Package org.jostraca.comp.antlr

Source Code of org.jostraca.comp.antlr.CSharpCodeGenerator

package org.jostraca.comp.antlr;

/* ANTLR Translator Generator
* Project led by Terence Parr at http://www.jGuru.com
* Software rights: http://www.antlr.org/license.html
*
* $Id: CSharpCodeGenerator.java,v 1.2 2004/11/19 17:50:48 rjrodger Exp $
*/

//
// ANTLR C# Code Generator by Micheal Jordan
//                            Kunle Odutola       : kunle UNDERSCORE odutola AT hotmail DOT com
//                            Anthony Oguntimehin
//
// With many thanks to Eric V. Smith from the ANTLR list.
//

// HISTORY:
//
// 17-May-2002 kunle    Fixed bug in OctalToUnicode() - was processing non-Octal escape sequences
//                      Also added namespace support based on Cpp version.
// 07-Jun-2002 kunle    Added Scott Ellis's _saveIndex creation optimizations
// 09-Sep-2002 richardN Richard Ney's bug-fix for literals table construction.
//                      [ Hashtable ctor needed instance of hash code provider not it's class name. ]
// 17-Sep-2002 kunle &  Added all Token ID definitions as data member of every Lexer/Parser/TreeParser
//             AOg      [ A by-product of problem-solving phase of the hetero-AST changes below
//                        but, it breaks nothing and restores "normal" ANTLR codegen behaviour. ]
// 19-Oct-2002 kunle &  Completed the work required to support heterogenous ASTs (many changes)
//             AOg   &
//             michealj
// 14-Nov-2002 michealj Added "initializeASTFactory()" to support flexible ASTFactory initialization.
//            [ Thanks to Ric Klaren - for suggesting it and implementing it for Cpp. ]
// 18-Nov-2002 kunle    Added fix to make xx_tokenSet_xx names CLS compliant.
// 01-Dec-2002 richardN Patch to reduce "unreachable code" warnings
// 01-Dec-2002 richardN Fix to generate correct TreeParser token-type classnames.
// 12-Jan-2003 kunle  & Generated Lexers, Parsers and TreeParsers now support ANTLR's tracing option.
//             michealj
// 12-Jan-2003 kunle    Fixed issue where initializeASTFactory() was generated when "buildAST=false"
// 14-Jan-2003 AOg      initializeASTFactory(AST factory) method was modifying the Parser's "astFactory"
//                      member rather than it's own "factory" parameter. Fixed.
// 18-Jan-2003 kunle  & Fixed reported issues with ASTFactory create() calls for hetero ASTs
//             michealj - code generated for LEXER token with hetero-AST option specified does not compile
//                      - code generated for imaginary tokens with hetero-AST option specified uses
//                        default AST type
//                      - code generated for per-TokenRef hetero-AST option specified does not compile
// 18-Jan-2003 kunle    initializeASTFactory(AST) method is now a static public member
// 18-May-2003 kunle    Changes to address outstanding reported issues::
//                      - Fixed reported issues with support for case-sensitive literals
//                      - antlr.SemanticException now imported for all Lexers.
//                        [ This exception is thrown on predicate failure. ]
// 12-Jan-2004 kunle    Added fix for reported issue with un-compileable generated lexers
//
//

import java.util.Enumeration;
import java.util.Hashtable;
import org.jostraca.comp.antlr.collections.impl.BitSet;
import org.jostraca.comp.antlr.collections.impl.Vector;
import java.io.PrintWriter; //SAS: changed for proper text file io
import java.io.IOException;
import java.io.FileWriter;

/** Generates MyParser.cs, MyLexer.cs and MyParserTokenTypes.cs */
public class CSharpCodeGenerator extends CodeGenerator {
    // non-zero if inside syntactic predicate generation
    protected int syntacticPredLevel = 0;

  // Are we generating ASTs (for parsers and tree parsers) right now?
  protected boolean genAST = false;

    // Are we saving the text consumed (for lexers) right now?
    protected boolean saveText = false;

    // Grammar parameters set up to handle different grammar classes.
    // These are used to get instanceof tests out of code generation
  boolean usingCustomAST = false;
  String labeledElementType;
    String labeledElementASTType;
  String labeledElementInit;
  String commonExtraArgs;
  String commonExtraParams;
  String commonLocalVars;
  String lt1Value;
  String exceptionThrown;
  String throwNoViable;

  // Tracks the rule being generated.  Used for mapTreeId
    RuleBlock currentRule;
  // Tracks the rule or labeled subrule being generated.  Used for AST generation.
    String currentASTResult;

    /** Mapping between the ids used in the current alt, and the
     * names of variables used to represent their AST values.
     */
    Hashtable treeVariableMap = new Hashtable();

    /** Used to keep track of which AST variables have been defined in a rule
     * (except for the #rule_name and #rule_name_in var's
     */
    Hashtable declaredASTVariables = new Hashtable();

    /* Count of unnamed generated variables */
    int astVarNumber = 1;

    /** Special value used to mark duplicate in treeVariableMap */
    protected static final String NONUNIQUE = new String();

    public static final int caseSizeThreshold = 127; // ascii is max

    private Vector semPreds;
  // Used to keep track of which (heterogeneous AST types are used)
  // which need to be set in the ASTFactory of the generated parser
  private java.util.Vector astTypes;

  private static CSharpNameSpace nameSpace = null;

  // _saveIndex creation optimization -- don't create it unless we need to use it
  boolean bSaveIndexCreated = false;


    /** Create a CSharp code-generator using the given Grammar.
     * The caller must still call setTool, setBehavior, and setAnalyzer
     * before generating code.
     */
  public CSharpCodeGenerator() {
    super();
    charFormatter = new CSharpCharFormatter();
  }

  /** Adds a semantic predicate string to the sem pred vector
      These strings will be used to build an array of sem pred names
      when building a debugging parser.  This method should only be
      called when the debug option is specified
   */
  protected int addSemPred(String predicate) {
    semPreds.appendElement(predicate);
    return semPreds.size()-1;
  }

  public void exitIfError()
  {
    if (antlrTool.hasError())
    {
      antlrTool.fatalError("Exiting due to errors.");
    }
  }

  /**Generate the parser, lexer, treeparser, and token types in CSharp */
  public void gen() {
    // Do the code generation
    try {
      // Loop over all grammars
      Enumeration grammarIter = behavior.grammars.elements();
      while (grammarIter.hasMoreElements()) {
        Grammar g = (Grammar)grammarIter.nextElement();
        // Connect all the components to each other
        g.setGrammarAnalyzer(analyzer);
        g.setCodeGenerator(this);
        analyzer.setGrammar(g);
        // To get right overloading behavior across heterogeneous grammars
        setupGrammarParameters(g);
        g.generate();
        exitIfError();
      }

      // Loop over all token managers (some of which are lexers)
      Enumeration tmIter = behavior.tokenManagers.elements();
      while (tmIter.hasMoreElements()) {
        TokenManager tm = (TokenManager)tmIter.nextElement();
        if (!tm.isReadOnly()) {
          // Write the token manager tokens as CSharp
          // this must appear before genTokenInterchange so that
          // labels are set on string literals
          genTokenTypes(tm);
          // Write the token manager tokens as plain text
          genTokenInterchange(tm);
        }
        exitIfError();
      }
    }
    catch (IOException e) {
      antlrTool.reportException(e, null);
    }
  }

  /** Generate code for the given grammar element.
   * @param blk The {...} action to generate
   */
  public void gen(ActionElement action) {
    if ( DEBUG_CODE_GENERATOR ) System.out.println("genAction("+action+")");
    if ( action.isSemPred ) {
      genSemPred(action.actionText, action.line);
    }
    else {
      if ( grammar.hasSyntacticPredicate ) {
        println("if (0==inputState.guessing)");
        println("{");
        tabs++;
      }

      ActionTransInfo tInfo = new ActionTransInfo();
      String actionStr = processActionForSpecialSymbols(action.actionText,
                                       action.getLine(),
                                       currentRule, tInfo);

      if ( tInfo.refRuleRoot!=null ) {
        // Somebody referenced "#rule", make sure translated var is valid
        // assignment to #rule is left as a ref also, meaning that assignments
        // with no other refs like "#rule = foo();" still forces this code to be
        // generated (unnecessarily).
        println(tInfo.refRuleRoot + " = ("+labeledElementASTType+")currentAST.root;");
      }

      // dump the translated action
      printAction(actionStr);

      if ( tInfo.assignToRoot ) {
        // Somebody did a "#rule=", reset internal currentAST.root
        println("currentAST.root = "+tInfo.refRuleRoot+";");
        // reset the child pointer too to be last sibling in sibling list
        println("if ( (null != "+tInfo.refRuleRoot+") && (null != "+tInfo.refRuleRoot+".getFirstChild()) )");
        tabs++;
        println("currentAST.child = "+tInfo.refRuleRoot+".getFirstChild();");
        tabs--;
        println("else");
        tabs++;
        println("currentAST.child = "+tInfo.refRuleRoot+";");
        tabs--;
        println("currentAST.advanceChildToEnd();");
      }

      if ( grammar.hasSyntacticPredicate ) {
        tabs--;
        println("}");
      }
    }
  }

  /** Generate code for the given grammar element.
   * @param blk The "x|y|z|..." block to generate
   */
  public void gen(AlternativeBlock blk) {
    if ( DEBUG_CODE_GENERATOR ) System.out.println("gen("+blk+")");
    println("{");
    tabs++;

    genBlockPreamble(blk);
    genBlockInitAction(blk);

    // Tell AST generation to build subrule result
    String saveCurrentASTResult = currentASTResult;
    if (blk.getLabel() != null) {
      currentASTResult = blk.getLabel();
    }

    boolean ok = grammar.theLLkAnalyzer.deterministic(blk);

    CSharpBlockFinishingInfo howToFinish = genCommonBlock(blk, true);
    genBlockFinish(howToFinish, throwNoViable);

    tabs--;
    println("}");

    // Restore previous AST generation
    currentASTResult = saveCurrentASTResult;
  }
  /** Generate code for the given grammar element.
   * @param blk The block-end element to generate.  Block-end
   * elements are synthesized by the grammar parser to represent
   * the end of a block.
   */
  public void gen(BlockEndElement end) {
    if ( DEBUG_CODE_GENERATOR ) System.out.println("genRuleEnd("+end+")");
  }
  /** Generate code for the given grammar element.
   * @param blk The character literal reference to generate
   */
  public void gen(CharLiteralElement atom) {
    if ( DEBUG_CODE_GENERATOR ) System.out.println("genChar("+atom+")");

    if ( atom.getLabel()!=null ) {
      println(atom.getLabel() + " = " + lt1Value + ";");
    }

    boolean oldsaveText = saveText;
    saveText = saveText && atom.getAutoGenType()==GrammarElement.AUTO_GEN_NONE;
    genMatch(atom);
    saveText = oldsaveText;
  }
  /** Generate code for the given grammar element.
   * @param blk The character-range reference to generate
   */
  public void gen(CharRangeElement r) {
    if ( r.getLabel()!=null  && syntacticPredLevel == 0) {
      println(r.getLabel() + " = " + lt1Value + ";");
    }
      boolean flag = ( grammar instanceof LexerGrammar &&
            (!saveText || (r.getAutoGenType() == GrammarElement.AUTO_GEN_BANG)) );
      if (flag)
          println("_saveIndex = text.Length;");

      println("matchRange("+OctalToUnicode(r.beginText)+","+OctalToUnicode(r.endText)+");");

      if (flag)
          println("text.Length = _saveIndex;");
  }
  /** Generate the lexer CSharp file */
  public  void gen(LexerGrammar g) throws IOException {
    // If debugging, create a new sempred vector for this grammar
    if (g.debuggingOutput)
      semPreds = new Vector();

    setGrammar(g);
    if (!(grammar instanceof LexerGrammar)) {
      antlrTool.panic("Internal error generating lexer");
    }
    genBody(g);
  }
  /** Generate code for the given grammar element.
   * @param blk The (...)+ block to generate
   */
  public void gen(OneOrMoreBlock blk) {
    if ( DEBUG_CODE_GENERATOR ) System.out.println("gen+("+blk+")");
    String label;
    String cnt;
    println("{ // ( ... )+");
    genBlockPreamble(blk);
    if ( blk.getLabel() != null ) {
      cnt = "_cnt_"+blk.getLabel();
    }
    else {
      cnt = "_cnt" + blk.ID;
    }
    println("int "+cnt+"=0;");
    if ( blk.getLabel() != null ) {
      label = blk.getLabel();
    }
    else {
      label = "_loop" + blk.ID;
    }

    println("for (;;)");
    println("{");
    tabs++;
      // generate the init action for ()+ ()* inside the loop
      // this allows us to do usefull EOF checking...
      genBlockInitAction(blk);

    // Tell AST generation to build subrule result
    String saveCurrentASTResult = currentASTResult;
    if (blk.getLabel() != null) {
      currentASTResult = blk.getLabel();
    }

    boolean ok = grammar.theLLkAnalyzer.deterministic(blk);

    // generate exit test if greedy set to false
    // and an alt is ambiguous with exit branch
    // or when lookahead derived purely from end-of-file
    // Lookahead analysis stops when end-of-file is hit,
    // returning set {epsilon}.  Since {epsilon} is not
    // ambig with any real tokens, no error is reported
    // by deterministic() routines and we have to check
    // for the case where the lookahead depth didn't get
    // set to NONDETERMINISTIC (this only happens when the
    // FOLLOW contains real atoms + epsilon).
    boolean generateNonGreedyExitPath = false;
    int nonGreedyExitDepth = grammar.maxk;

    if ( !blk.greedy &&
      blk.exitLookaheadDepth<=grammar.maxk &&
      blk.exitCache[blk.exitLookaheadDepth].containsEpsilon() )
    {
      generateNonGreedyExitPath = true;
      nonGreedyExitDepth = blk.exitLookaheadDepth;
    }
    else if ( !blk.greedy &&
      blk.exitLookaheadDepth==LLkGrammarAnalyzer.NONDETERMINISTIC )
    {
      generateNonGreedyExitPath = true;
    }

    // generate exit test if greedy set to false
    // and an alt is ambiguous with exit branch
    if ( generateNonGreedyExitPath ) {
      if ( DEBUG_CODE_GENERATOR ) {
        System.out.println("nongreedy (...)+ loop; exit depth is "+
          blk.exitLookaheadDepth);
      }
      String predictExit =
        getLookaheadTestExpression(blk.exitCache,
        nonGreedyExitDepth);
      println("// nongreedy exit test");
      println("if (("+cnt+" >= 1) && "+predictExit+") goto "+label+"_breakloop;");
    }

    CSharpBlockFinishingInfo howToFinish = genCommonBlock(blk, false);
    genBlockFinish(
      howToFinish,
      "if ("+cnt+" >= 1) { goto "+label+"_breakloop; } else { " + throwNoViable + "; }"
      );

    println(cnt+"++;");
    tabs--;
    println("}");
    _print(label + "_breakloop:");
    println(";");
    println("}    // ( ... )+");

    // Restore previous AST generation
    currentASTResult = saveCurrentASTResult;
  }
  /** Generate the parser CSharp file */
  public void gen(ParserGrammar g) throws IOException {

    // if debugging, set up a new vector to keep track of sempred
    //   strings for this grammar
    if (g.debuggingOutput)
      semPreds = new Vector();

    setGrammar(g);
    if (!(grammar instanceof ParserGrammar)) {
      antlrTool.panic("Internal error generating parser");
    }
    genBody(g);
  }
  /** Generate code for the given grammar element.
   * @param blk The rule-reference to generate
   */
  public void gen(RuleRefElement rr)
  {
    if ( DEBUG_CODE_GENERATOR ) System.out.println("genRR("+rr+")");
    RuleSymbol rs = (RuleSymbol)grammar.getSymbol(rr.targetRule);
    if (rs == null || !rs.isDefined())
    {
      // Is this redundant???
      antlrTool.error("Rule '" + rr.targetRule + "' is not defined", grammar.getFilename(), rr.getLine(), rr.getColumn());
      return;
    }
    if (!(rs instanceof RuleSymbol))
    {
      // Is this redundant???
      antlrTool.error("'" + rr.targetRule + "' does not name a grammar rule", grammar.getFilename(), rr.getLine(), rr.getColumn());
      return;
    }

    genErrorTryForElement(rr);

    // AST value for labeled rule refs in tree walker.
    // This is not AST construction;  it is just the input tree node value.
    if ( grammar instanceof TreeWalkerGrammar &&
      rr.getLabel() != null &&
      syntacticPredLevel == 0 )
    {
      println(rr.getLabel() + " = _t==ASTNULL ? null : "+lt1Value+";");
    }

