Package org.neuroph.nnet

Source Code of org.neuroph.nnet.Kohonen

/**
* Copyright 2010 Neuroph Project http://neuroph.sourceforge.net
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.neuroph.nnet;

import org.neuroph.core.Layer;
import org.neuroph.core.NeuralNetwork;
import org.neuroph.core.Neuron;
import org.neuroph.core.input.Difference;
import org.neuroph.core.input.Intensity;
import org.neuroph.core.transfer.Linear;
import org.neuroph.nnet.learning.KohonenLearning;
import org.neuroph.util.ConnectionFactory;
import org.neuroph.util.LayerFactory;
import org.neuroph.util.NeuralNetworkFactory;
import org.neuroph.util.NeuralNetworkType;
import org.neuroph.util.NeuronProperties;

/**
* Kohonen neural network.
*
* @author Zoran Sevarac <sevarac@gmail.com>
*/
public class Kohonen extends NeuralNetwork {
 
  /**
   * The class fingerprint that is set to indicate serialization
   * compatibility with a previous version of the class.
   */ 
  private static final long serialVersionUID = 1L;

  /**
   * Creates new Kohonen network with specified number of neurons in input and
   * map layer
   *
   * @param inputNeuronsCount
   *            number of neurons in input layer
   * @param outputNeuronsCount
   *            number of neurons in output layer
   */
  public Kohonen(int inputNeuronsCount, int outputNeuronsCount) {
    this.createNetwork(inputNeuronsCount, outputNeuronsCount);
  }

  /**
   * Creates Kohonen network architecture with specified number of neurons in
   * input and map layer
   *
   * @param inputNeuronsCount
   *            number of neurons in input layer
   * @param outputNeuronsCount
   *            number of neurons in output layer
   */
  private void createNetwork(int inputNeuronsCount, int outputNeuronsCount) {

    // specify input neuron properties (use default: weighted sum input with
    // linear transfer)
    NeuronProperties inputNeuronProperties = new NeuronProperties();

    // specify map neuron properties
    NeuronProperties outputNeuronProperties = new NeuronProperties(
                                            Difference.class,   // weights function
                                            Intensity.class,    // summing function
                                            Linear.class,       // transfer function
                                            Neuron.class        // neuron type
                                                    );
    // set network type
    this.setNetworkType(NeuralNetworkType.KOHONEN);

    // createLayer input layer
    Layer inLayer = LayerFactory.createLayer(inputNeuronsCount,
        inputNeuronProperties);
    this.addLayer(inLayer);

    // createLayer map layer
    Layer mapLayer = LayerFactory.createLayer(outputNeuronsCount,
        outputNeuronProperties);
    this.addLayer(mapLayer);

    // createLayer full connectivity between input and output layer
    ConnectionFactory.fullConnect(inLayer, mapLayer);

    // set network input and output cells
    NeuralNetworkFactory.setDefaultIO(this);

    this.setLearningRule(new KohonenLearning());
  }

}
TOP

Related Classes of org.neuroph.nnet.Kohonen

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.