/*
// $Id: //open/mondrian-release/3.2/src/main/mondrian/olap/fun/LinReg.java#1 $
// This software is subject to the terms of the Eclipse Public License v1.0
// Agreement, available at the following URL:
// http://www.eclipse.org/legal/epl-v10.html.
// Copyright (C) 2005-2009 Julian Hyde
// All Rights Reserved.
// You must accept the terms of that agreement to use this software.
*/
package mondrian.olap.fun;
import mondrian.olap.*;
import mondrian.olap.type.TupleType;
import mondrian.olap.type.SetType;
import mondrian.calc.*;
import mondrian.calc.impl.AbstractDoubleCalc;
import mondrian.calc.impl.ValueCalc;
import mondrian.mdx.ResolvedFunCall;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
/**
* Abstract base class for definitions of linear regression functions.
*
* @see InterceptFunDef
* @see PointFunDef
* @see R2FunDef
* @see SlopeFunDef
* @see VarianceFunDef
*
* <h2>Correlation coefficient</h2>
* <p><i>Correlation coefficient</i></p>
*
* <p>The correlation coefficient, r, ranges from -1 to + 1. The
* nonparametric Spearman correlation coefficient, abbreviated rs, has
* the same range.</p>
*
* <table border="1" cellpadding="6" cellspacing="0">
* <tr>
* <td>Value of r (or rs)</td>
* <td>Interpretation</td>
* </tr>
* <tr>
* <td valign="top">r= 0</td>
*
* <td>The two variables do not vary together at all.</td>
* </tr>
* <tr>
* <td valign="top">0 > r > 1</td>
* <td>
* <p>The two variables tend to increase or decrease together.</p>
* </td>
* </tr>
* <tr>
* <td valign="top">r = 1.0</td>
* <td>
* <p>Perfect correlation.</p>
* </td>
* </tr>
*
* <tr>
* <td valign="top">-1 > r > 0</td>
* <td>
* <p>One variable increases as the other decreases.</p>
* </td>
* </tr>
*
* <tr>
* <td valign="top">r = -1.0</td>
* <td>
* <p></p>
* <p>Perfect negative or inverse correlation.</p>
* </td>
* </tr>
* </table>
*
* <p>If r or rs is far from zero, there are four possible explanations:</p>
* <p>The X variable helps determine the value of the Y variable.</p>
* <ul>
* <li>The Y variable helps determine the value of the X variable.
* <li>Another variable influences both X and Y.
* <li>X and Y don't really correlate at all, and you just
* happened to observe such a strong correlation by chance. The P value
* determines how often this could occur.
* </ul>
* <p><i>r2 </i></p>
*
* <p>Perhaps the best way to interpret the value of r is to square it to
* calculate r2. Statisticians call this quantity the coefficient of
* determination, but scientists call it r squared. It is has a value
* that ranges from zero to one, and is the fraction of the variance in
* the two variables that is shared. For example, if r2=0.59, then 59% of
* the variance in X can be explained by variation in Y. Likewise,
* 59% of the variance in Y can be explained by (or goes along with)
* variation in X. More simply, 59% of the variance is shared between X
* and Y.</p>
*
* <p>(<a href="http://www.graphpad.com/articles/interpret/corl_n_linear_reg/correlation.htm">Source</a>).
*
* <p>Also see: <a href="http://mathworld.wolfram.com/LeastSquaresFitting.html">least squares fitting</a>.