    // if in lexer and ! on rule ref or alt or rule, save buffer index to kill later
        if (grammar instanceof LexerGrammar && (!saveText || rr.getAutoGenType() == GrammarElement.AUTO_GEN_BANG))
    {
      declareSaveIndexVariableIfNeeded();
      println("_saveIndex = text.Length;");
    }

    // Process return value assignment if any
    printTabs();
    if (rr.idAssign != null)
    {
      // Warn if the rule has no return type
      if (rs.block.returnAction == null)
      {
        antlrTool.warning("Rule '" + rr.targetRule + "' has no return type", grammar.getFilename(), rr.getLine(), rr.getColumn());
      }
      _print(rr.idAssign + "=");
    } else {
      // Warn about return value if any, but not inside syntactic predicate
      if ( !(grammar instanceof LexerGrammar) && syntacticPredLevel == 0 && rs.block.returnAction != null)
      {
        antlrTool.warning("Rule '" + rr.targetRule + "' returns a value", grammar.getFilename(), rr.getLine(), rr.getColumn());
      }
    }

    // Call the rule
    GenRuleInvocation(rr);

    // if in lexer and ! on element or alt or rule, save buffer index to kill later
    if ( grammar instanceof LexerGrammar && (!saveText||rr.getAutoGenType()==GrammarElement.AUTO_GEN_BANG) ) {
      declareSaveIndexVariableIfNeeded();
      println("text.Length = _saveIndex;");
    }

    // if not in a syntactic predicate
    if (syntacticPredLevel == 0)
    {
      boolean doNoGuessTest = (
        grammar.hasSyntacticPredicate &&
        (
        grammar.buildAST && rr.getLabel() != null ||
        (genAST && rr.getAutoGenType() == GrammarElement.AUTO_GEN_NONE)
        )
        );
      if (doNoGuessTest)   {
        println("if (0 == inputState.guessing)");
        println("{");
        tabs++;
      }

      if (grammar.buildAST && rr.getLabel() != null)
      {
        // always gen variable for rule return on labeled rules
        println(rr.getLabel() + "_AST = ("+labeledElementASTType+")returnAST;");
      }
      if (genAST)
      {
        switch (rr.getAutoGenType())
        {
        case GrammarElement.AUTO_GEN_NONE:
          if( usingCustomAST )
            println("astFactory.addASTChild(currentAST, (AST)returnAST);");
          else
            println("astFactory.addASTChild(currentAST, returnAST);");
          break;
        case GrammarElement.AUTO_GEN_CARET:
          antlrTool.error("Internal: encountered ^ after rule reference");
          break;
        default:
          break;
        }
      }

      // if a lexer and labeled, Token label defined at rule level, just set it here
      if ( grammar instanceof LexerGrammar && rr.getLabel() != null )
      {
        println(rr.getLabel()+" = returnToken_;");
      }

      if (doNoGuessTest)
      {
        tabs--;
        println("}");
      }
    }
    genErrorCatchForElement(rr);
  }
  /** Generate code for the given grammar element.
   * @param blk The string-literal reference to generate
   */
  public void gen(StringLiteralElement atom) {
    if ( DEBUG_CODE_GENERATOR ) System.out.println("genString("+atom+")");

    // Variable declarations for labeled elements
    if (atom.getLabel()!=null && syntacticPredLevel == 0) {
      println(atom.getLabel() + " = " + lt1Value + ";");
    }

    // AST
    genElementAST(atom);

    // is there a bang on the literal?
    boolean oldsaveText = saveText;
    saveText = saveText && atom.getAutoGenType()==GrammarElement.AUTO_GEN_NONE;

    // matching
    genMatch(atom);

      saveText = oldsaveText;

    // tack on tree cursor motion if doing a tree walker
    if (grammar instanceof TreeWalkerGrammar) {
      println("_t = _t.getNextSibling();");
    }
  }

  /** Generate code for the given grammar element.
   * @param blk The token-range reference to generate
   */
  public void gen(TokenRangeElement r) {
    genErrorTryForElement(r);
    if ( r.getLabel()!=null  && syntacticPredLevel == 0) {
      println(r.getLabel() + " = " + lt1Value + ";");
    }

    // AST
    genElementAST(r);

    // match
    println("matchRange("+OctalToUnicode(r.beginText)+","+OctalToUnicode(r.endText)+");");
    genErrorCatchForElement(r);
  }

  /** Generate code for the given grammar element.
   * @param blk The token-reference to generate
   */
  public void gen(TokenRefElement atom) {
    if ( DEBUG_CODE_GENERATOR ) System.out.println("genTokenRef("+atom+")");
    if ( grammar instanceof LexerGrammar ) {
      antlrTool.panic("Token reference found in lexer");
    }
    genErrorTryForElement(atom);
    // Assign Token value to token label variable
    if ( atom.getLabel()!=null && syntacticPredLevel == 0) {
      println(atom.getLabel() + " = " + lt1Value + ";");
    }

    // AST
    genElementAST(atom);
    // matching
    genMatch(atom);
    genErrorCatchForElement(atom);

    // tack on tree cursor motion if doing a tree walker
    if (grammar instanceof TreeWalkerGrammar) {
      println("_t = _t.getNextSibling();");
    }
  }

  public void gen(TreeElement t) {
    // save AST cursor
    println("AST __t" + t.ID + " = _t;");

    // If there is a label on the root, then assign that to the variable
    if (t.root.getLabel() != null) {
      println(t.root.getLabel() + " = (ASTNULL == _t) ? null : ("+labeledElementASTType +")_t;");
    }

      // check for invalid modifiers ! and ^ on tree element roots
      if ( t.root.getAutoGenType() == GrammarElement.AUTO_GEN_BANG ) {
          antlrTool.error("Suffixing a root node with '!' is not implemented",
                       grammar.getFilename(), t.getLine(), t.getColumn());
          t.root.setAutoGenType(GrammarElement.AUTO_GEN_NONE);
      }
      if ( t.root.getAutoGenType() == GrammarElement.AUTO_GEN_CARET ) {
          antlrTool.warning("Suffixing a root node with '^' is redundant; already a root",
                       grammar.getFilename(), t.getLine(), t.getColumn());
          t.root.setAutoGenType(GrammarElement.AUTO_GEN_NONE);
      }

    // Generate AST variables
    genElementAST(t.root);
    if (grammar.buildAST) {
      // Save the AST construction state
      println("ASTPair __currentAST" + t.ID + " = currentAST.copy();");
      // Make the next item added a child of the TreeElement root
      println("currentAST.root = currentAST.child;");
      println("currentAST.child = null;");
    }

    // match root
        if ( t.root instanceof WildcardElement ) {
            println("if (null == _t) throw new MismatchedTokenException();");
        }
        else {
        genMatch(t.root);
    }
    // move to list of children
    println("_t = _t.getFirstChild();");

    // walk list of children, generating code for each
    for (int i=0; i<t.getAlternatives().size(); i++) {
      Alternative a = t.getAlternativeAt(i);
      AlternativeElement e = a.head;
      while ( e != null ) {
        e.generate();
        e = e.next;
      }
    }

    if (grammar.buildAST) {
      // restore the AST construction state to that just after the
      // tree root was added
      println("currentAST = __currentAST" + t.ID + ";");
    }
    // restore AST cursor
    println("_t = __t" + t.ID + ";");
    // move cursor to sibling of tree just parsed
    println("_t = _t.getNextSibling();");
  }
  /** Generate the tree-parser CSharp file */
  public void gen(TreeWalkerGrammar g) throws IOException {
    // SAS: debugging stuff removed for now...
    setGrammar(g);
    if (!(grammar instanceof TreeWalkerGrammar)) {
      antlrTool.panic("Internal error generating tree-walker");
    }
    genBody(g);
  }

  /** Generate code for the given grammar element.
   * @param wc The wildcard element to generate
   */
  public void gen(WildcardElement wc) {
    // Variable assignment for labeled elements
    if (wc.getLabel()!=null && syntacticPredLevel == 0) {
      println(wc.getLabel() + " = " + lt1Value + ";");
    }

    // AST
    genElementAST(wc);
    // Match anything but EOF
    if (grammar instanceof TreeWalkerGrammar) {
      println("if (null == _t) throw new MismatchedTokenException();");
    }
    else if (grammar instanceof LexerGrammar) {
      if ( grammar instanceof LexerGrammar &&
        (!saveText||wc.getAutoGenType()==GrammarElement.AUTO_GEN_BANG) ) {
        declareSaveIndexVariableIfNeeded();
        println("_saveIndex = text.Length;");
      }
      println("matchNot(EOF/*_CHAR*/);");
      if ( grammar instanceof LexerGrammar &&
        (!saveText||wc.getAutoGenType()==GrammarElement.AUTO_GEN_BANG) ) {
        declareSaveIndexVariableIfNeeded();
        println("text.Length = _saveIndex;"); // kill text atom put in buffer
      }
    }
    else {
      println("matchNot(" + getValueString(Token.EOF_TYPE) + ");");
    }

    // tack on tree cursor motion if doing a tree walker
    if (grammar instanceof TreeWalkerGrammar) {
      println("_t = _t.getNextSibling();");
    }
  }

  /** Generate code for the given grammar element.
   * @param blk The (...)* block to generate
   */
  public void gen(ZeroOrMoreBlock blk) {
    if ( DEBUG_CODE_GENERATOR ) System.out.println("gen*("+blk+")");
    println("{    // ( ... )*");
    tabs++;
    genBlockPreamble(blk);
    String label;
    if ( blk.getLabel() != null ) {
      label = blk.getLabel();
    }
    else {
      label = "_loop" + blk.ID;
    }
    println("for (;;)");
    println("{");
    tabs++;
    // generate the init action for ()+ ()* inside the loop
        // this allows us to do usefull EOF checking...
        genBlockInitAction(blk);

    // Tell AST generation to build subrule result
    String saveCurrentASTResult = currentASTResult;
    if (blk.getLabel() != null) {
      currentASTResult = blk.getLabel();
    }

    boolean ok = grammar.theLLkAnalyzer.deterministic(blk);

    // generate exit test if greedy set to false
    // and an alt is ambiguous with exit branch
    // or when lookahead derived purely from end-of-file
    // Lookahead analysis stops when end-of-file is hit,
    // returning set {epsilon}.  Since {epsilon} is not
    // ambig with any real tokens, no error is reported
    // by deterministic() routines and we have to check
    // for the case where the lookahead depth didn't get
    // set to NONDETERMINISTIC (this only happens when the
    // FOLLOW contains real atoms + epsilon).
    boolean generateNonGreedyExitPath = false;
    int nonGreedyExitDepth = grammar.maxk;

    if ( !blk.greedy &&
      blk.exitLookaheadDepth<=grammar.maxk &&
      blk.exitCache[blk.exitLookaheadDepth].containsEpsilon() )
    {
      generateNonGreedyExitPath = true;
      nonGreedyExitDepth = blk.exitLookaheadDepth;
    }
    else if ( !blk.greedy &&
      blk.exitLookaheadDepth==LLkGrammarAnalyzer.NONDETERMINISTIC )
    {
      generateNonGreedyExitPath = true;
    }
    if ( generateNonGreedyExitPath ) {
      if ( DEBUG_CODE_GENERATOR ) {
        System.out.println("nongreedy (...)* loop; exit depth is "+
          blk.exitLookaheadDepth);
      }
      String predictExit =
        getLookaheadTestExpression(blk.exitCache,
        nonGreedyExitDepth);
      println("// nongreedy exit test");
      println("if ("+predictExit+") goto "+label+"_breakloop;");
    }

    CSharpBlockFinishingInfo howToFinish = genCommonBlock(blk, false);
    genBlockFinish(howToFinish, "goto " + label + "_breakloop;");

      tabs--;
    println("}");
    _print(label+"_breakloop:");
    println(";");
    tabs--;
    println("}    // ( ... )*");

    // Restore previous AST generation
    currentASTResult = saveCurrentASTResult;
  }

  /** Generate an alternative.
    * @param alt  The alternative to generate
    * @param blk The block to which the alternative belongs
    */
  protected void genAlt(Alternative alt, AlternativeBlock blk)
  {
    // Save the AST generation state, and set it to that of the alt
    boolean savegenAST = genAST;
    genAST = genAST && alt.getAutoGen();

    boolean oldsaveTest = saveText;
    saveText = saveText && alt.getAutoGen();

    // Reset the variable name map for the alternative
    Hashtable saveMap = treeVariableMap;
    treeVariableMap = new Hashtable();

    // Generate try block around the alt for  error handling
    if (alt.exceptionSpec != null) {
      println("try        // for error handling");
      println("{");
      tabs++;
    }

    AlternativeElement elem = alt.head;
    while ( !(elem instanceof BlockEndElement) ) {
      elem.generate(); // alt can begin with anything. Ask target to gen.
      elem = elem.next;
    }

    if ( genAST)
    {
      if (blk instanceof RuleBlock)
      {
        // Set the AST return value for the rule
        RuleBlock rblk = (RuleBlock)blk;
        if( usingCustomAST )
        {
          println(rblk.getRuleName() + "_AST = ("+labeledElementASTType+")currentAST.root;");
        }
        else
        {
          println(rblk.getRuleName() + "_AST = currentAST.root;");
        }
      }
      else if (blk.getLabel() != null) {
        // ### future: also set AST value for labeled subrules.
        // println(blk.getLabel() + "_AST = ("+labeledElementASTType+")currentAST.root;");
              antlrTool.warning("Labeled subrules not yet supported", grammar.getFilename(), blk.getLine(), blk.getColumn());
      }
    }

    if (alt.exceptionSpec != null)
    {
      // close try block
      tabs--;
      println("}");
      genErrorHandler(alt.exceptionSpec);
    }

    genAST = savegenAST;
    saveText = oldsaveTest;

    treeVariableMap = saveMap;
  }

  /** Generate all the bitsets to be used in the parser or lexer
   * Generate the raw bitset data like "long _tokenSet1_data[] = {...};"
   * and the BitSet object declarations like "BitSet _tokenSet1 = new BitSet(_tokenSet1_data);"
   * Note that most languages do not support object initialization inside a
   * class definition, so other code-generators may have to separate the
   * bitset declarations from the initializations (e.g., put the initializations
   * in the generated constructor instead).
   * @param bitsetList The list of bitsets to generate.
   * @param maxVocabulary Ensure that each generated bitset can contain at least this value.
   */
  protected void genBitsets( Vector bitsetList, int maxVocabulary ) {
    println("");
    for (int i = 0; i < bitsetList.size(); i++)
    {
      BitSet p = (BitSet)bitsetList.elementAt(i);
      // Ensure that generated BitSet is large enough for vocabulary
      p.growToInclude(maxVocabulary);
            genBitSet(p, i);
        }
    }

    /** Do something simple like:
     *  private static final long[] mk_tokenSet_0() {
     *    long[] data = { -2305839160922996736L, 63L, 16777216L, 0L, 0L, 0L };
     *    return data;
     *  }
     *  public static final BitSet _tokenSet_0 = new BitSet(mk_tokenSet_0());
     *
     *  Or, for large bitsets, optimize init so ranges are collapsed into loops.
     *  This is most useful for lexers using unicode.
     */
    private void genBitSet(BitSet p, int id) {
        // initialization data
        println("private static long[] mk_" + getBitsetName(id) + "()");
        println("{");
        tabs++;
        int n = p.lengthInLongWords();
        if ( n<BITSET_OPTIMIZE_INIT_THRESHOLD ) {
            println("long[] data = { " + p.toStringOfWords() + "};");
        }
        else {
            // will init manually, allocate space then set values
            println("long[] data = new long["+n+"];");
            long[] elems = p.toPackedArray();
            for (int i = 0; i < elems.length;) {
                if ( (i+1)==elems.length || elems[i]!=elems[i+1] ) {
                    // last number or no run of numbers, just dump assignment
                    println("data["+i+"]="+elems[i]+"L;");
                    i++;
                }
                else
        {
                    // scan to find end of run
                    int j;
                    for (j = i + 1; j < elems.length && elems[j]==elems[i]; j++)
                    {
            ;
                    }
                    // j-1 is last member of run
                    println("for (int i = "+i+"; i<="+(j-1)+"; i++) { data[i]="+
                            elems[i]+"L; }");
                    i = j;
                }
            }
        }

        println("return data;");
        tabs--;
        println("}");
    // BitSet object
        println("public static readonly BitSet " + getBitsetName(id) + " = new BitSet(" +
            "mk_" + getBitsetName(id) + "()" + ");");
  }

