Package org.neuroph.nnet

Source Code of org.neuroph.nnet.Perceptron

/**
* Copyright 2010 Neuroph Project http://neuroph.sourceforge.net
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.neuroph.nnet;

import org.neuroph.core.Layer;
import org.neuroph.core.NeuralNetwork;
import org.neuroph.nnet.comp.ThresholdNeuron;
import org.neuroph.nnet.learning.BinaryDeltaRule;
import org.neuroph.util.ConnectionFactory;
import org.neuroph.util.LayerFactory;
import org.neuroph.util.NeuralNetworkFactory;
import org.neuroph.util.NeuralNetworkType;
import org.neuroph.util.NeuronProperties;
import org.neuroph.util.TransferFunctionType;

/**
* Perceptron neural network with some LMS based learning algorithm.
*
* @see org.neuroph.nnet.learning.PerceptronLearning
* @see org.neuroph.nnet.learning.BinaryDeltaRule
* @see org.neuroph.nnet.learning.SigmoidDeltaRule
* @author Zoran Sevarac <sevarac@gmail.com>
*/
public class Perceptron extends NeuralNetwork {
 
  /**
   * The class fingerprint that is set to indicate serialization
   * compatibility with a previous version of the class.
   */ 
  private static final long serialVersionUID = 1L;

  /**
   * Creates new Perceptron with specified number of neurons in input and
   * output layer, with Step trqansfer function
   *
   * @param inputNeuronsCount
   *            number of neurons in input layer
   * @param outputNeuronsCount
   *            number of neurons in output layer
   */
  public Perceptron(int inputNeuronsCount, int outputNeuronsCount) {
    this.createNetwork(inputNeuronsCount, outputNeuronsCount, TransferFunctionType.STEP);
  }

  /**
   * Creates new Perceptron with specified number of neurons in input and
   * output layer, and specified transfer function
   *
   * @param inputNeuronsCount
   *            number of neurons in input layer
   * @param outputNeuronsCount
   *            number of neurons in output layer
   * @param transferFunctionType
   *            transfer function type
   */
  public Perceptron(int inputNeuronsCount, int outputNeuronsCount, TransferFunctionType transferFunctionType) {
    this.createNetwork(inputNeuronsCount, outputNeuronsCount, transferFunctionType);
  }

  /**
   * Creates perceptron architecture with specified number of neurons in input
   * and output layer, specified transfer function
   *
   * @param inputNeuronsCount
   *            number of neurons in input layer
   * @param outputNeuronsCount
   *            number of neurons in output layer
   * @param transferFunctionType
   *            neuron transfer function type
   */
  private void createNetwork(int inputNeuronsCount, int outputNeuronsCount, TransferFunctionType transferFunctionType) {
    // set network type
    this.setNetworkType(NeuralNetworkType.PERCEPTRON);

    // init neuron settings for input layer
    NeuronProperties inputNeuronProperties = new NeuronProperties();
       inputNeuronProperties.setProperty("transferFunction", TransferFunctionType.LINEAR);

    // create input layer
    Layer inputLayer = LayerFactory.createLayer(inputNeuronsCount, inputNeuronProperties);
    this.addLayer(inputLayer);

    NeuronProperties outputNeuronProperties = new NeuronProperties();
    outputNeuronProperties.setProperty("neuronType", ThresholdNeuron.class);
    outputNeuronProperties.setProperty("thresh", new Double(Math.abs(Math.random())));
    outputNeuronProperties.setProperty("transferFunction", transferFunctionType);
    // for sigmoid and tanh transfer functions set slope propery
    outputNeuronProperties.setProperty("transferFunction.slope", new Double(1));

    // createLayer output layer
    Layer outputLayer = LayerFactory.createLayer(outputNeuronsCount, outputNeuronProperties);
    this.addLayer(outputLayer);

    // create full conectivity between input and output layer
    ConnectionFactory.fullConnect(inputLayer, outputLayer);

    // set input and output cells for this network
    NeuralNetworkFactory.setDefaultIO(this);
               
                this.setLearningRule(new BinaryDeltaRule());
    // set appropriate learning rule for this network
//    if (transferFunctionType == TransferFunctionType.STEP) {
//      this.setLearningRule(new BinaryDeltaRule(this));
//    } else if (transferFunctionType == TransferFunctionType.SIGMOID) {
//      this.setLearningRule(new SigmoidDeltaRule(this));
//    } else if (transferFunctionType == TransferFunctionType.TANH) {
//      this.setLearningRule(new SigmoidDeltaRule(this));
//    } else {
//      this.setLearningRule(new PerceptronLearning(this));
//    }
  }

}
TOP

Related Classes of org.neuroph.nnet.Perceptron

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.