*/
public abstract class LinReg extends FunDefBase {
/** Code for the specific function. */
final int regType;
public static final int Point = 0;
public static final int R2 = 1;
public static final int Intercept = 2;
public static final int Slope = 3;
public static final int Variance = 4;
static final Resolver InterceptResolver =
new ReflectiveMultiResolver(
"LinRegIntercept",
"LinRegIntercept(<Set>, <Numeric Expression>[, <Numeric Expression>])",
"Calculates the linear regression of a set and returns the value of b in the regression line y = ax + b.",
new String[]{"fnxn", "fnxnn"},
InterceptFunDef.class);
static final Resolver PointResolver =
new ReflectiveMultiResolver(
"LinRegPoint",
"LinRegPoint(<Numeric Expression>, <Set>, <Numeric Expression>[, <Numeric Expression>])",
"Calculates the linear regression of a set and returns the value of y in the regression line y = ax + b.",
new String[]{"fnnxn", "fnnxnn"},
PointFunDef.class);
static final Resolver SlopeResolver =
new ReflectiveMultiResolver(
"LinRegSlope",
"LinRegSlope(<Set>, <Numeric Expression>[, <Numeric Expression>])",
"Calculates the linear regression of a set and returns the value of a in the regression line y = ax + b.",
new String[]{"fnxn", "fnxnn"},
SlopeFunDef.class);
static final Resolver R2Resolver =
new ReflectiveMultiResolver(
"LinRegR2",
"LinRegR2(<Set>, <Numeric Expression>[, <Numeric Expression>])",
"Calculates the linear regression of a set and returns R2 (the coefficient of determination).",
new String[]{"fnxn", "fnxnn"},
R2FunDef.class);
static final Resolver VarianceResolver =
new ReflectiveMultiResolver(
"LinRegVariance",
"LinRegVariance(<Set>, <Numeric Expression>[, <Numeric Expression>])",
"Calculates the linear regression of a set and returns the variance associated with the regression line y = ax + b.",
new String[]{"fnxn", "fnxnn"},
VarianceFunDef.class);
public Calc compileCall(ResolvedFunCall call, ExpCompiler compiler) {
final ListCalc listCalc = compiler.compileList(call.getArg(0));
final DoubleCalc yCalc = compiler.compileDouble(call.getArg(1));
final DoubleCalc xCalc =
call.getArgCount() > 2
? compiler.compileDouble(call.getArg(2))
: new ValueCalc(call);
final boolean isTuples =
((SetType) listCalc.getType()).getElementType() instanceof
TupleType;
return new LinRegCalc(call, listCalc, yCalc, xCalc, isTuples, regType);
}
/////////////////////////////////////////////////////////////////////////
//
// Helper
//
/////////////////////////////////////////////////////////////////////////
static class Value {
private List xs;
private List ys;
/**
* The intercept for the linear regression model. Initialized
* following a call to accuracy.
*/
double intercept;
/**
* The slope for the linear regression model. Initialized following a
* call to accuracy.
*/
double slope;
/** the coefficient of determination */
double rSquared = Double.MAX_VALUE;
/** variance = sum square diff mean / n - 1 */
double variance = Double.MAX_VALUE;
Value(double intercept, double slope, List xs, List ys) {
this.intercept = intercept;
this.slope = slope;
this.xs = xs;
this.ys = ys;
}
public double getIntercept() {
return this.intercept;
}
public double getSlope() {
return this.slope;
}
public double getRSquared() {
return this.rSquared;
}
/**
* strength of the correlation
*
* @param rSquared
*/
public void setRSquared(double rSquared) {
this.rSquared = rSquared;
}
public double getVariance() {
return this.variance;
}
public void setVariance(double variance) {
this.variance = variance;
}
public String toString() {
return "LinReg.Value: slope of "
+ slope
+ " and an intercept of " + intercept
+ ". That is, y="
+ intercept
+ (slope > 0.0 ? " +" : " ")
+ slope
+ " * x.";
}
}
/**
* Definition of the <code>LinRegIntercept</code> MDX function.
*
* <p>Synopsis:
*
* <blockquote><code>LinRegIntercept(<Numeric Expression>,
* <Set>, <Numeric Expression>[, <Numeric
* Expression>])</code></blockquote>
*/
public static class InterceptFunDef extends LinReg {
public InterceptFunDef(FunDef funDef) {
super(funDef, Intercept);
}
}
/**
* Definition of the <code>LinRegPoint</code> MDX function.