    /** Given the index of a bitset in the bitset list, generate a unique name.
     * Specific code-generators may want to override this
     * if the language does not allow '_' or numerals in identifiers.
     * @param index  The index of the bitset in the bitset list.
     */
    protected String getBitsetName(int index) {
        return "tokenSet_" + index + "_";
    }

  /** Generate the finish of a block, using a combination of the info
  * returned from genCommonBlock() and the action to perform when
  * no alts were taken
  * @param howToFinish The return of genCommonBlock()
  * @param noViableAction What to generate when no alt is taken
  */
  private void genBlockFinish(CSharpBlockFinishingInfo howToFinish, String noViableAction)
  {

    if (howToFinish.needAnErrorClause &&
      (howToFinish.generatedAnIf || howToFinish.generatedSwitch))
    {
      if ( howToFinish.generatedAnIf ) {
        println("else");
        println("{");
      }
      else {
        println("{");
      }
      tabs++;
      println(noViableAction);
      tabs--;
      println("}");
    }

    if ( howToFinish.postscript!=null ) {
      if (howToFinish.needAnErrorClause && howToFinish.generatedSwitch &&
        !howToFinish.generatedAnIf && noViableAction != null)
      {
        // Check to make sure that noViableAction is only a throw statement
        if (noViableAction.indexOf("throw") == 0 || noViableAction.indexOf("goto") == 0) {
          // Remove the break statement since it isn't reachable with a throw exception
          int endOfBreak = howToFinish.postscript.indexOf("break;") + 6;
          String newPostScript = howToFinish.postscript.substring(endOfBreak);
          println(newPostScript);
        }
        else {
          println(howToFinish.postscript);
        }
      }
      else {
        println(howToFinish.postscript);
      }
    }
  }

    /** Generate the init action for a block, which may be a RuleBlock or a
     * plain AlternativeBLock.
     * @blk The block for which the preamble is to be generated.
     */
    protected void genBlockInitAction(AlternativeBlock blk)
  {
        // dump out init action
        if (blk.initAction != null) {
            printAction(processActionForSpecialSymbols(blk.initAction, blk.getLine(), currentRule, null));
        }
    }

  /** Generate the header for a block, which may be a RuleBlock or a
     * plain AlternativeBLock.  This generates any variable declarations
     * and syntactic-predicate-testing variables.
   * @blk The block for which the preamble is to be generated.
   */
  protected void genBlockPreamble(AlternativeBlock blk) {
    // define labels for rule blocks.
    if ( blk instanceof RuleBlock ) {
      RuleBlock rblk = (RuleBlock)blk;
      if ( rblk.labeledElements!=null ) {
        for (int i=0; i<rblk.labeledElements.size(); i++) {

          AlternativeElement a = (AlternativeElement)rblk.labeledElements.elementAt(i);
          //System.out.println("looking at labeled element: "+a);
          //Variables for labeled rule refs and
          //subrules are different than variables for
          //grammar atoms.  This test is a little tricky
          //because we want to get all rule refs and ebnf,
          //but not rule blocks or syntactic predicates
          if (
            a instanceof RuleRefElement ||
            a instanceof AlternativeBlock &&
            !(a instanceof RuleBlock) &&
            !(a instanceof SynPredBlock)
            ) {

            if (
              !(a instanceof RuleRefElement) &&
              ((AlternativeBlock)a).not &&
              analyzer.subruleCanBeInverted(((AlternativeBlock)a), grammar instanceof LexerGrammar)
              ) {
              // Special case for inverted subrules that
              // will be inlined.  Treat these like
              // token or char literal references
              println(labeledElementType + " " + a.getLabel() + " = " + labeledElementInit + ";");
              if (grammar.buildAST) {
                genASTDeclaration(a);
              }
            }
            else {
              if (grammar.buildAST) {
                // Always gen AST variables for
                // labeled elements, even if the
                // element itself is marked with !
                genASTDeclaration(a);
              }
              if ( grammar instanceof LexerGrammar ) {
                println("Token "+a.getLabel()+" = null;");
              }
              if (grammar instanceof TreeWalkerGrammar) {
                // always generate rule-ref variables
                // for tree walker
                println(labeledElementType + " " + a.getLabel() + " = " + labeledElementInit + ";");
              }
            }
          }
          else {
            // It is a token or literal reference.  Generate the
            // correct variable type for this grammar
            println(labeledElementType + " " + a.getLabel() + " = " + labeledElementInit + ";");
            // In addition, generate *_AST variables if building ASTs
            if (grammar.buildAST) {
              //println(labeledElementASTType+" " + a.getLabel() + "_AST = null;");
              if (a instanceof GrammarAtom &&
                ((GrammarAtom)a).getASTNodeType()!=null ) {
                GrammarAtom ga = (GrammarAtom)a;
                genASTDeclaration(a, ga.getASTNodeType());
              }
              else {
                genASTDeclaration(a);
              }
            }
          }
        }
      }
    }
  }

  public void genBody(LexerGrammar g) throws IOException
  {
    // SAS: moved output creation to method so a subclass can change
    //      how the output is generated (for VAJ interface)
    setupOutput(grammar.getClassName());

    genAST = false// no way to gen trees.
    saveText = true// save consumed characters.

    tabs=0;

    // Generate header common to all CSharp output files
    genHeader();
    // Do not use printAction because we assume tabs==0
    println(behavior.getHeaderAction(""));

          // Generate the CSharp namespace declaration (if specified)
    if (nameSpace != null)
      nameSpace.emitDeclarations(currentOutput);
    tabs++;

    // Generate header specific to lexer CSharp file
    // println("import java.io.FileInputStream;");
    println("// Generate header specific to lexer CSharp file");
    println("using System;");
    println("using Stream                          = System.IO.Stream;");
    println("using TextReader                      = System.IO.TextReader;");
    println("using Hashtable                       = System.Collections.Hashtable;");
    println("using Comparer                        = System.Collections.Comparer;");
    if ( !(g.caseSensitiveLiterals) )
    {
      println("using CaseInsensitiveHashCodeProvider = System.Collections.CaseInsensitiveHashCodeProvider;");
      println("using CaseInsensitiveComparer         = System.Collections.CaseInsensitiveComparer;");
    }
    println("");
    println("using TokenStreamException            = antlr.TokenStreamException;");
    println("using TokenStreamIOException          = antlr.TokenStreamIOException;");
    println("using TokenStreamRecognitionException = antlr.TokenStreamRecognitionException;");
    println("using CharStreamException             = antlr.CharStreamException;");
    println("using CharStreamIOException           = antlr.CharStreamIOException;");
    println("using ANTLRException                  = antlr.ANTLRException;");
    println("using CharScanner                     = antlr.CharScanner;");
    println("using InputBuffer                     = antlr.InputBuffer;");
    println("using ByteBuffer                      = antlr.ByteBuffer;");
    println("using CharBuffer                      = antlr.CharBuffer;");
    println("using Token                           = antlr.Token;");
    println("using CommonToken                     = antlr.CommonToken;");
    println("using SemanticException               = antlr.SemanticException;");
    println("using RecognitionException            = antlr.RecognitionException;");
    println("using NoViableAltForCharException     = antlr.NoViableAltForCharException;");
    println("using MismatchedCharException         = antlr.MismatchedCharException;");
    println("using TokenStream                     = antlr.TokenStream;");
    println("using LexerSharedInputState           = antlr.LexerSharedInputState;");
    println("using BitSet                          = antlr.collections.impl.BitSet;");

    // Generate user-defined lexer file preamble
    println(grammar.preambleAction.getText());

    // Generate lexer class definition
    String sup=null;
    if ( grammar.superClass!=null ) {
      sup = grammar.superClass;
    }
    else {
      sup = "antlr." + grammar.getSuperClass();
    }

    // print javadoc comment if any
    if ( grammar.comment!=null )
    {
      _println(grammar.comment);
    }

        Token tprefix = (Token)grammar.options.get("classHeaderPrefix");
    if (tprefix == null) {
      print("public ");
    }
        else {
            String p = StringUtils.stripFrontBack(tprefix.getText(), "\"", "\"");
            if (p == null) {
        print("public ");
      }
      else {
                print(p+" ");
            }
        }

    print("class " + grammar.getClassName() + " : "+sup);
    println(", TokenStream");
    Token tsuffix = (Token)grammar.options.get("classHeaderSuffix");
    if ( tsuffix != null )
    {
      String suffix = StringUtils.stripFrontBack(tsuffix.getText(),"\"","\"");
      if ( suffix != null )
      {
        print(", "+suffix)// must be an interface name for CSharp
      }
    }
    println(" {");
    tabs++;

    // Generate 'const' definitions for Token IDs
    genTokenDefinitions(grammar.tokenManager);

    // Generate user-defined lexer class members
    print(
      processActionForSpecialSymbols(grammar.classMemberAction.getText(), grammar.classMemberAction.getLine(), currentRule, null)
      );

    //
    // Generate the constructor from InputStream, which in turn
    // calls the ByteBuffer constructor
    //
    println("public " + grammar.getClassName() + "(Stream ins) : this(new ByteBuffer(ins))");
    println("{");
    println("}");
    println("");

    //
    // Generate the constructor from Reader, which in turn
    // calls the CharBuffer constructor
    //
    println("public " + grammar.getClassName() + "(TextReader r) : this(new CharBuffer(r))");
    println("{");
    println("}");
    println("");

    print("public " + grammar.getClassName() + "(InputBuffer ib)");
    // if debugging, wrap the input buffer in a debugger
    if (grammar.debuggingOutput)
      println(" : this(new LexerSharedInputState(new antlr.debug.DebuggingInputBuffer(ib)))");
    else
      println(" : this(new LexerSharedInputState(ib))");
    println("{");
    println("}");
    println("");

    //
    // Generate the constructor from InputBuffer (char or byte)
    //
    println("public " + grammar.getClassName() + "(LexerSharedInputState state) : base(state)");
    println("{");
    tabs++;
    println("initialize();");
    tabs--;
    println("}");

    // Generate the initialize function
    println("private void initialize()");
    println("{");
    tabs++;

    // if debugging, set up array variables and call user-overridable
    //   debugging setup method
    if ( grammar.debuggingOutput ) {
      println("ruleNames  = _ruleNames;");
      println("semPredNames = _semPredNames;");
      println("setupDebugging();");
    }

        // Generate the setting of various generated options.
        // These need to be before the literals since ANTLRHashString depends on
        // the casesensitive stuff.
        println("caseSensitiveLiterals = " + g.caseSensitiveLiterals + ";");
        println("setCaseSensitive(" + g.caseSensitive + ");");

    // Generate the initialization of a hashtable
    // containing the string literals used in the lexer
    // The literals variable itself is in CharScanner
    if (g.caseSensitiveLiterals)
      println("literals = new Hashtable(100, (float) 0.4, null, Comparer.Default);");
    else
      println("literals = new Hashtable(100, (float) 0.4, CaseInsensitiveHashCodeProvider.Default, CaseInsensitiveComparer.Default);");
    Enumeration keys = grammar.tokenManager.getTokenSymbolKeys();
    while ( keys.hasMoreElements() ) {
      String key = (String)keys.nextElement();
      if ( key.charAt(0) != '"' ) {
        continue;
      }
      TokenSymbol sym = grammar.tokenManager.getTokenSymbol(key);
      if ( sym instanceof StringLiteralSymbol ) {
        StringLiteralSymbol s = (StringLiteralSymbol)sym;
        println("literals.Add(" + s.getId() + ", " + s.getTokenType() + ");");
      }
    }

    Enumeration ids;
    tabs--;
    println("}");

    // generate the rule name array for debugging
    if (grammar.debuggingOutput) {
      println("private const string[] _ruleNames = {");

      ids = grammar.rules.elements();
      int ruleNum=0;
      while ( ids.hasMoreElements() ) {
        GrammarSymbol sym = (GrammarSymbol) ids.nextElement();
        if ( sym instanceof RuleSymbol)
          println("  \""+((RuleSymbol)sym).getId()+"\",");
      }
      println("};");
    }

    // Generate nextToken() rule.
    // nextToken() is a synthetic lexer rule that is the implicit OR of all
    // user-defined lexer rules.
    genNextToken();

    // Generate code for each rule in the lexer
    ids = grammar.rules.elements();
    int ruleNum=0;
    while ( ids.hasMoreElements() ) {
      RuleSymbol sym = (RuleSymbol) ids.nextElement();
      // Don't generate the synthetic rules
      if (!sym.getId().equals("mnextToken")) {
        genRule(sym, false, ruleNum++, grammar.tokenManager);
      }
      exitIfError();
    }

    // Generate the semantic predicate map for debugging
    if (grammar.debuggingOutput)
      genSemPredMap();

    // Generate the bitsets used throughout the lexer
    genBitsets(bitsetsUsed, ((LexerGrammar)grammar).charVocabulary.size());

    println("");
    tabs--;
    println("}");

    tabs--;
    // Generate the CSharp namespace closures (if required)
    if (nameSpace != null)
      nameSpace.emitClosures(currentOutput);

    // Close the lexer output stream
    currentOutput.close();
    currentOutput = null;
  }

  public void genInitFactory( Grammar g ) {
    if( g.buildAST )
    {
      // Generate the method to initialize an ASTFactory when we're
      // building AST's
      println("static public void initializeASTFactory( ASTFactory factory )");
      println("{");
      tabs++;

      println("factory.setMaxNodeType("+g.tokenManager.maxTokenType()+");");

          // Walk the token vocabulary and generate code to register every TokenID->ASTNodeType
          // mapping specified in the  tokens {...} section with the ASTFactory.
      Vector v = g.tokenManager.getVocabulary();
      for (int i = 0; i < v.size(); i++) {
        String s = (String)v.elementAt(i);
        if (s != null) {
          TokenSymbol ts = g.tokenManager.getTokenSymbol(s);
          if (ts != null && ts.getASTNodeType() != null) {
            println("factory.setTokenTypeASTNodeType(" + s + ", \"" + ts.getASTNodeType() + "\");");
          }
        }
      }

      tabs--;
      println("}");
    }
  }

  public void genBody(ParserGrammar g) throws IOException
  {
    // Open the output stream for the parser and set the currentOutput
    // SAS: moved file setup so subclass could do it (for VAJ interface)
    setupOutput(grammar.getClassName());

    genAST = grammar.buildAST;

    tabs = 0;

    // Generate the header common to all output files.
    genHeader();
    // Do not use printAction because we assume tabs==0
    println(behavior.getHeaderAction(""));

          // Generate the CSharp namespace declaration (if specified)
    if (nameSpace != null)
      nameSpace.emitDeclarations(currentOutput);
    tabs++;

    // Generate header for the parser
    println("// Generate the header common to all output files.");
    println("using System;");
    println("");
    println("using TokenBuffer              = antlr.TokenBuffer;");
    println("using TokenStreamException     = antlr.TokenStreamException;");
    println("using TokenStreamIOException   = antlr.TokenStreamIOException;");
    println("using ANTLRException           = antlr.ANTLRException;");
    println("using " + grammar.getSuperClass() + " = antlr." + grammar.getSuperClass() + ";");
    println("using Token                    = antlr.Token;");
    println("using TokenStream              = antlr.TokenStream;");
    println("using RecognitionException     = antlr.RecognitionException;");
    println("using NoViableAltException     = antlr.NoViableAltException;");
    println("using MismatchedTokenException = antlr.MismatchedTokenException;");
    println("using SemanticException        = antlr.SemanticException;");
    println("using ParserSharedInputState   = antlr.ParserSharedInputState;");
    println("using BitSet                   = antlr.collections.impl.BitSet;");
    if ( genAST ) {
      println("using AST                      = antlr.collections.AST;");
      println("using ASTPair                  = antlr.ASTPair;");
      println("using ASTFactory               = antlr.ASTFactory;");
      println("using ASTArray                 = antlr.collections.impl.ASTArray;");
    }

    // Output the user-defined parser preamble
    println(grammar.preambleAction.getText());

    // Generate parser class definition
    String sup=null;
    if ( grammar.superClass != null )
      sup = grammar.superClass;
    else
      sup = "antlr." + grammar.getSuperClass();

    // print javadoc comment if any
    if ( grammar.comment!=null ) {
      _println(grammar.comment);
    }

        Token tprefix = (Token)grammar.options.get("classHeaderPrefix");
    if (tprefix == null) {
      print("public ");
    }
        else {
            String p = StringUtils.stripFrontBack(tprefix.getText(), "\"", "\"");
            if (p == null) {
        print("public ");
      }
      else {
                print(p+" ");
            }
        }

    println("class " + grammar.getClassName() + " : "+sup);

