorithm.
* In order to work this network needs aditional bias neuron in input layer which is allways 1 in training set!
*
* @author Zoran Sevarac <sevarac@gmail.com>
*/
public class SupervisedHebbianNetwork extends NeuralNetwork {

  /**
   * The class fingerprint that is set to indicate serialization
   * compatibility with a previous version of the class.
   */
  private static final long serialVersionUID = 2L;

  /**
   * Creates an instance of Supervised Hebbian Network net with specified
   * number neurons in input and output layer
   *
   * @param inputNeuronsNum
   *            number of neurons in input layer
   * @param outputNeuronsNum
   *            number of neurons in output layer
   */
  public SupervisedHebbianNetwork(int inputNeuronsNum, int outputNeuronsNum) {
    this.createNetwork(inputNeuronsNum, outputNeuronsNum,
      TransferFunctionType.RAMP);
  }

  /**
   * Creates an instance of Supervised Hebbian Network  with specified number
   * of neurons in input layer and output layer, and transfer function
   *
   * @param inputNeuronsNum
   *            number of neurons in input layer
   * @param outputNeuronsNum
   *            number of neurons in output layer
   * @param transferFunctionType
   *            transfer function type id
   */
  public SupervisedHebbianNetwork(int inputNeuronsNum, int outputNeuronsNum,
    TransferFunctionType transferFunctionType) {
    this.createNetwork(inputNeuronsNum, outputNeuronsNum,
      transferFunctionType);
  }

  /**
   *Creates an instance of Supervised Hebbian Network with specified number
   * of neurons in input layer, output layer and transfer function
   *
   * @param inputNeuronsNum
   *            number of neurons in input layer
   * @param outputNeuronsNum
   *            number of neurons in output layer
   * @param transferFunctionType
   *            transfer function type
   */
  private void createNetwork(int inputNeuronsNum, int outputNeuronsNum,
    TransferFunctionType transferFunctionType) {

    // init neuron properties
    NeuronProperties neuronProperties = new NeuronProperties();
    neuronProperties.setProperty("transferFunction", transferFunctionType);
    neuronProperties.setProperty("transferFunction.slope", new Double(1));
    neuronProperties.setProperty("transferFunction.yHigh", new Double(1));
    neuronProperties.setProperty("transferFunction.xHigh", new Double(1));   
    neuronProperties.setProperty("transferFunction.yLow", new Double(-1));
    neuronProperties.setProperty("transferFunction.xLow", new Double(-1));
   
    // set network type code
    this.setNetworkType(NeuralNetworkType.SUPERVISED_HEBBIAN_NET);

    // createLayer input layer
    Layer inputLayer = LayerFactory.createLayer(inputNeuronsNum,
      neuronProperties);
    this.addLayer(inputLayer);

    // createLayer output layer
    Layer outputLayer = LayerFactory.createLayer(outputNeuronsNum,
      neuronProperties);
    this.addLayer(outputLayer);

    // createLayer full conectivity between input and output layer
    ConnectionFactory.fullConnect(inputLayer, outputLayer);

    // set input and output cells for this network
    NeuralNetworkFactory.setDefaultIO(this);

    // set appropriate learning rule for this network
    this.setLearningRule(new SupervisedHebbianLearning());
  }
}
TOP

Related Classes of org.neuroph.nnet.SupervisedHebbianNetwork

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.