*
* <p>Synopsis:
*
* <blockquote><code>LinRegPoint(<Numeric Expression>,
* <Set>, <Numeric Expression>[, <Numeric
* Expression>])</code></blockquote>
*/
public static class PointFunDef extends LinReg {
public PointFunDef(FunDef funDef) {
super(funDef, Point);
}
public Calc compileCall(ResolvedFunCall call, ExpCompiler compiler) {
final DoubleCalc xPointCalc =
compiler.compileDouble(call.getArg(0));
final ListCalc listCalc = compiler.compileList(call.getArg(1));
final DoubleCalc yCalc = compiler.compileDouble(call.getArg(2));
final DoubleCalc xCalc =
call.getArgCount() > 3
? compiler.compileDouble(call.getArg(3))
: new ValueCalc(call);
final boolean isTuples =
((SetType) listCalc.getType()).getElementType() instanceof
TupleType;
return new PointCalc(
call, xPointCalc, listCalc, yCalc, xCalc, isTuples);
}
}
private static class PointCalc extends AbstractDoubleCalc {
private final DoubleCalc xPointCalc;
private final ListCalc listCalc;
private final DoubleCalc yCalc;
private final DoubleCalc xCalc;
private final boolean tuples;
public PointCalc(
ResolvedFunCall call,
DoubleCalc xPointCalc,
ListCalc listCalc,
DoubleCalc yCalc,
DoubleCalc xCalc,
boolean tuples)
{
super(call, new Calc[]{xPointCalc, listCalc, yCalc, xCalc});
this.xPointCalc = xPointCalc;
this.listCalc = listCalc;
this.yCalc = yCalc;
this.xCalc = xCalc;
this.tuples = tuples;
}
public double evaluateDouble(Evaluator evaluator) {
double xPoint = xPointCalc.evaluateDouble(evaluator);
Value value =
process(evaluator, listCalc, yCalc, xCalc, tuples);
if (value == null) {
return FunUtil.DoubleNull;
}
// use first arg to generate y position
double yPoint =
xPoint * value.getSlope()
+ value.getIntercept();
return yPoint;
}
}
/**
* Definition of the <code>LinRegSlope</code> MDX function.
*
* <p>Synopsis:
*
* <blockquote><code>LinRegSlope(<Numeric Expression>,
* <Set>, <Numeric Expression>[, <Numeric
* Expression>])</code></blockquote>
*/
public static class SlopeFunDef extends LinReg {
public SlopeFunDef(FunDef funDef) {
super(funDef, Slope);
}
}
/**
* Definition of the <code>LinRegR2</code> MDX function.
*
* <p>Synopsis:
*
* <blockquote><code>LinRegR2(<Numeric Expression>,
* <Set>, <Numeric Expression>[, <Numeric
* Expression>])</code></blockquote>
*/
public static class R2FunDef extends LinReg {
public R2FunDef(FunDef funDef) {
super(funDef, R2);
}
}
/**
* Definition of the <code>LinRegVariance</code> MDX function.
*
* <p>Synopsis:
*
* <blockquote><code>LinRegVariance(<Numeric Expression>,
* <Set>, <Numeric Expression>[, <Numeric
* Expression>])</code></blockquote>
*/
public static class VarianceFunDef extends LinReg {
public VarianceFunDef(FunDef funDef) {
super(funDef, Variance);
}
}
protected static void debug(String type, String msg) {
// comment out for no output
// RME
//System.out.println(type + ": " +msg);
}
protected LinReg(FunDef funDef, int regType) {
super(funDef);
this.regType = regType;
}
protected static LinReg.Value process(
Evaluator evaluator,
ListCalc listCalc,
DoubleCalc yCalc,
DoubleCalc xCalc,
boolean isTuples)
{
List members = listCalc.evaluateList(evaluator.push(false));
evaluator = evaluator.push();
SetWrapper[] sws = evaluateSet(
evaluator, members, new DoubleCalc[] {yCalc, xCalc}, isTuples);
SetWrapper swY = sws[0];
SetWrapper swX = sws[1];
if (swY.errorCount > 0) {
debug("LinReg.process", "ERROR error(s) count =" + swY.errorCount);
// TODO: throw exception
return null;
} else if (swY.v.size() == 0) {
return null;
}
return linearReg(swX.v, swY.v);
}
public static LinReg.Value accuracy(LinReg.Value value) {
// for variance
double sumErrSquared = 0.0;
double sumErr = 0.0;
// for r2
// data
double sumSquaredY = 0.0;
double sumY = 0.0;
// predicted
double sumSquaredYF = 0.0;
double sumYF = 0.0;
// Obtain the forecast values for this model
List yfs = forecast(value);
// Calculate the Sum of the Absolute Errors
Iterator ity = value.ys.iterator();
Iterator ityf = yfs.iterator();
while (ity.hasNext()) {
// Get next data point
Double dy = (Double) ity.next();
if (dy == null) {
continue;
}
Double dyf = (Double) ityf.next();
if (dyf == null) {
continue;
}
double y = dy.doubleValue();
double yf = dyf.doubleValue();
// Calculate error in forecast, and update sums appropriately
// the y residual or error
double error = yf - y;
sumErr += error;
sumErrSquared += error * error;
sumY += y;
sumSquaredY += (y * y);
sumYF =+ yf;
sumSquaredYF =+ (yf * yf);
}
// Initialize the accuracy indicators
int n = value.ys.size();
// Variance
// The estimate the value of the error variance is a measure of
// variability of the y values about the estimated line.