    Token tsuffix = (Token)grammar.options.get("classHeaderSuffix");
    if ( tsuffix != null ) {
      String suffix = StringUtils.stripFrontBack(tsuffix.getText(),"\"","\"");
      if ( suffix != null )
        print("              , "+suffix)// must be an interface name for CSharp
    }
    println("{");
    tabs++;

    // Generate 'const' definitions for Token IDs
    genTokenDefinitions(grammar.tokenManager);

    // set up an array of all the rule names so the debugger can
    // keep track of them only by number -- less to store in tree...
    if (grammar.debuggingOutput) {
      println("private const string[] _ruleNames = {");
      tabs++;

      Enumeration ids = grammar.rules.elements();
      int ruleNum=0;
      while ( ids.hasMoreElements() ) {
        GrammarSymbol sym = (GrammarSymbol) ids.nextElement();
        if ( sym instanceof RuleSymbol)
          println("  \""+((RuleSymbol)sym).getId()+"\",");
      }
      tabs--;
      println("};");
    }

    // Generate user-defined parser class members
    print(
      processActionForSpecialSymbols(grammar.classMemberAction.getText(), grammar.classMemberAction.getLine(), currentRule, null)
      );

    // Generate parser class constructor from TokenBuffer
    println("");
    println("protected void initialize()");
    println("{");
    tabs++;
    println("tokenNames = tokenNames_;");

    if( grammar.buildAST )
      println("initializeFactory();");

    // if debugging, set up arrays and call the user-overridable
    //   debugging setup method
    if ( grammar.debuggingOutput ) {
      println("ruleNames  = _ruleNames;");
      println("semPredNames = _semPredNames;");
      println("setupDebugging(tokenBuf);");
    }
    tabs--;
    println("}");
    println("");

    println("");
    println("protected " + grammar.getClassName() + "(TokenBuffer tokenBuf, int k) : base(tokenBuf, k)");
    println("{");
    tabs++;
    println("initialize();");
    tabs--;
    println("}");
    println("");

    println("public " + grammar.getClassName() + "(TokenBuffer tokenBuf) : this(tokenBuf," + grammar.maxk + ")");
    println("{");
    println("}");
    println("");

    // Generate parser class constructor from TokenStream
    println("protected " + grammar.getClassName()+"(TokenStream lexer, int k) : base(lexer,k)");
    println("{");
    tabs++;
    println("initialize();");
    tabs--;
    println("}");
    println("");

    println("public " + grammar.getClassName()+"(TokenStream lexer) : this(lexer," + grammar.maxk + ")");
    println("{");
    println("}");
    println("");

    println("public " + grammar.getClassName()+"(ParserSharedInputState state) : base(state," + grammar.maxk + ")");
    println("{");
    tabs++;
    println("initialize();");
    tabs--;
    println("}");
    println("");

    astTypes = new java.util.Vector(100);

    // Generate code for each rule in the grammar
    Enumeration ids = grammar.rules.elements();
    int ruleNum=0;
    while ( ids.hasMoreElements() ) {
      GrammarSymbol sym = (GrammarSymbol) ids.nextElement();
      if ( sym instanceof RuleSymbol) {
        RuleSymbol rs = (RuleSymbol)sym;
        genRule(rs, rs.references.size()==0, ruleNum++, grammar.tokenManager);
      }
      exitIfError();
    }
    if ( usingCustomAST )
    {
      // when we are using a custom AST, overload Parser.getAST() to return the
      // custom AST type
      println("public new " + labeledElementASTType + " getAST()");
      println("{");
      tabs++;
      println("return (" + labeledElementASTType + ") returnAST;");
      tabs--;
      println("}");
      println("");
    }

    // Generate the method that initializes the ASTFactory when we're
    // building AST's
    println("private void initializeFactory()");
    println("{");
    tabs++;
    if( grammar.buildAST ) {
      println("if (astFactory == null)");
      println("{");
      tabs++;
      if( usingCustomAST )
      {
        println("astFactory = new ASTFactory(\"" + labeledElementASTType + "\");");
      }
      else
        println("astFactory = new ASTFactory();");
      tabs--;
      println("}");
      println("initializeASTFactory( astFactory );");
    }
    tabs--;
    println("}");
    genInitFactory( g );

    // Generate the token names
    genTokenStrings();

    // Generate the bitsets used throughout the grammar
    genBitsets(bitsetsUsed, grammar.tokenManager.maxTokenType());

    // Generate the semantic predicate map for debugging
    if (grammar.debuggingOutput)
      genSemPredMap();

    // Close class definition
    println("");
    tabs--;
    println("}");

    tabs--;
    // Generate the CSharp namespace closures (if required)
    if (nameSpace != null)
      nameSpace.emitClosures(currentOutput);

    // Close the parser output stream
    currentOutput.close();
    currentOutput = null;
  }
  public void genBody(TreeWalkerGrammar g) throws IOException
  {
    // Open the output stream for the parser and set the currentOutput
    // SAS: move file open to method so subclass can override it
    //      (mainly for VAJ interface)
    setupOutput(grammar.getClassName());

    genAST = grammar.buildAST;
    tabs = 0;

    // Generate the header common to all output files.
    genHeader();
    // Do not use printAction because we assume tabs==0
    println(behavior.getHeaderAction(""));

      // Generate the CSharp namespace declaration (if specified)
    if (nameSpace != null)
      nameSpace.emitDeclarations(currentOutput);
    tabs++;

    // Generate header specific to the tree-parser CSharp file
    println("// Generate header specific to the tree-parser CSharp file");
    println("using System;");
    println("");
    println("using " + grammar.getSuperClass() + " = antlr." + grammar.getSuperClass() + ";");
    println("using Token                    = antlr.Token;");
    println("using AST                      = antlr.collections.AST;");
    println("using RecognitionException     = antlr.RecognitionException;");
    println("using ANTLRException           = antlr.ANTLRException;");
    println("using NoViableAltException     = antlr.NoViableAltException;");
    println("using MismatchedTokenException = antlr.MismatchedTokenException;");
    println("using SemanticException        = antlr.SemanticException;");
    println("using BitSet                   = antlr.collections.impl.BitSet;");
    println("using ASTPair                  = antlr.ASTPair;");
    println("using ASTFactory               = antlr.ASTFactory;");
    println("using ASTArray                 = antlr.collections.impl.ASTArray;");

    // Output the user-defined parser premamble
    println(grammar.preambleAction.getText());

    // Generate parser class definition
    String sup=null;
    if ( grammar.superClass!=null ) {
      sup = grammar.superClass;
    }
    else {
      sup = "antlr." + grammar.getSuperClass();
    }
    println("");

    // print javadoc comment if any
    if ( grammar.comment!=null ) {
      _println(grammar.comment);
    }

        Token tprefix = (Token)grammar.options.get("classHeaderPrefix");
    if (tprefix == null) {
      print("public ");
    }
        else {
            String p = StringUtils.stripFrontBack(tprefix.getText(), "\"", "\"");
            if (p == null) {
        print("public ");
      }
      else {
                print(p+" ");
            }
        }

    println("class " + grammar.getClassName() + " : "+sup);
    Token tsuffix = (Token)grammar.options.get("classHeaderSuffix");
    if ( tsuffix != null ) {
      String suffix = StringUtils.stripFrontBack(tsuffix.getText(),"\"","\"");
      if ( suffix != null ) {
        print("              , "+suffix)// must be an interface name for CSharp
      }
    }
    println("{");
    tabs++;

    // Generate 'const' definitions for Token IDs
    genTokenDefinitions(grammar.tokenManager);

    // Generate user-defined parser class members
    print(
      processActionForSpecialSymbols(grammar.classMemberAction.getText(), grammar.classMemberAction.getLine(), currentRule, null)
      );

    // Generate default parser class constructor
    println("public " + grammar.getClassName() + "()");
    println("{");
    tabs++;
    println("tokenNames = tokenNames_;");
    tabs--;
    println("}");
    println("");

    astTypes = new java.util.Vector();
    // Generate code for each rule in the grammar
    Enumeration ids = grammar.rules.elements();
    int ruleNum=0;
    String ruleNameInits = "";
    while ( ids.hasMoreElements() ) {
      GrammarSymbol sym = (GrammarSymbol) ids.nextElement();
      if ( sym instanceof RuleSymbol) {
        RuleSymbol rs = (RuleSymbol)sym;
        genRule(rs, rs.references.size()==0, ruleNum++, grammar.tokenManager);
      }
      exitIfError();
    }

    if ( usingCustomAST )
    {
      // when we are using a custom ast override Parser.getAST to return the
      // custom AST type
      println("public new " + labeledElementASTType + " getAST()");
      println("{");
      tabs++;
      println("return (" + labeledElementASTType + ") returnAST;");
      tabs--;
      println("}");
      println("");
    }

    // Generate the ASTFactory initialization function
    genInitFactory( grammar );

    // Generate the token names
    genTokenStrings();

    // Generate the bitsets used throughout the grammar
    genBitsets(bitsetsUsed, grammar.tokenManager.maxTokenType());

    // Close class definition
    tabs--;
    println("}");
    println("");

    tabs--;
    // Generate the CSharp namespace closures (if required)
    if (nameSpace != null)
      nameSpace.emitClosures(currentOutput);

    // Close the parser output stream
    currentOutput.close();
    currentOutput = null;
  }

  /** Generate a series of case statements that implement a BitSet test.
   * @param p The Bitset for which cases are to be generated
   */
  protected void genCases(BitSet p) {
    if ( DEBUG_CODE_GENERATOR ) System.out.println("genCases("+p+")");
    int[] elems;

    elems = p.toArray();
    // Wrap cases four-per-line for lexer, one-per-line for parser
    int wrap = (grammar instanceof LexerGrammar) ? 4 : 1;
    int j=1;
    boolean startOfLine = true;
    for (int i = 0; i < elems.length; i++) {
      if (j==1) {
        print("");
      } else {
        _print("  ");
      }
      _print("case " + getValueString(elems[i]) + ":");
      if (j==wrap) {
        _println("");
        startOfLine = true;
        j=1;
      }
      else {
        j++;
        startOfLine = false;
      }
    }
    if (!startOfLine) {
      _println("");
    }
  }

  /**Generate common code for a block of alternatives; return a
  * postscript that needs to be generated at the end of the
  * block.  Other routines may append else-clauses and such for
  * error checking before the postfix is generated.  If the
  * grammar is a lexer, then generate alternatives in an order
  * where alternatives requiring deeper lookahead are generated
  * first, and EOF in the lookahead set reduces the depth of
  * the lookahead.  @param blk The block to generate @param
  * noTestForSingle If true, then it does not generate a test
  * for a single alternative.
  */
  public CSharpBlockFinishingInfo genCommonBlock(AlternativeBlock blk,
    boolean noTestForSingle)
  {
    int nIF=0;
    boolean createdLL1Switch = false;
    int closingBracesOfIFSequence = 0;
    CSharpBlockFinishingInfo finishingInfo = new CSharpBlockFinishingInfo();
    if ( DEBUG_CODE_GENERATOR ) System.out.println("genCommonBlock("+blk+")");

    // Save the AST generation state, and set it to that of the block
    boolean savegenAST = genAST;
    genAST = genAST && blk.getAutoGen();

      boolean oldsaveTest = saveText;
    saveText = saveText && blk.getAutoGen();

    // Is this block inverted?  If so, generate special-case code
    if ( blk.not &&
      analyzer.subruleCanBeInverted(blk, grammar instanceof LexerGrammar) )
    {
      if ( DEBUG_CODE_GENERATOR ) System.out.println("special case: ~(subrule)");
      Lookahead p = analyzer.look(1, blk);
      // Variable assignment for labeled elements
      if (blk.getLabel() != null && syntacticPredLevel == 0) {
        println(blk.getLabel() + " = " + lt1Value + ";");
      }

      // AST
      genElementAST(blk);

      String astArgs="";
      if (grammar instanceof TreeWalkerGrammar) {
        if ( usingCustomAST )
          astArgs = "(AST)_t,";
        else
          astArgs = "_t,";
      }

      // match the bitset for the alternative
      println("match(" + astArgs + getBitsetName(markBitsetForGen(p.fset)) + ");");

      // tack on tree cursor motion if doing a tree walker
      if (grammar instanceof TreeWalkerGrammar)
      {
        println("_t = _t.getNextSibling();");
      }
      return finishingInfo;
    }

    // Special handling for single alt
    if (blk.getAlternatives().size() == 1)
    {
      Alternative alt = blk.getAlternativeAt(0);
      // Generate a warning if there is a synPred for single alt.
      if (alt.synPred != null)
      {
        antlrTool.warning(
          "Syntactic predicate superfluous for single alternative",
          grammar.getFilename(),
               blk.getAlternativeAt(0).synPred.getLine(),
               blk.getAlternativeAt(0).synPred.getColumn()
          );
      }
      if (noTestForSingle)
      {
        if (alt.semPred != null)
        {
          // Generate validating predicate
          genSemPred(alt.semPred, blk.line);
        }
        genAlt(alt, blk);
        return finishingInfo;
      }
    }

    // count number of simple LL(1) cases; only do switch for
    // many LL(1) cases (no preds, no end of token refs)
    // We don't care about exit paths for (...)*, (...)+
    // because we don't explicitly have a test for them
    // as an alt in the loop.
    //
    // Also, we now count how many unicode lookahead sets
    // there are--they must be moved to DEFAULT or ELSE
    // clause.
    int nLL1 = 0;
    for (int i=0; i<blk.getAlternatives().size(); i++)
    {
      Alternative a = blk.getAlternativeAt(i);
      if ( suitableForCaseExpression(a) ) {
        nLL1++;
      }
    }

    // do LL(1) cases
    if ( nLL1 >= makeSwitchThreshold)
    {
      // Determine the name of the item to be compared
      String testExpr = lookaheadString(1);
      createdLL1Switch = true;
      // when parsing trees, convert null to valid tree node with NULL lookahead
      if ( grammar instanceof TreeWalkerGrammar )
      {
        println("if (null == _t)");
        tabs++;
        println("_t = ASTNULL;");
        tabs--;
      }
      println("switch ( " + testExpr+" )");
      println("{");
      //tabs++;
      for (int i=0; i<blk.alternatives.size(); i++)
      {
        Alternative alt = blk.getAlternativeAt(i);
        // ignore any non-LL(1) alts, predicated alts,
        // or end-of-token alts for case expressions
        bSaveIndexCreated = false;
        if ( !suitableForCaseExpression(alt) )
        {
          continue;
        }
        Lookahead p = alt.cache[1];
        if (p.fset.degree() == 0 && !p.containsEpsilon())
        {
          antlrTool.warning("Alternate omitted due to empty prediction set",
            grammar.getFilename(),
            alt.head.getLine(), alt.head.getColumn());
        }
        else
        {
          genCases(p.fset);
          println("{");
          tabs++;
          genAlt(alt, blk);
          println("break;");
          tabs--;
          println("}");
        }
      }
      println("default:");
      tabs++;
    }

    // do non-LL(1) and nondeterministic cases This is tricky in
    // the lexer, because of cases like: STAR : '*' ; ASSIGN_STAR
    // : "*="; Since nextToken is generated without a loop, then
    // the STAR will have end-of-token as it's lookahead set for
    // LA(2).  So, we must generate the alternatives containing
    // trailing end-of-token in their lookahead sets *after* the
    // alternatives without end-of-token.  This implements the
    // usual lexer convention that longer matches come before
    // shorter ones, e.g.  "*=" matches ASSIGN_STAR not STAR
    //
    // For non-lexer grammars, this does not sort the alternates
    // by depth Note that alts whose lookahead is purely
    // end-of-token at k=1 end up as default or else clauses.
    int startDepth = (grammar instanceof LexerGrammar) ? grammar.maxk : 0;
    for (int altDepth = startDepth; altDepth >= 0; altDepth--) {
      if ( DEBUG_CODE_GENERATOR ) System.out.println("checking depth "+altDepth);
      for (int i=0; i<blk.alternatives.size(); i++) {
        Alternative alt = blk.getAlternativeAt(i);
        if ( DEBUG_CODE_GENERATOR ) System.out.println("genAlt: "+i);
        // if we made a switch above, ignore what we already took care
        // of.  Specifically, LL(1) alts with no preds
        // that do not have end-of-token in their prediction set
        // and that are not giant unicode sets.
        if ( createdLL1Switch && suitableForCaseExpression(alt) )
        {
          if ( DEBUG_CODE_GENERATOR ) System.out.println("ignoring alt because it was in the switch");
          continue;
        }
        String e;

        boolean unpredicted = false;

        if (grammar instanceof LexerGrammar) {
          // Calculate the "effective depth" of the alt,
          // which is the max depth at which
          // cache[depth]!=end-of-token
          int effectiveDepth = alt.lookaheadDepth;
          if (effectiveDepth == GrammarAnalyzer.NONDETERMINISTIC)
          {
            // use maximum lookahead
            effectiveDepth = grammar.maxk;
          }
          while ( effectiveDepth >= 1 &&
            alt.cache[effectiveDepth].containsEpsilon() )
          {
            effectiveDepth--;
          }
          // Ignore alts whose effective depth is other than
          // the ones we are generating for this iteration.
          if (effectiveDepth != altDepth)
          {
            if ( DEBUG_CODE_GENERATOR )
              System.out.println("ignoring alt because effectiveDepth!=altDepth;"+effectiveDepth+"!="+altDepth);
            continue;
          }
          unpredicted = lookaheadIsEmpty(alt, effectiveDepth);
          e = getLookaheadTestExpression(alt, effectiveDepth);
        }
        else
        {
          unpredicted = lookaheadIsEmpty(alt, grammar.maxk);
          e = getLookaheadTestExpression(alt, grammar.maxk);
        }

