/**
* Copyright 2010 Neuroph Project http://neuroph.sourceforge.net
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.neuroph.nnet;
import org.neuroph.core.Layer;
import org.neuroph.core.NeuralNetwork;
import org.neuroph.nnet.comp.CompetitiveLayer;
import org.neuroph.nnet.comp.CompetitiveNeuron;
import org.neuroph.util.ConnectionFactory;
import org.neuroph.util.LayerFactory;
import org.neuroph.util.NeuralNetworkFactory;
import org.neuroph.util.NeuralNetworkType;
import org.neuroph.util.NeuronProperties;
import org.neuroph.util.TransferFunctionType;
/**
* Max Net neural network with competitive learning rule.
*
* @author Zoran Sevarac <sevarac@gmail.com>
*/
public class MaxNet extends NeuralNetwork {
/**
* The class fingerprint that is set to indicate serialization
* compatibility with a previous version of the class.
*/
private static final long serialVersionUID = 1L;
/**
* Creates new Maxnet network with specified neuron number
*
* @param neuronsCount
* number of neurons in MaxNet network (same number in input and output layer)
*/
public MaxNet(int neuronsCount) {
this.createNetwork(neuronsCount);
}
/**
* Creates MaxNet network architecture
*
* @param neuronNum
* neuron number in network
* @param neuronProperties
* neuron properties
*/
private void createNetwork(int neuronsCount) {
// set network type
this.setNetworkType(NeuralNetworkType.MAXNET);
// createLayer input layer in layer
Layer inputLayer = LayerFactory.createLayer(neuronsCount,
new NeuronProperties());
this.addLayer(inputLayer);
// createLayer properties for neurons in output layer
NeuronProperties neuronProperties = new NeuronProperties();
neuronProperties.setProperty("neuronType", CompetitiveNeuron.class);
neuronProperties.setProperty("transferFunction", TransferFunctionType.RAMP);
// createLayer full connectivity in competitive layer
CompetitiveLayer competitiveLayer = new CompetitiveLayer(neuronsCount, neuronProperties);
// add competitive layer to network
this.addLayer(competitiveLayer);
double competitiveWeight = -(1 / (double) neuronsCount);
// createLayer full connectivity within competitive layer
ConnectionFactory.fullConnect(competitiveLayer, competitiveWeight, 1);
// createLayer forward connectivity from input to competitive layer
ConnectionFactory.forwardConnect(inputLayer, competitiveLayer, 1);
// set input and output cells for this network
NeuralNetworkFactory.setDefaultIO(this);
}
}