// http://home.ubalt.edu/ntsbarsh/Business-stat/opre504.htm
// s2 = SSE/(n-2) = sum (y - yf)2 /(n-2)
if (n > 2) {
double variance = sumErrSquared / (n - 2);
value.setVariance(variance);
}
// R2
// R2 = 1 - (SSE/SST)
// SSE = sum square error = Sum((error-MSE)*(error-MSE))
// MSE = mean error = Sum(error)/n
// SST = sum square y diff = Sum((y-MST)*(y-MST))
// MST = mean y = Sum(y)/n
double MSE = sumErr / n;
double MST = sumY / n;
double SSE = 0.0;
double SST = 0.0;
ity = value.ys.iterator();
ityf = yfs.iterator();
while (ity.hasNext()) {
// Get next data point
Double dy = (Double) ity.next();
if (dy == null) {
continue;
}
Double dyf = (Double) ityf.next();
if (dyf == null) {
continue;
}
double y = dy.doubleValue();
double yf = dyf.doubleValue();
double error = yf - y;
SSE += (error - MSE) * (error - MSE);
SST += (y - MST) * (y - MST);
}
if (SST != 0.0) {
double rSquared = 1 - (SSE / SST);
value.setRSquared(rSquared);
}
return value;
}
public static LinReg.Value linearReg(List xlist, List ylist) {
// y and x have same number of points
int size = ylist.size();
double sumX = 0.0;
double sumY = 0.0;
double sumXX = 0.0;
double sumXY = 0.0;
debug("LinReg.linearReg", "ylist.size()=" + ylist.size());
debug("LinReg.linearReg", "xlist.size()=" + xlist.size());
int n = 0;
for (int i = 0; i < size; i++) {
Object yo = ylist.get(i);
Object xo = xlist.get(i);
if ((yo == null) || (xo == null)) {
continue;
}
n++;
double y = ((Double) yo).doubleValue();
double x = ((Double) xo).doubleValue();
debug("LinReg.linearReg", " " + i + " (" + x + "," + y + ")");
sumX += x;
sumY += y;
sumXX += x * x;
sumXY += x * y;
}
double xMean = sumX / n;
double yMean = sumY / n;
debug("LinReg.linearReg", "yMean=" + yMean);
debug(
"LinReg.linearReg",
"(n*sumXX - sumX*sumX)=" + (n * sumXX - sumX * sumX));
// The regression line is the line that minimizes the variance of the
// errors. The mean error is zero; so, this means that it minimizes the
// sum of the squares errors.
double slope = (n * sumXY - sumX * sumY) / (n * sumXX - sumX * sumX);
double intercept = yMean - slope * xMean;
LinReg.Value value = new LinReg.Value(intercept, slope, xlist, ylist);
debug("LinReg.linearReg", "value=" + value);
return value;
}
public static List forecast(LinReg.Value value) {
List yfs = new ArrayList(value.xs.size());
Iterator it = value.xs.iterator();
while (it.hasNext()) {
Double d = (Double) it.next();
// If the value is missing we still must put a place
// holder in the y axis, otherwise there is a discontinuity
// between the data and the fit.
if (d == null) {
yfs.add(null);
} else {
double x = d.doubleValue();
double yf = value.intercept + value.slope * x;
yfs.add(new Double(yf));
}
}
return yfs;
}
private static class LinRegCalc extends AbstractDoubleCalc {
private final ListCalc listCalc;
private final DoubleCalc yCalc;
private final DoubleCalc xCalc;
private final boolean tuples;
private final int regType;
public LinRegCalc(
ResolvedFunCall call,
ListCalc listCalc,
DoubleCalc yCalc,
DoubleCalc xCalc,
boolean tuples,
int regType)
{
super(call, new Calc[]{listCalc, yCalc, xCalc});
this.listCalc = listCalc;
this.yCalc = yCalc;
this.xCalc = xCalc;
this.tuples = tuples;
this.regType = regType;
}
public double evaluateDouble(Evaluator evaluator) {
Value value =
process(evaluator, listCalc, yCalc, xCalc, tuples);
if (value == null) {
return FunUtil.DoubleNull;
}
switch (regType) {
case Intercept:
return value.getIntercept();
case Slope:
return value.getSlope();
case Variance:
return value.getVariance();
case R2:
return value.getRSquared();
default:
case Point:
throw Util.newInternal("unexpected value " + regType);
}
}
}
}
// End LinReg.java