        // Was it a big unicode range that forced unsuitability
        // for a case expression?
            if (alt.cache[1].fset.degree() > caseSizeThreshold &&
                suitableForCaseExpression(alt))
        {
          if ( nIF==0 )
          {
            println("if " + e);
            println("{");
          }
          else {
            println("else if " + e);
            println("{");
          }
        }
        else if (unpredicted &&
          alt.semPred==null &&
          alt.synPred==null)
        {
          // The alt has empty prediction set and no
          // predicate to help out.  if we have not
          // generated a previous if, just put {...} around
          // the end-of-token clause
          if ( nIF==0 ) {
            println("{");
          }
          else {
            println("else {");
          }
          finishingInfo.needAnErrorClause = false;
        }
        else
        {
          // check for sem and syn preds
          // Add any semantic predicate expression to the lookahead test
          if ( alt.semPred != null ) {
            // if debugging, wrap the evaluation of the predicate in a method
            //
            // translate $ and # references
            ActionTransInfo tInfo = new ActionTransInfo();
            String actionStr = processActionForSpecialSymbols(alt.semPred,
              blk.line,
              currentRule,
              tInfo);
            // ignore translation info...we don't need to
            // do anything with it.  call that will inform
            // SemanticPredicateListeners of the result
            if (((grammar instanceof ParserGrammar) || (grammar instanceof LexerGrammar)) &&
                grammar.debuggingOutput) {
              e = "("+e+"&& fireSemanticPredicateEvaluated(antlr.debug.SemanticPredicateEvent.PREDICTING,"+ //FIXME
                addSemPred(charFormatter.escapeString(actionStr))+","+actionStr+"))";
            }
            else {
              e = "("+e+"&&("+actionStr +"))";
            }
          }

          // Generate any syntactic predicates
          if ( nIF>0 ) {
            if ( alt.synPred != null ) {
              println("else {");
              tabs++;
              genSynPred( alt.synPred, e );
              closingBracesOfIFSequence++;
            }
            else {
              println("else if " + e + " {");
            }
          }
          else {
            if ( alt.synPred != null ) {
              genSynPred( alt.synPred, e );
            }
            else {
              // when parsing trees, convert null to valid tree node
              // with NULL lookahead.
              if ( grammar instanceof TreeWalkerGrammar ) {
                println("if (_t == null)");
                tabs++;
                println("_t = ASTNULL;");
                tabs--;
              }
              println("if " + e);
              println("{");
            }
          }

        }

        nIF++;
        tabs++;
        genAlt(alt, blk);
        tabs--;
        println("}");
      }
    }

    String ps = "";
    for (int i=1; i<=closingBracesOfIFSequence; i++) {
      ps+="}";
    }

    // Restore the AST generation state
    genAST = savegenAST;

    // restore save text state
    saveText=oldsaveTest;

    // Return the finishing info.
    if ( createdLL1Switch ) {
      tabs--;
      finishingInfo.postscript = ps+"break; }";
      finishingInfo.generatedSwitch = true;
      finishingInfo.generatedAnIf = nIF>0;
      //return new CSharpBlockFinishingInfo(ps+"}",true,nIF>0); // close up switch statement

    }
    else {
      finishingInfo.postscript = ps;
      finishingInfo.generatedSwitch = false;
      finishingInfo.generatedAnIf = nIF>0;
      // return new CSharpBlockFinishingInfo(ps, false,nIF>0);
    }
    return finishingInfo;
  }

  private static boolean suitableForCaseExpression(Alternative a) {
    return a.lookaheadDepth == 1 &&
      a.semPred == null &&
      !a.cache[1].containsEpsilon() &&
      a.cache[1].fset.degree()<=caseSizeThreshold;
  }

  /** Generate code to link an element reference into the AST */
  private void genElementAST(AlternativeElement el) {
    // handle case where you're not building trees, but are in tree walker.
    // Just need to get labels set up.
    if ( grammar instanceof TreeWalkerGrammar && !grammar.buildAST )
    {
      String elementRef;
      String astName;

      // Generate names and declarations of the AST variable(s)
      if (el.getLabel() == null)
      {
        elementRef = lt1Value;
        // Generate AST variables for unlabeled stuff
        astName = "tmp" + astVarNumber + "_AST";
        astVarNumber++;
        // Map the generated AST variable in the alternate
        mapTreeVariable(el, astName);
        // Generate an "input" AST variable also
        println(labeledElementASTType+" "+astName+"_in = "+elementRef+";");
      }
      return;
    }

    if (grammar.buildAST && syntacticPredLevel == 0)
    {
          boolean needASTDecl =
            (genAST &&
            (el.getLabel() != null || (el.getAutoGenType() != GrammarElement.AUTO_GEN_BANG)));

          // RK: if we have a grammar element always generate the decl
          // since some guy can access it from an action and we can't
          // peek ahead (well not without making a mess).
          // I'd prefer taking this out.
          if (el.getAutoGenType() != GrammarElement.AUTO_GEN_BANG &&
        (el instanceof TokenRefElement))
            needASTDecl = true;

          boolean doNoGuessTest = (grammar.hasSyntacticPredicate && needASTDecl);

      String elementRef;
      String astNameBase;

      // Generate names and declarations of the AST variable(s)
      if (el.getLabel() != null)
      {
        // if the element is labeled use that name...
        elementRef = el.getLabel();
        astNameBase = el.getLabel();
      }
      else
      {
        // else generate a temporary name...
        elementRef = lt1Value;
        // Generate AST variables for unlabeled stuff
        astNameBase = "tmp" + astVarNumber;
        astVarNumber++;
      }

          // Generate the declaration if required.
          if (needASTDecl)
          {
        // Generate the declaration
        if ( el instanceof GrammarAtom )
        {
          GrammarAtom ga = (GrammarAtom)el;
          if ( ga.getASTNodeType()!=null )
          {
            genASTDeclaration(el, astNameBase, ga.getASTNodeType());
            //println(ga.getASTNodeType()+" " + astName+" = null;");
          }
          else
          {
            genASTDeclaration(el, astNameBase, labeledElementASTType);
            //println(labeledElementASTType+" " + astName + " = null;");
          }
        }
        else
        {
          genASTDeclaration(el, astNameBase, labeledElementASTType);
          //println(labeledElementASTType+" " + astName + " = null;");
        }
      }

          // for convenience..
        String astName = astNameBase + "_AST";

      // Map the generated AST variable in the alternate
      mapTreeVariable(el, astName);
      if (grammar instanceof TreeWalkerGrammar)
      {
        // Generate an "input" AST variable also
        println(labeledElementASTType+" " + astName + "_in = null;");
      }


      // Enclose actions with !guessing
      if (doNoGuessTest) {
        //println("if (0 == inputState.guessing)");
        //println("{");
        //tabs++;
      }

      // if something has a label assume it will be used
          // so we must initialize the RefAST
      if (el.getLabel() != null)
      {
        if ( el instanceof GrammarAtom )
        {
          println(astName + " = "+ getASTCreateString((GrammarAtom)el, elementRef) + ";");
        }
        else
        {
          println(astName + " = "+ getASTCreateString(elementRef) + ";");
        }
      }

      // if it has no label but a declaration exists initialize it.
          if (el.getLabel() == null && needASTDecl)
      {
        elementRef = lt1Value;
        if ( el instanceof GrammarAtom )
        {
          println(astName + " = "+ getASTCreateString((GrammarAtom)el, elementRef) + ";");
        }
        else
        {
          println(astName + " = "+ getASTCreateString(elementRef) + ";");
        }
        // Map the generated AST variable in the alternate
        if (grammar instanceof TreeWalkerGrammar)
        {
          // set "input" AST variable also
          println(astName + "_in = " + elementRef + ";");
        }
      }

      if (genAST)
      {
        switch (el.getAutoGenType())
        {
        case GrammarElement.AUTO_GEN_NONE:
          if ( usingCustomAST ||
             ( (el instanceof GrammarAtom) &&
                           (((GrammarAtom)el).getASTNodeType() != null) ) )
            println("astFactory.addASTChild(currentAST, (AST)" + astName + ");");
          else
            println("astFactory.addASTChild(currentAST, " + astName + ");");
          break;
        case GrammarElement.AUTO_GEN_CARET:
          if ( usingCustomAST ||
             ( (el instanceof GrammarAtom) &&
                           (((GrammarAtom)el).getASTNodeType() != null) ) )
            println("astFactory.makeASTRoot(currentAST, (AST)" + astName + ");");
          else
            println("astFactory.makeASTRoot(currentAST, " + astName + ");");
          break;
        default:
          break;
        }
      }
      if (doNoGuessTest)
      {
        //tabs--;
        //println("}");
      }
    }
  }


  /** Close the try block and generate catch phrases
   * if the element has a labeled handler in the rule
   */
  private void genErrorCatchForElement(AlternativeElement el) {
    if (el.getLabel() == null) return;
    String r = el.enclosingRuleName;
    if ( grammar instanceof LexerGrammar ) {
      r = CodeGenerator.encodeLexerRuleName(el.enclosingRuleName);
    }
    RuleSymbol rs = (RuleSymbol)grammar.getSymbol(r);
    if (rs == null) {
      antlrTool.panic("Enclosing rule not found!");
    }
    ExceptionSpec ex = rs.block.findExceptionSpec(el.getLabel());
    if (ex != null) {
      tabs--;
      println("}");
      genErrorHandler(ex);
    }
  }

  /** Generate the catch phrases for a user-specified error handler */
  private void genErrorHandler(ExceptionSpec ex)
  {
    // Each ExceptionHandler in the ExceptionSpec is a separate catch
    for (int i = 0; i < ex.handlers.size(); i++)
    {
      ExceptionHandler handler = (ExceptionHandler)ex.handlers.elementAt(i);
      // Generate catch phrase
      println("catch (" + handler.exceptionTypeAndName.getText() + ")");
      println("{");
      tabs++;
      if (grammar.hasSyntacticPredicate) {
        println("if (0 == inputState.guessing)");
        println("{");
        tabs++;
      }

    // When not guessing, execute user handler action
    ActionTransInfo tInfo = new ActionTransInfo();
        printAction(processActionForSpecialSymbols(handler.action.getText(),
                   handler.action.getLine(), currentRule, tInfo));

      if (grammar.hasSyntacticPredicate)
      {
        tabs--;
        println("}");
        println("else");
        println("{");
        tabs++;
        // When guessing, rethrow exception
        //println("throw " + extractIdOfAction(handler.exceptionTypeAndName) + ";");
        println("throw;");
        tabs--;
        println("}");
      }
      // Close catch phrase
      tabs--;
      println("}");
    }
  }
  /** Generate a try { opening if the element has a labeled handler in the rule */
  private void genErrorTryForElement(AlternativeElement el) {
    if (el.getLabel() == null) return;
    String r = el.enclosingRuleName;
    if ( grammar instanceof LexerGrammar ) {
      r = CodeGenerator.encodeLexerRuleName(el.enclosingRuleName);
    }
    RuleSymbol rs = (RuleSymbol)grammar.getSymbol(r);
    if (rs == null) {
      antlrTool.panic("Enclosing rule not found!");
    }
    ExceptionSpec ex = rs.block.findExceptionSpec(el.getLabel());
    if (ex != null) {
      println("try   // for error handling");
      println("{");
      tabs++;
    }
  }

    protected void genASTDeclaration(AlternativeElement el)
    {
        genASTDeclaration(el, labeledElementASTType);
    }

    protected void genASTDeclaration(AlternativeElement el, String node_type)
    {
        genASTDeclaration(el, el.getLabel(), node_type);
    }

    protected void genASTDeclaration(AlternativeElement el, String var_name, String node_type)
    {
        // already declared?
        if (declaredASTVariables.contains(el))
            return;

        // emit code
        //String s = StringUtils.stripFrontBack(node_type, "\"", "\"");
        //println(s + " " + var_name + "_AST = null;");
        println(node_type + " " + var_name + "_AST = null;");

        // mark as declared
        declaredASTVariables.put(el,el);
    }

  /** Generate a header that is common to all CSharp files */
  protected void genHeader()
  {
    println("// $ANTLR "+Tool.version+": "+
      "\"" + antlrTool.fileMinusPath(antlrTool.grammarFile) + "\"" +
      " -> "+
      "\""+grammar.getClassName()+".cs\"$");
  }

  private void genLiteralsTest() {
    println("_ttype = testLiteralsTable(_ttype);");
  }

  private void genLiteralsTestForPartialToken() {
    println("_ttype = testLiteralsTable(text.ToString(_begin, text.Length-_begin), _ttype);");
  }

  protected void genMatch(BitSet b) {
  }

  protected void genMatch(GrammarAtom atom) {
    if ( atom instanceof StringLiteralElement ) {
      if ( grammar instanceof LexerGrammar ) {
        genMatchUsingAtomText(atom);
      }
      else {
        genMatchUsingAtomTokenType(atom);
      }
    }
    else if ( atom instanceof CharLiteralElement ) {
      if ( grammar instanceof LexerGrammar ) {
        genMatchUsingAtomText(atom);
      }
      else {
        antlrTool.error("cannot ref character literals in grammar: "+atom);
      }
    }
    else if ( atom instanceof TokenRefElement ) {
      genMatchUsingAtomText(atom);
    } else if (atom instanceof WildcardElement) {
          gen((WildcardElement)atom);
      }
  }
  protected void genMatchUsingAtomText(GrammarAtom atom) {
    // match() for trees needs the _t cursor
    String astArgs="";
    if (grammar instanceof TreeWalkerGrammar) {
      if ( usingCustomAST )
        astArgs="(AST)_t,";
      else
        astArgs="_t,";
    }

    // if in lexer and ! on element, save buffer index to kill later
    if ( grammar instanceof LexerGrammar && (!saveText||atom.getAutoGenType()==GrammarElement.AUTO_GEN_BANG) ) {
      declareSaveIndexVariableIfNeeded();
      println("_saveIndex = text.Length;");
    }

    print(atom.not ? "matchNot(" : "match(");
    _print(astArgs);

    // print out what to match
    if (atom.atomText.equals("EOF")) {
      // horrible hack to handle EOF case
      _print("Token.EOF_TYPE");
    }
    else {
        _print(atom.atomText);
    }
    _println(");");

    if ( grammar instanceof LexerGrammar && (!saveText||atom.getAutoGenType()==GrammarElement.AUTO_GEN_BANG) ) {
      declareSaveIndexVariableIfNeeded();
      println("text.Length = _saveIndex;");    // kill text atom put in buffer
    }
  }

  protected void genMatchUsingAtomTokenType(GrammarAtom atom) {
    // match() for trees needs the _t cursor
    String astArgs="";
    if (grammar instanceof TreeWalkerGrammar) {
      if( usingCustomAST )
        astArgs="(AST)_t,";
      else
        astArgs="_t,";
    }

    // If the literal can be mangled, generate the symbolic constant instead
    String mangledName = null;
    String s = astArgs + getValueString(atom.getType());

    // matching
    println( (atom.not ? "matchNot(" : "match(") + s + ");");
  }

  /** Generate the nextToken() rule.  nextToken() is a synthetic
  * lexer rule that is the implicit OR of all user-defined
  * lexer rules.
  */
  public void genNextToken() {
    // Are there any public rules?  If not, then just generate a
    // fake nextToken().
    boolean hasPublicRules = false;
    for (int i = 0; i < grammar.rules.size(); i++) {
      RuleSymbol rs = (RuleSymbol)grammar.rules.elementAt(i);
      if ( rs.isDefined() && rs.access.equals("public") ) {
        hasPublicRules = true;
        break;
      }
    }
    if (!hasPublicRules) {
      println("");
      println("override public Token nextToken()\t\t\t//throws TokenStreamException");
      println("{");
      tabs++;
      println("try");
      println("{");
      tabs++;
      println("uponEOF();");
      tabs--;
      println("}");
      println("catch(CharStreamIOException csioe)");
      println("{");
      tabs++;
      println("throw new TokenStreamIOException(csioe.io);");
      tabs--;
      println("}");
      println("catch(CharStreamException cse)");
      println("{");
      tabs++;
      println("throw new TokenStreamException(cse.Message);");
      tabs--;
      println("}");
      println("return new CommonToken(Token.EOF_TYPE, \"\");");
      tabs--;
      println("}");
      println("");
      return;
    }

    // Create the synthesized nextToken() rule
    RuleBlock nextTokenBlk = MakeGrammar.createNextTokenRule(grammar, grammar.rules, "nextToken");
    // Define the nextToken rule symbol
    RuleSymbol nextTokenRs = new RuleSymbol("mnextToken");
    nextTokenRs.setDefined();
    nextTokenRs.setBlock(nextTokenBlk);
    nextTokenRs.access = "private";
    grammar.define(nextTokenRs);
    // Analyze the nextToken rule
    boolean ok = grammar.theLLkAnalyzer.deterministic(nextTokenBlk);

    // Generate the next token rule
    String filterRule=null;
    if ( ((LexerGrammar)grammar).filterMode ) {
      filterRule = ((LexerGrammar)grammar).filterRule;
    }

    println("");
    println("override public Token nextToken()\t\t\t//throws TokenStreamException");
    println("{");
    tabs++;
    println("Token theRetToken = null;");
    _println("tryAgain:");
    println("for (;;)");
    println("{");
    tabs++;
    println("Token _token = null;");
    println("int _ttype = Token.INVALID_TYPE;");
    if ( ((LexerGrammar)grammar).filterMode ) {
      println("setCommitToPath(false);");
      if ( filterRule!=null ) {
        // Here's a good place to ensure that the filter rule actually exists
            if (!grammar.isDefined(CodeGenerator.encodeLexerRuleName(filterRule))) {
              grammar.antlrTool.error("Filter rule " + filterRule + " does not exist in this lexer");
        }
        else {
          RuleSymbol rs = (RuleSymbol)grammar.getSymbol(CodeGenerator.encodeLexerRuleName(filterRule));
          if ( !rs.isDefined() ) {
            grammar.antlrTool.error("Filter rule " + filterRule + " does not exist in this lexer");
          }
          else if ( rs.access.equals("public") ) {
            grammar.antlrTool.error("Filter rule " + filterRule + " must be protected");
          }
        }
        println("int _m;");
        println("_m = mark();");
      }
    }
    println("resetText();");

    println("try     // for char stream error handling");
    println("{");
    tabs++;

    // Generate try around whole thing to trap scanner errors
    println("try     // for lexical error handling");
    println("{");
    tabs++;

    // Test for public lexical rules with empty paths
    for (int i=0; i<nextTokenBlk.getAlternatives().size(); i++) {
      Alternative a = nextTokenBlk.getAlternativeAt(i);
      if ( a.cache[1].containsEpsilon() ) {
        //String r = a.head.toString();
            RuleRefElement rr = (RuleRefElement)a.head;
            String r = CodeGenerator.decodeLexerRuleName(rr.targetRule);
            antlrTool.warning("public lexical rule "+r+" is optional (can match \"nothing\")");
      }
    }

    // Generate the block
    String newline = System.getProperty("line.separator");
    CSharpBlockFinishingInfo howToFinish = genCommonBlock(nextTokenBlk, false);
    String errFinish = "if (LA(1)==EOF_CHAR) { uponEOF(); returnToken_ = makeToken(Token.EOF_TYPE); }";
    errFinish += newline+"\t\t\t\t";
    if ( ((LexerGrammar)grammar).filterMode ) {
      if ( filterRule==null ) {
      //kunle: errFinish += "else { consume(); continue tryAgain; }";
      errFinish += "\t\t\t\telse";
      errFinish += "\t\t\t\t{";
      errFinish += "\t\t\t\t\tconsume();";
      errFinish += "\t\t\t\t\tgoto tryAgain;";
      errFinish += "\t\t\t\t}";
      }
      else {
        errFinish += "\t\t\t\t\telse"+newline+
          "\t\t\t\t\t{"+newline+
          "\t\t\t\t\tcommit();"+newline+
          "\t\t\t\t\ttry {m"+filterRule+"(false);}"+newline+
          "\t\t\t\t\tcatch(RecognitionException e)"+newline+
          "\t\t\t\t\t{"+newline+
          "\t\t\t\t\t  // catastrophic failure"+newline+
          "\t\t\t\t\t  reportError(e);"+newline+
          "\t\t\t\t\t  consume();"+newline+
          "\t\t\t\t\t}"+newline+
          "\t\t\t\t\tgoto tryAgain;"+newline+
          "\t\t\t\t}";
      }
    }
    else {
      errFinish += "else {"+throwNoViable+"}";
    }
    genBlockFinish(howToFinish, errFinish);

    // at this point a valid token has been matched, undo "mark" that was done
    if ( ((LexerGrammar)grammar).filterMode && filterRule!=null ) {
      println("commit();");
    }

    // Generate literals test if desired
    // make sure _ttype is set first; note returnToken_ must be
    // non-null as the rule was required to create it.
    println("if ( null==returnToken_ ) goto tryAgain; // found SKIP token");
    println("_ttype = returnToken_.Type;");
    if ( ((LexerGrammar)grammar).getTestLiterals()) {
      genLiteralsTest();
    }

    // return token created by rule reference in switch
    println("returnToken_.Type = _ttype;");
    println("return returnToken_;");

    // Close try block
    tabs--;
    println("}");
    println("catch (RecognitionException e) {");
    tabs++;
    if ( ((LexerGrammar)grammar).filterMode ) {
      if ( filterRule==null ) {
        println("if (!getCommitToPath())");
        println("{");
        tabs++;
        println("consume();");
        println("goto tryAgain;");
        tabs--;
        println("}");
      }
      else {
        println("if (!getCommitToPath())");
        println("{");
        tabs++;
        println("rewind(_m);");
        println("resetText();");
        println("try {m"+filterRule+"(false);}");
        println("catch(RecognitionException ee) {");
        println("  // horrendous failure: error in filter rule");
        println("  reportError(ee);");
        println("  consume();");
        println("}");
        //println("goto tryAgain;");
        tabs--;
        println("}");
        println("else");
      }
    }
    if ( nextTokenBlk.getDefaultErrorHandler() ) {
      println("{");
      tabs++;
      println("reportError(e);");
      println("consume();");
      tabs--;
      println("}");
    }
    else {
      // pass on to invoking routine
      tabs++;
      println("throw new TokenStreamRecognitionException(e);");
      tabs--;
    }
    tabs--;
    println("}");

    // close CharStreamException try
    tabs--;
    println("}");
    println("catch (CharStreamException cse) {");
    println("  if ( cse is CharStreamIOException ) {");
    println("    throw new TokenStreamIOException(((CharStreamIOException)cse).io);");
    println("  }");
    println("  else {");
    println("    throw new TokenStreamException(cse.Message);");
    println("  }");
    println("}");

    // close for-loop
    tabs--;
    println("}");

    // close method nextToken
    tabs--;
    println("}");
    println("");
  }
  /** Gen a named rule block.
   * ASTs are generated for each element of an alternative unless
   * the rule or the alternative have a '!' modifier.
   *
   * If an alternative defeats the default tree construction, it
   * must set <rule>_AST to the root of the returned AST.
   *
   * Each alternative that does automatic tree construction, builds
   * up root and child list pointers in an ASTPair structure.
   *
   * A rule finishes by setting the returnAST variable from the
   * ASTPair.
   *
   * @param rule The name of the rule to generate
   * @param startSymbol true if the rule is a start symbol (i.e., not referenced elsewhere)
  */
  public void genRule(RuleSymbol s, boolean startSymbol, int ruleNum, TokenManager tm) {
    tabs=1;
    if ( DEBUG_CODE_GENERATOR ) System.out.println("genRule("+ s.getId() +")");
    if ( !s.isDefined() ) {
      antlrTool.error("undefined rule: "+ s.getId());
      return;
    }

    // Generate rule return type, name, arguments
    RuleBlock rblk = s.getBlock();
    currentRule = rblk;
    currentASTResult = s.getId();

      // clear list of declared ast variables..
      declaredASTVariables.clear();

    // Save the AST generation state, and set it to that of the rule
    boolean savegenAST = genAST;
    genAST = genAST && rblk.getAutoGen();

    // boolean oldsaveTest = saveText;
    saveText = rblk.getAutoGen();

    // print javadoc comment if any
    if ( s.comment!=null ) {
      _println(s.comment);
    }

    // Gen method access and final qualifier
    //print(s.access + " final ");
    print(s.access + " ");

    // Gen method return type (note lexer return action set at rule creation)
    if (rblk.returnAction != null)
    {
      // Has specified return value
      _print(extractTypeOfAction(rblk.returnAction, rblk.getLine(), rblk.getColumn()) + " ");
    } else {
      // No specified return value
      _print("void ");
    }

    // Gen method name
    _print(s.getId() + "(");

    // Additional rule parameters common to all rules for this grammar
    _print(commonExtraParams);
    if (commonExtraParams.length() != 0 && rblk.argAction != null ) {
      _print(",");
    }

    // Gen arguments
    if (rblk.argAction != null)
    {
      // Has specified arguments
      _println("");
      tabs++;
      println(rblk.argAction);
      tabs--;
      print(")");
    }
    else {
      // No specified arguments
      _print(")");
    }

    // Gen throws clause and open curly
    _print(" //throws " + exceptionThrown);
    if ( grammar instanceof ParserGrammar ) {
      _print(", TokenStreamException");
    }
    else if ( grammar instanceof LexerGrammar ) {
      _print(", CharStreamException, TokenStreamException");
    }
    // Add user-defined exceptions unless lexer (for now)
    if ( rblk.throwsSpec!=null ) {
      if ( grammar instanceof LexerGrammar ) {
        antlrTool.error("user-defined throws spec not allowed (yet) for lexer rule "+rblk.ruleName);
      }
      else {
        _print(", "+rblk.throwsSpec);
      }
    }

    _println("");
    _println("{");
    tabs++;

    // Convert return action to variable declaration
    if (rblk.returnAction != null)
      println(rblk.returnAction + ";");

    // print out definitions needed by rules for various grammar types
    println(commonLocalVars);

    if (grammar.traceRules) {
      if ( grammar instanceof TreeWalkerGrammar ) {
        if ( usingCustomAST )
          println("traceIn(\""+ s.getId() +"\",(AST)_t);");
        else
          println("traceIn(\""+ s.getId() +"\",_t);");
      }
      else {
        println("traceIn(\""+ s.getId() +"\");");
      }
    }

    if ( grammar instanceof LexerGrammar ) {
      // lexer rule default return value is the rule's token name
      // This is a horrible hack to support the built-in EOF lexer rule.
      if (s.getId().equals("mEOF"))
        println("_ttype = Token.EOF_TYPE;");
      else
        println("_ttype = " + s.getId().substring(1)+";");

      // delay creation of _saveIndex until we need it OK?
      bSaveIndexCreated = false;

      /*
            println("boolean old_saveConsumedInput=saveConsumedInput;");
            if ( !rblk.getAutoGen() ) {    // turn off "save input" if ! on rule
            println("saveConsumedInput=false;");
            }
          */
    }

    // if debugging, write code to mark entry to the rule
    if ( grammar.debuggingOutput)
      if (grammar instanceof ParserGrammar)
        println("fireEnterRule(" + ruleNum + ",0);");
      else if (grammar instanceof LexerGrammar)
      println("fireEnterRule(" + ruleNum + ",_ttype);");


    // Generate trace code if desired
    if ( grammar.debuggingOutput || grammar.traceRules) {
      println("try { // debugging");
      tabs++;
    }

    // Initialize AST variables
    if (grammar instanceof TreeWalkerGrammar) {
      // "Input" value for rule
      println(labeledElementASTType+" " + s.getId() + "_AST_in = ("+labeledElementASTType+")_t;");
    }
    if (grammar.buildAST) {
      // Parser member used to pass AST returns from rule invocations
      println("returnAST = null;");
      // Tracks AST construction
      // println("ASTPair currentAST = (inputState.guessing==0) ? new ASTPair() : null;");
      println("ASTPair currentAST = new ASTPair();");
      // User-settable return value for rule.
      println(labeledElementASTType+" " + s.getId() + "_AST = null;");
    }

    genBlockPreamble(rblk);
    genBlockInitAction(rblk);
    println("");

    // Search for an unlabeled exception specification attached to the rule
    ExceptionSpec unlabeledUserSpec = rblk.findExceptionSpec("");

    // Generate try block around the entire rule for  error handling
    if (unlabeledUserSpec != null || rblk.getDefaultErrorHandler() ) {
      println("try {      // for error handling");
      tabs++;
    }

    // Generate the alternatives
    if ( rblk.alternatives.size()==1 )
    {
      // One alternative -- use simple form
      Alternative alt = rblk.getAlternativeAt(0);
      String pred = alt.semPred;
      if ( pred!=null )
        genSemPred(pred, currentRule.line);
      if (alt.synPred != null) {
        antlrTool.warning(
          "Syntactic predicate ignored for single alternative",
          grammar.getFilename(), alt.synPred.getLine(), alt.synPred.getColumn()
          );
      }
      genAlt(alt, rblk);
    }
    else
    {
      // Multiple alternatives -- generate complex form
      boolean ok = grammar.theLLkAnalyzer.deterministic(rblk);

      CSharpBlockFinishingInfo howToFinish = genCommonBlock(rblk, false);
      genBlockFinish(howToFinish, throwNoViable);
    }

    // Generate catch phrase for error handling
    if (unlabeledUserSpec != null || rblk.getDefaultErrorHandler() ) {
      // Close the try block
      tabs--;
      println("}");
    }

    // Generate user-defined or default catch phrases
    if (unlabeledUserSpec != null)
    {
      genErrorHandler(unlabeledUserSpec);
    }
    else if (rblk.getDefaultErrorHandler())
    {
      // Generate default catch phrase
      println("catch (" + exceptionThrown + " ex)");
      println("{");
      tabs++;
      // Generate code to handle error if not guessing
      if (grammar.hasSyntacticPredicate) {
        println("if (0 == inputState.guessing)");
        println("{");
        tabs++;
      }
      println("reportError(ex);");
      if ( !(grammar instanceof TreeWalkerGrammar) )
      {
        // Generate code to consume until token in k==1 follow set
        Lookahead follow = grammar.theLLkAnalyzer.FOLLOW(1, rblk.endNode);
        String followSetName = getBitsetName(markBitsetForGen(follow.fset));
        println("consume();");
        println("consumeUntil(" + followSetName + ");");
      }
      else
      {
        // Just consume one token
      println("if (null != _t)");
      println("{");
      tabs++;
      println("_t = _t.getNextSibling();");
      tabs--;
      println("}");
      }
      if (grammar.hasSyntacticPredicate)
      {
        tabs--;
        // When guessing, rethrow exception
        println("}");
        println("else");
        println("{");
        tabs++;
        //println("throw ex;");
        println("throw;");
        tabs--;
        println("}");
      }
      // Close catch phrase
      tabs--;
      println("}");
    }

    // Squirrel away the AST "return" value
    if (grammar.buildAST) {
      println("returnAST = " + s.getId() + "_AST;");
    }

    // Set return tree value for tree walkers
    if ( grammar instanceof TreeWalkerGrammar ) {
      println("retTree_ = _t;");
    }

    // Generate literals test for lexer rules so marked
    if (rblk.getTestLiterals()) {
      if ( s.access.equals("protected") ) {
        genLiteralsTestForPartialToken();
      }
      else {
        genLiteralsTest();
      }
    }

    // if doing a lexer rule, dump code to create token if necessary
    if ( grammar instanceof LexerGrammar ) {
      println("if (_createToken && (null == _token) && (_ttype != Token.SKIP))");
      println("{");
      tabs++;
      println("_token = makeToken(_ttype);");
      println("_token.setText(text.ToString(_begin, text.Length-_begin));");
      tabs--;
      println("}");
      println("returnToken_ = _token;");
    }

    // Gen the return statement if there is one (lexer has hard-wired return action)
    if (rblk.returnAction != null) {
      println("return " + extractIdOfAction(rblk.returnAction, rblk.getLine(), rblk.getColumn()) + ";");
    }

    if ( grammar.debuggingOutput || grammar.traceRules) {
      tabs--;
      println("}");
      println("finally");
      println("{ // debugging");
      tabs++;

      // If debugging, generate calls to mark exit of rule
      if ( grammar.debuggingOutput)
        if (grammar instanceof ParserGrammar)
          println("fireExitRule(" + ruleNum + ",0);");
        else if (grammar instanceof LexerGrammar)
        println("fireExitRule(" + ruleNum + ",_ttype);");

      if (grammar.traceRules) {
        if ( grammar instanceof TreeWalkerGrammar ) {
          println("traceOut(\""+ s.getId() +"\",_t);");
        }
        else {
          println("traceOut(\""+ s.getId() +"\");");
        }
      }

      tabs--;
      println("}");
    }

    tabs--;
    println("}");
    println("");

    // Restore the AST generation state
    genAST = savegenAST;

    // restore char save state
    // saveText = oldsaveTest;
  }
  private void GenRuleInvocation(RuleRefElement rr) {
    // dump rule name
    _print(rr.targetRule + "(");

    // lexers must tell rule if it should set returnToken_
    if ( grammar instanceof LexerGrammar ) {
      // if labeled, could access Token, so tell rule to create
      if ( rr.getLabel() != null ) {
        _print("true");
      }
      else {
        _print("false");
      }
      if (commonExtraArgs.length() != 0 || rr.args!=null ) {
        _print(",");
      }
    }

    // Extra arguments common to all rules for this grammar
    _print(commonExtraArgs);
    if (commonExtraArgs.length() != 0 && rr.args!=null ) {
      _print(",");
    }

    // Process arguments to method, if any
    RuleSymbol rs = (RuleSymbol)grammar.getSymbol(rr.targetRule);
    if (rr.args != null)
    {
      // When not guessing, execute user arg action
      ActionTransInfo tInfo = new ActionTransInfo();
      String args = processActionForSpecialSymbols(rr.args, 0, currentRule, tInfo);
      if ( tInfo.assignToRoot || tInfo.refRuleRoot!=null )
      {
            antlrTool.error("Arguments of rule reference '" + rr.targetRule + "' cannot set or ref #" +
                 currentRule.getRuleName(), grammar.getFilename(), rr.getLine(), rr.getColumn());
      }
      _print(args);

      // Warn if the rule accepts no arguments
      if (rs.block.argAction == null)
      {
        antlrTool.warning("Rule '" + rr.targetRule + "' accepts no arguments", grammar.getFilename(), rr.getLine(), rr.getColumn());
      }
    }
    else
    {
      // For C++, no warning if rule has parameters, because there may be default
      // values for all of the parameters
      if (rs.block.argAction != null)
      {
        antlrTool.warning("Missing parameters on reference to rule " + rr.targetRule, grammar.getFilename(), rr.getLine(), rr.getColumn());
      }
    }
    _println(");");

    // move down to the first child while parsing
    if ( grammar instanceof TreeWalkerGrammar ) {
      println("_t = retTree_;");
    }
  }
  protected void genSemPred(String pred, int line) {
    // translate $ and # references
    ActionTransInfo tInfo = new ActionTransInfo();
    pred = processActionForSpecialSymbols(pred, line, currentRule, tInfo);
    // ignore translation info...we don't need to do anything with it.
    String escapedPred = charFormatter.escapeString(pred);

    // if debugging, wrap the semantic predicate evaluation in a method
    // that can tell SemanticPredicateListeners the result
    if (grammar.debuggingOutput && ((grammar instanceof ParserGrammar) || (grammar instanceof LexerGrammar)))
      pred = "fireSemanticPredicateEvaluated(antlr.debug.SemanticPredicateEvent.VALIDATING,"
      + addSemPred(escapedPred) + "," + pred + ")";
    println("if (!(" + pred + "))");
    println("  throw new SemanticException(\"" + escapedPred + "\");");
  }
  /** Write an array of Strings which are the semantic predicate
   *  expressions.  The debugger will reference them by number only
   */
  protected void genSemPredMap() {
    Enumeration e = semPreds.elements();
    println("private string[] _semPredNames = {");
    tabs++;
    while(e.hasMoreElements())
      println("\""+e.nextElement()+"\",");
    tabs--;
    println("};");
  }
  protected void genSynPred(SynPredBlock blk, String lookaheadExpr) {
    if ( DEBUG_CODE_GENERATOR ) System.out.println("gen=>("+blk+")");

    // Dump synpred result variable
    println("bool synPredMatched" + blk.ID + " = false;");
    // Gen normal lookahead test
    println("if (" + lookaheadExpr + ")");
    println("{");
    tabs++;

    // Save input state
    if ( grammar instanceof TreeWalkerGrammar ) {
      println("AST __t" + blk.ID + " = _t;");
    }
    else {
      println("int _m" + blk.ID + " = mark();");
    }

    // Once inside the try, assume synpred works unless exception caught
    println("synPredMatched" + blk.ID + " = true;");
    println("inputState.guessing++;");

    // if debugging, tell listeners that a synpred has started
    if (grammar.debuggingOutput && ((grammar instanceof ParserGrammar) ||
      (grammar instanceof LexerGrammar))) {
      println("fireSyntacticPredicateStarted();");
    }

    syntacticPredLevel++;
    println("try {");
    tabs++;
    gen((AlternativeBlock)blk);    // gen code to test predicate
    tabs--;
    //println("System.out.println(\"pred "+blk+" succeeded\");");
    println("}");
    //kunle: lose a few warnings cheaply
    //  println("catch (" + exceptionThrown + " pe)");
    println("catch (" + exceptionThrown + ")");
    println("{");
    tabs++;
    println("synPredMatched"+blk.ID+" = false;");
    //println("System.out.println(\"pred "+blk+" failed\");");
    tabs--;
    println("}");

    // Restore input state
    if ( grammar instanceof TreeWalkerGrammar ) {
      println("_t = __t"+blk.ID+";");
    }
    else {
      println("rewind(_m"+blk.ID+");");
    }

    println("inputState.guessing--;");

    // if debugging, tell listeners how the synpred turned out
    if (grammar.debuggingOutput && ((grammar instanceof ParserGrammar) ||
      (grammar instanceof LexerGrammar))) {
      println("if (synPredMatched" + blk.ID +")");
      println("  fireSyntacticPredicateSucceeded();");
      println("else");
      println("  fireSyntacticPredicateFailed();");
    }

    syntacticPredLevel--;
    tabs--;

    // Close lookahead test
    println("}");

    // Test synred result
    println("if ( synPredMatched"+blk.ID+" )");
    println("{");
  }
  /** Generate a static array containing the names of the tokens,
   * indexed by the token type values.  This static array is used
   * to format error messages so that the token identifers or literal
   * strings are displayed instead of the token numbers.
   *
   * If a lexical rule has a paraphrase, use it rather than the
   * token label.
   */
  public void genTokenStrings() {
    // Generate a string for each token.  This creates a static
    // array of Strings indexed by token type.
    println("");
    println("public static readonly string[] tokenNames_ = new string[] {");
    tabs++;

    // Walk the token vocabulary and generate a Vector of strings
    // from the tokens.
    Vector v = grammar.tokenManager.getVocabulary();
    for (int i = 0; i < v.size(); i++)
    {
      String s = (String)v.elementAt(i);
      if (s == null)
      {
        s = "<"+String.valueOf(i)+">";
      }
      if ( !s.startsWith("\"") && !s.startsWith("<") ) {
        TokenSymbol ts = (TokenSymbol)grammar.tokenManager.getTokenSymbol(s);
        if ( ts!=null && ts.getParaphrase()!=null ) {
          s = StringUtils.stripFrontBack(ts.getParaphrase(), "\"", "\"");
        }
      }
      else if (s.startsWith("\"")) {
        s = StringUtils.stripFrontBack(s, "\"", "\"");
      }
      print(charFormatter.literalString(s));
      if (i != v.size()-1) {
        _print(",");
      }
      _println("");
    }

    // Close the string array initailizer
    tabs--;
    println("};");
  }
  /** Generate the token types CSharp file */
  protected void genTokenTypes(TokenManager tm) throws IOException {
    // Open the token output CSharp file and set the currentOutput stream
    // SAS: file open was moved to a method so a subclass can override
    //      This was mainly for the VAJ interface
    setupOutput(tm.getName() + TokenTypesFileSuffix);

    tabs = 0;

    // Generate the header common to all CSharp files
    genHeader();
    // Do not use printAction because we assume tabs==0
    println(behavior.getHeaderAction(""));

        // Generate the CSharp namespace declaration (if specified)
    if (nameSpace != null)
      nameSpace.emitDeclarations(currentOutput);
    tabs++;

    // Encapsulate the definitions in a class.  This has to be done as a class because
    // they are all constants and CSharp inteface  types cannot contain constants.
    println("public class " + tm.getName() + TokenTypesFileSuffix);
    //println("public class " + getTokenTypesClassName());
    println("{");
    tabs++;

    genTokenDefinitions(tm);

    // Close the interface
    tabs--;
    println("}");

    tabs--;
    // Generate the CSharp namespace closures (if required)
    if (nameSpace != null)
      nameSpace.emitClosures(currentOutput);

    // Close the tokens output file
    currentOutput.close();
    currentOutput = null;
    exitIfError();
  }
  protected void genTokenDefinitions(TokenManager tm) throws IOException {
    // Generate a definition for each token type
    Vector v = tm.getVocabulary();

    // Do special tokens manually
    println("public const int EOF = " + Token.EOF_TYPE + ";");
    println("public const int NULL_TREE_LOOKAHEAD = " + Token.NULL_TREE_LOOKAHEAD + ";");

    for (int i = Token.MIN_USER_TYPE; i < v.size(); i++) {
      String s = (String)v.elementAt(i);
      if (s != null) {
        if ( s.startsWith("\"") ) {
          // a string literal
          StringLiteralSymbol sl = (StringLiteralSymbol)tm.getTokenSymbol(s);
          if ( sl==null ) {
            antlrTool.panic("String literal " + s + " not in symbol table");
          }
          else if ( sl.label != null ) {
            println("public const int " + sl.label + " = " + i + ";");
          }
          else {
            String mangledName = mangleLiteral(s);
            if (mangledName != null) {
              // We were able to create a meaningful mangled token name
              println("public const int " + mangledName + " = " + i + ";");
              // if no label specified, make the label equal to the mangled name
              sl.label = mangledName;
            }
            else {
              println("// " + s + " = " + i);
            }
          }
        }
        else if ( !s.startsWith("<") ) {
          println("public const int " + s + " = " + i + ";");
        }
      }
    }
    println("");
  }
  /** Process a string for an simple expression for use in xx/action.g
   * it is used to cast simple tokens/references to the right type for
   * the generated language. Basically called for every element in
   * the vector to getASTCreateString(vector V)
   * @param str A String.
   */
  public String processStringForASTConstructor( String str )
  {
    /*
    System.out.println("processStringForASTConstructor: str = "+str+
                       ", custom = "+(new Boolean(usingCustomAST)).toString()+
                       ", tree = "+(new Boolean((grammar instanceof TreeWalkerGrammar))).toString()+
                       ", parser = "+(new Boolean((grammar instanceof ParserGrammar))).toString()+
                       ", notDefined = "+(new Boolean((!(grammar.tokenManager.tokenDefined(str))))).toString()
                       );
    */
    if( usingCustomAST &&
      ( (grammar instanceof TreeWalkerGrammar||
        (grammar instanceof ParserGrammar) )    &&
      !(grammar.tokenManager.tokenDefined(str)) )
    {
      //System.out.println("processStringForASTConstructor: "+str+" with cast");
      return "(AST)"+str;
    }
    else
    {
      //System.out.println("processStringForASTConstructor: "+str);
      return str;
    }
  }
  /** Get a string for an expression to generate creation of an AST subtree.
    * @param v A Vector of String, where each element is an expression
    *          in the target language yielding an AST node.
    */
  public String getASTCreateString(Vector v) {
    if (v.size() == 0) {
      return "";
    }
    StringBuffer buf = new StringBuffer();
    buf.append("("+labeledElementASTType+
      ")astFactory.make( (new ASTArray(" + v.size() +
      "))");
    for (int i = 0; i < v.size(); i++) {
      buf.append(".add(" + v.elementAt(i) + ")");
    }
    buf.append(")");
    return buf.toString();
  }

  /** Get a string for an expression to generate creating of an AST node
   * @param atom The grammar node for which you are creating the node
   * @param str The arguments to the AST constructor
   */
  public String getASTCreateString(GrammarAtom atom, String astCtorArgs) {
    String astCreateString = "astFactory.create(" + astCtorArgs + ")";

    if (atom == null)
      return getASTCreateString(astCtorArgs);
    else {
      if ( atom.getASTNodeType() != null ) {
        // this Atom was instantiated from a Token that had an "AST" option - associating
        // it with a specific heterogeneous AST type - applied to either:
        // 1) it's underlying TokenSymbol (in the "tokens {} section" or,
                // 2) a particular token reference in the grammar
                //
        // For option (1), we simply generate a cast to hetero-AST type
        // For option (2), we generate a call to factory.create(Token, ASTNodeType) and cast it too
                TokenSymbol ts = grammar.tokenManager.getTokenSymbol(atom.getText());
                if ( (ts == null) || (ts.getASTNodeType() != atom.getASTNodeType()) )
            astCreateString = "(" + atom.getASTNodeType() + ") astFactory.create(" + astCtorArgs + ", \"" + atom.getASTNodeType() + "\")";
                else if ( (ts != null) && (ts.getASTNodeType() != null) )
                    astCreateString = "(" + ts.getASTNodeType() + ") " + astCreateString;
      }
      else if ( usingCustomAST )
        astCreateString = "(" + labeledElementASTType + ") " + astCreateString;
    }
    return astCreateString;
  }

    /** Returns a string expression that creates an AST node using the specified
     *  AST constructor argument string.
   *  Parses the first (possibly only) argument in the supplied AST ctor argument
   *  string to obtain the token type -- ctorID.
   *
   *  IF the token type is a valid token symbol AND
   *     it has an associated AST node type     AND
   *     this is not a #[ID, "T", "ASTType"] constructor
   *  THEN
   *     generate a call to factory.create(ID, Text, token.ASTNodeType())
   *
   *  #[ID, "T", "ASTType"] constructors are mapped to astFactory.create(ID, "T", "ASTType")
   *
   *  The supported AST constructor forms are:
   *    #[ID]
   *    #[ID, "text"]
   *    #[ID, "text", ASTclassname]  -- introduced in 2.7.2
   *
     * @param astCtorArgs The arguments to the AST constructor
     */
  public String getASTCreateString(String astCtorArgs) {
    // kunle: 19-Aug-2002
    // This AST creation string is almost certainly[*1] a manual tree construction request.
    // From the manual [I couldn't read ALL of the code ;-)], this can only be one of:
    // 1) #[ID]                     -- 'astCtorArgs' contains: 'ID'                     (without quotes)    or,
    // 2) #[ID, "T"]                -- 'astCtorArgs' contains: 'ID, "Text"'             (without single quotes) or,
    // kunle: 08-Dec-2002 - 2.7.2a6
    // 3) #[ID, "T", "ASTTypeName"] -- 'astCtorArgs' contains: 'ID, "T", "ASTTypeName"' (without single quotes)
    //
    // [*1]  In my tests, 'atom' was '== null' only for manual tree construction requests

    if ( astCtorArgs==null ) {
      astCtorArgs = "";
    }
    String astCreateString   = "astFactory.create(" + astCtorArgs + ")";
    String  ctorID        = astCtorArgs;
    String  ctorText      = null;
    int    commaIndex;
    boolean  ctorIncludesCustomType = false;    // Is this a #[ID, "t", "ASTType"] constructor?

    commaIndex = astCtorArgs.indexOf(',');
    if ( commaIndex != -1 ) {
      ctorID   = astCtorArgs.substring(0, commaIndex);          // the 'ID'   portion of #[ID, "Text"]
      ctorText = astCtorArgs.substring(commaIndex+1, astCtorArgs.length())// the 'Text' portion of #[ID, "Text"]
      commaIndex = ctorText.indexOf(',');
      if (commaIndex != -1 ) {
        // This is an AST creation of the form: #[ID, "Text", "ASTTypename"]
        // Support for this was introduced with 2.7.2a6
        // create default type or (since 2.7.2) 3rd arg is classname
        ctorIncludesCustomType = true;
      }
    }
    TokenSymbol ts = grammar.tokenManager.getTokenSymbol(ctorID);
    if ( (null != ts) && (null != ts.getASTNodeType()) )
      astCreateString = "(" + ts.getASTNodeType() + ") " + astCreateString;
    else if ( usingCustomAST )
      astCreateString = "(" + labeledElementASTType + ") " + astCreateString;

    return astCreateString;
  }

  protected String getLookaheadTestExpression(Lookahead[] look, int k) {
    StringBuffer e = new StringBuffer(100);
    boolean first = true;

    e.append("(");
    for (int i = 1; i <= k; i++) {
      BitSet p = look[i].fset;
      if (!first) {
        e.append(") && (");
      }
      first = false;

      // Syn preds can yield <end-of-syn-pred> (epsilon) lookahead.
      // There is no way to predict what that token would be.  Just
      // allow anything instead.
      if (look[i].containsEpsilon()) {
        e.append("true");
      } else {
        e.append(getLookaheadTestTerm(i, p));
      }
    }
    e.append(")");

    return e.toString();
  }

  /**Generate a lookahead test expression for an alternate.  This
   * will be a series of tests joined by '&&' and enclosed by '()',
   * the number of such tests being determined by the depth of the lookahead.
   */
  protected String getLookaheadTestExpression(Alternative alt, int maxDepth) {
    int depth = alt.lookaheadDepth;
    if ( depth == GrammarAnalyzer.NONDETERMINISTIC ) {
      // if the decision is nondeterministic, do the best we can: LL(k)
      // any predicates that are around will be generated later.
      depth = grammar.maxk;
    }

    if ( maxDepth==0 ) {
      // empty lookahead can result from alt with sem pred
      // that can see end of token.  E.g., A : {pred}? ('a')? ;
      return "( true )";
    }
    return "(" + getLookaheadTestExpression(alt.cache,depth) + ")";
  }

  /**Generate a depth==1 lookahead test expression given the BitSet.
   * This may be one of:
   * 1) a series of 'x==X||' tests
   * 2) a range test using >= && <= where possible,
   * 3) a bitset membership test for complex comparisons
   * @param k The lookahead level
   * @param p The lookahead set for level k
   */
  protected String getLookaheadTestTerm(int k, BitSet p) {
    // Determine the name of the item to be compared
    String ts = lookaheadString(k);

    // Generate a range expression if possible
    int[] elems = p.toArray();
    if (elementsAreRange(elems)) {
      return getRangeExpression(k, elems);
    }

    // Generate a bitset membership test if possible
    StringBuffer e;
    int degree = p.degree();
    if ( degree == 0 ) {
      return "true";
    }

    if (degree >= bitsetTestThreshold) {
      int bitsetIdx = markBitsetForGen(p);
      return getBitsetName(bitsetIdx) + ".member(" + ts + ")";
    }

    // Otherwise, generate the long-winded series of "x==X||" tests
    e = new StringBuffer();
    for (int i = 0; i < elems.length; i++) {
      // Get the compared-to item (token or character value)
      String cs = getValueString(elems[i]);

      // Generate the element comparison
      if ( i>0 ) e.append("||");
      e.append(ts);
      e.append("==");
      e.append(cs);
    }
    return e.toString();
  }

  /** Return an expression for testing a contiguous renage of elements
   * @param k The lookahead level
   * @param elems The elements representing the set, usually from BitSet.toArray().
   * @return String containing test expression.
   */
  public String getRangeExpression(int k, int[] elems) {
    if (!elementsAreRange(elems)) {
      antlrTool.panic("getRangeExpression called with non-range");
    }
    int begin = elems[0];
    int end = elems[elems.length-1];

    return
      "(" + lookaheadString(k) + " >= " + getValueString(begin) + " && " +
      lookaheadString(k) + " <= " + getValueString(end) + ")";
  }

  /** getValueString: get a string representation of a token or char value
   * @param value The token or char value
   */
  private String getValueString(int value) {
    String cs;
    if ( grammar instanceof LexerGrammar ) {
      cs = charFormatter.literalChar(value);
    }
    else
    {
      TokenSymbol ts = grammar.tokenManager.getTokenSymbolAt(value);
      if ( ts == null ) {
        return ""+value; // return token type as string
        // antlrTool.panic("vocabulary for token type " + value + " is null");
      }
      String tId = ts.getId();
      if ( ts instanceof StringLiteralSymbol ) {
        // if string literal, use predefined label if any
        // if no predefined, try to mangle into LITERAL_xxx.
        // if can't mangle, use int value as last resort
        StringLiteralSymbol sl = (StringLiteralSymbol)ts;
        String label = sl.getLabel();
        if ( label!=null ) {
          cs = label;
        }
        else {
          cs = mangleLiteral(tId);
          if (cs == null) {
            cs = String.valueOf(value);
          }
        }
      }
      else {
        cs = tId;
      }
    }
    return cs;
  }

  /**Is the lookahead for this alt empty? */
  protected boolean lookaheadIsEmpty(Alternative alt, int maxDepth) {
    int depth = alt.lookaheadDepth;
    if ( depth == GrammarAnalyzer.NONDETERMINISTIC ) {
      depth = grammar.maxk;
    }
    for (int i=1; i<=depth && i<=maxDepth; i++) {
      BitSet p = alt.cache[i].fset;
      if (p.degree() != 0) {
        return false;
      }
    }
    return true;
  }

  private String lookaheadString(int k) {
    if (grammar instanceof TreeWalkerGrammar) {
      return "_t.Type";
    }
    return "LA(" + k + ")";
  }

  /** Mangle a string literal into a meaningful token name.  This is
    * only possible for literals that are all characters.  The resulting
    * mangled literal name is literalsPrefix with the text of the literal
    * appended.
    * @return A string representing the mangled literal, or null if not possible.
    */
  private String mangleLiteral(String s) {
    String mangled = antlrTool.literalsPrefix;
    for (int i = 1; i < s.length()-1; i++) {
      if (!Character.isLetter(s.charAt(i)) &&
        s.charAt(i) != '_') {
        return null;
      }
      mangled += s.charAt(i);
    }
    if ( antlrTool.upperCaseMangledLiterals ) {
      mangled = mangled.toUpperCase();
    }
    return mangled;
  }

  /** Map an identifier to it's corresponding tree-node variable.
    * This is context-sensitive, depending on the rule and alternative
    * being generated
    * @param idParam The identifier name to map
    * @return The mapped id (which may be the same as the input), or null if the mapping is invalid due to duplicates
    */
  public String mapTreeId(String idParam, ActionTransInfo transInfo) {
    // if not in an action of a rule, nothing to map.
    if ( currentRule==null ) return idParam;

    boolean in_var = false;
    String id = idParam;
    if (grammar instanceof TreeWalkerGrammar)
    {
      if ( !grammar.buildAST )
      {
        in_var = true;
      }
      // If the id ends with "_in", then map it to the input variable
      else if (id.length() > 3 && id.lastIndexOf("_in") == id.length()-3)
      {
        // Strip off the "_in"
        id = id.substring(0, id.length()-3);
        in_var = true;
      }
    }

    // Check the rule labels.  If id is a label, then the output
    // variable is label_AST, and the input variable is plain label.
    for (int i = 0; i < currentRule.labeledElements.size(); i++)
    {
      AlternativeElement elt = (AlternativeElement)currentRule.labeledElements.elementAt(i);
      if (elt.getLabel().equals(id))
      {
        return in_var ? id : id + "_AST";
      }
    }

    // Failing that, check the id-to-variable map for the alternative.
    // If the id is in the map, then output variable is the name in the
    // map, and input variable is name_in
    String s = (String)treeVariableMap.get(id);
    if (s != null)
    {
      if (s == NONUNIQUE)
      {
        // There is more than one element with this id
        antlrTool.error("Ambiguous reference to AST element "+id+
                " in rule "+currentRule.getRuleName());
        return null;
      }
      else if (s.equals(currentRule.getRuleName()))
      {
        // a recursive call to the enclosing rule is
        // ambiguous with the rule itself.
//        if( in_var )
//          System.out.println("returning null (rulename)");
        antlrTool.error("Ambiguous reference to AST element "+id+
                " in rule "+currentRule.getRuleName());
        return null;
      }
      else
      {
        return in_var ? s + "_in" : s;
      }
    }

    // Failing that, check the rule name itself.  Output variable
    // is rule_AST; input variable is rule_AST_in (treeparsers).
    if( id.equals(currentRule.getRuleName()) )
    {
      String r = in_var ? id + "_AST_in" : id + "_AST";
      if ( transInfo!=null ) {
        if ( !in_var ) {
          transInfo.refRuleRoot = r;
        }
      }
      return r;
    }
    else
    {
      // id does not map to anything -- return itself.
      return id;
    }
  }

  /** Given an element and the name of an associated AST variable,
    * create a mapping between the element "name" and the variable name.
    */
  private void mapTreeVariable(AlternativeElement e, String name)
  {
    // For tree elements, defer to the root
    if (e instanceof TreeElement) {
      mapTreeVariable( ((TreeElement)e).root, name);
      return;
    }

    // Determine the name of the element, if any, for mapping purposes
    String elName = null;

    // Don't map labeled items
    if (e.getLabel() == null) {
      if (e instanceof TokenRefElement) {
        // use the token id
        elName = ((TokenRefElement)e).atomText;
      }
      else if (e instanceof RuleRefElement) {
        // use the rule name
        elName = ((RuleRefElement)e).targetRule;
      }
    }
    // Add the element to the tree variable map if it has a name
    if (elName != null) {
      if (treeVariableMap.get(elName) != null) {
        // Name is already in the map -- mark it as duplicate
        treeVariableMap.remove(elName);
        treeVariableMap.put(elName, NONUNIQUE);
      }
      else {
        treeVariableMap.put(elName, name);
      }
    }
  }

    /** Lexically process tree-specifiers in the action.
     *  This will replace #id and #(...) with the appropriate
     *  function calls and/or variables.
     */
    protected String processActionForSpecialSymbols(String actionStr,
                                                    int line,
                                                    RuleBlock currentRule,
                                                    ActionTransInfo tInfo)
  {
    if ( actionStr==null || actionStr.length()==0 )
      return null;

        // The action trans info tells us (at the moment) whether an
        // assignment was done to the rule's tree root.
        if (grammar==null)
            return actionStr;

        // see if we have anything to do...
        if ((grammar.buildAST && actionStr.indexOf('#') != -1) ||
            grammar instanceof TreeWalkerGrammar ||
            ((grammar instanceof LexerGrammar ||
            grammar instanceof ParserGrammar)
          && actionStr.indexOf('$') != -1) )
    {
            // Create a lexer to read an action and return the translated version
            org.jostraca.comp.antlr.actions.csharp.ActionLexer lexer = new org.jostraca.comp.antlr.actions.csharp.ActionLexer(actionStr, currentRule, this, tInfo);

            lexer.setLineOffset(line);
            lexer.setFilename(grammar.getFilename());
            lexer.setTool(antlrTool);

            try {
                lexer.mACTION(true);
                actionStr = lexer.getTokenObject().getText();
                // System.out.println("action translated: "+actionStr);
                // System.out.println("trans info is "+tInfo);
            }
            catch (RecognitionException ex) {
                lexer.reportError(ex);
                return actionStr;
            }
            catch (TokenStreamException tex) {
                antlrTool.panic("Error reading action:"+actionStr);
                return actionStr;
            }
            catch (CharStreamException io) {
                antlrTool.panic("Error reading action:"+actionStr);
                return actionStr;
            }
        }
        return actionStr;
    }

  private void setupGrammarParameters(Grammar g) {
    if (g instanceof ParserGrammar ||
       g instanceof LexerGrammar  ||
       g instanceof TreeWalkerGrammar
      )
    {
      /* RK: options also have to be added to Grammar.java and for options
       * on the file level entries have to be defined in
       * DefineGrammarSymbols.java and passed around via 'globals' in antlrTool.java
       */
      if( antlrTool.nameSpace != null )
        nameSpace = new CSharpNameSpace( antlrTool.nameSpace.getName() );
      //genHashLines = antlrTool.genHashLines;

      /* let grammar level options override filelevel ones...
       */
      if( g.hasOption("namespace") ) {
        Token t = g.getOption("namespace");
        if( t != null ) {
          nameSpace = new CSharpNameSpace(t.getText());
        }
      }
      /*
      if( g.hasOption("genHashLines") ) {
        Token t = g.getOption("genHashLines");
        if( t != null )  {
          String val = StringUtils.stripFrontBack(t.getText(),"\"","\"");
          genHashLines = val.equals("true");
        }
      }
      */
    }

    if (g instanceof ParserGrammar) {
      labeledElementASTType = "AST";
      if ( g.hasOption("ASTLabelType") ) {
        Token tsuffix = g.getOption("ASTLabelType");
        if ( tsuffix != null ) {
          String suffix = StringUtils.stripFrontBack(tsuffix.getText(), "\"", "\"");
          if ( suffix != null ) {
            usingCustomAST = true;
            labeledElementASTType = suffix;
          }
        }
      }
      labeledElementType = "Token ";
      labeledElementInit = "null";
      commonExtraArgs = "";
      commonExtraParams = "";
      commonLocalVars = "";
      lt1Value = "LT(1)";
      exceptionThrown = "RecognitionException";
      throwNoViable = "throw new NoViableAltException(LT(1), getFilename());";
    }
    else if (g instanceof LexerGrammar) {
      labeledElementType = "char ";
      labeledElementInit = "'\\0'";
      commonExtraArgs = "";
      commonExtraParams = "bool _createToken";
      commonLocalVars = "int _ttype; Token _token=null; int _begin=text.Length;";
      lt1Value = "LA(1)";
      exceptionThrown = "RecognitionException";
      throwNoViable = "throw new NoViableAltForCharException((char)LA(1), getFilename(), getLine(), getColumn());";
    }
    else if (g instanceof TreeWalkerGrammar) {
      labeledElementASTType = "AST";
      labeledElementType = "AST";
      if ( g.hasOption("ASTLabelType") ) {
        Token tsuffix = g.getOption("ASTLabelType");
        if ( tsuffix != null ) {
          String suffix = StringUtils.stripFrontBack(tsuffix.getText(), "\"", "\"");
          if ( suffix != null ) {
            usingCustomAST = true;
            labeledElementASTType = suffix;
            labeledElementType = suffix;
          }
        }
      }
      if ( !g.hasOption("ASTLabelType") ) {
        g.setOption("ASTLabelType", new Token(ANTLRTokenTypes.STRING_LITERAL,"AST"));
      }
      labeledElementInit = "null";
      commonExtraArgs = "_t";
      commonExtraParams = "AST _t";
      commonLocalVars = "";
            if (usingCustomAST)
              lt1Value = "(_t==ASTNULL) ? null : (" + labeledElementASTType + ")_t";
            else
              lt1Value = "_t";
      exceptionThrown = "RecognitionException";
      throwNoViable = "throw new NoViableAltException(_t);";
    }
    else {
      antlrTool.panic("Unknown grammar type");
    }
  }

  /** This method exists so a subclass, namely VAJCodeGenerator,
   *  can open the file in its own evil way.  JavaCodeGenerator
   *  simply opens a text file...
   */
  public void setupOutput(String className) throws IOException
  {
    currentOutput = antlrTool.openOutputFile(className + ".cs");
  }

  /** Helper method from Eric Smith's version of CSharpCodeGenerator.*/
  private static String OctalToUnicode(String str)
  {
    // only do any conversion if the string looks like "'\003'"
    if ( (4 <= str.length()) &&
           ('\'' == str.charAt(0)) &&
           ('\\' == str.charAt(1)) &&
           (('0' <= str.charAt(2)) && ('7' >= str.charAt(2))) &&
           ('\'' == str.charAt(str.length()-1)) )
    {
      // convert octal representation to decimal, then to hex
      Integer x = Integer.valueOf(str.substring(2, str.length()-1), 8);

      return "'\\x" + Integer.toHexString(x.intValue()) + "'";
    }
    else {
      return str;
    }
  }

  /** Helper method that returns the name of the interface/class/enum type for
      token type constants.
   */
  public String getTokenTypesClassName()
  {
    TokenManager tm = grammar.tokenManager;
    return new String(tm.getName() + TokenTypesFileSuffix);
  }

  private void declareSaveIndexVariableIfNeeded()
  {
    if (!bSaveIndexCreated)
    {
      println("int _saveIndex = 0;");
      bSaveIndexCreated = true;
    }
  }
}
TOP

Related Classes of org.jostraca.comp.antlr.CSharpCodeGenerator

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.