/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/
package javax.swing.text;
import java.awt.Color;
import java.awt.Font;
import java.awt.font.TextAttribute;
import java.lang.ref.ReferenceQueue;
import java.lang.ref.WeakReference;
import java.util.Enumeration;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Stack;
import java.util.Vector;
import java.util.ArrayList;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.Serializable;
import javax.swing.event.*;
import javax.swing.undo.AbstractUndoableEdit;
import javax.swing.undo.CannotRedoException;
import javax.swing.undo.CannotUndoException;
import javax.swing.undo.UndoableEdit;
import javax.swing.SwingUtilities;
import static sun.swing.SwingUtilities2.IMPLIED_CR;
/**
* A document that can be marked up with character and paragraph
* styles in a manner similar to the Rich Text Format. The element
* structure for this document represents style crossings for
* style runs. These style runs are mapped into a paragraph element
* structure (which may reside in some other structure). The
* style runs break at paragraph boundaries since logical styles are
* assigned to paragraph boundaries.
* <p>
* <strong>Warning:</strong>
* Serialized objects of this class will not be compatible with
* future Swing releases. The current serialization support is
* appropriate for short term storage or RMI between applications running
* the same version of Swing. As of 1.4, support for long term storage
* of all JavaBeans™
* has been added to the <code>java.beans</code> package.
* Please see {@link java.beans.XMLEncoder}.
*
* @author Timothy Prinzing
* @see Document
* @see AbstractDocument
*/
public class DefaultStyledDocument extends AbstractDocument implements StyledDocument {
/**
* Constructs a styled document.
*
* @param c the container for the content
* @param styles resources and style definitions which may
* be shared across documents
*/
public DefaultStyledDocument(Content c, StyleContext styles) {
super(c, styles);
listeningStyles = new Vector<Style>();
buffer = new ElementBuffer(createDefaultRoot());
Style defaultStyle = styles.getStyle(StyleContext.DEFAULT_STYLE);
setLogicalStyle(0, defaultStyle);
}
/**
* Constructs a styled document with the default content
* storage implementation and a shared set of styles.
*
* @param styles the styles
*/
public DefaultStyledDocument(StyleContext styles) {
this(new GapContent(BUFFER_SIZE_DEFAULT), styles);
}
/**
* Constructs a default styled document. This buffers
* input content by a size of <em>BUFFER_SIZE_DEFAULT</em>
* and has a style context that is scoped by the lifetime
* of the document and is not shared with other documents.
*/
public DefaultStyledDocument() {
this(new GapContent(BUFFER_SIZE_DEFAULT), new StyleContext());
}
/**
* Gets the default root element.
*
* @return the root
* @see Document#getDefaultRootElement
*/
public Element getDefaultRootElement() {
return buffer.getRootElement();
}
/**
* Initialize the document to reflect the given element
* structure (i.e. the structure reported by the
* <code>getDefaultRootElement</code> method. If the
* document contained any data it will first be removed.
*/
protected void create(ElementSpec[] data) {
try {
if (getLength() != 0) {
remove(0, getLength());
}
writeLock();
// install the content
Content c = getContent();
int n = data.length;
StringBuilder sb = new StringBuilder();
for (int i = 0; i < n; i++) {
ElementSpec es = data[i];
if (es.getLength() > 0) {
sb.append(es.getArray(), es.getOffset(), es.getLength());
}
}
UndoableEdit cEdit = c.insertString(0, sb.toString());
// build the event and element structure
int length = sb.length();
DefaultDocumentEvent evnt =
new DefaultDocumentEvent(0, length, DocumentEvent.EventType.INSERT);
evnt.addEdit(cEdit);
buffer.create(length, data, evnt);
// update bidi (possibly)
super.insertUpdate(evnt, null);
// notify the listeners
evnt.end();
fireInsertUpdate(evnt);
fireUndoableEditUpdate(new UndoableEditEvent(this, evnt));
} catch (BadLocationException ble) {
throw new StateInvariantError("problem initializing");
} finally {
writeUnlock();
}
}
/**
* Inserts new elements in bulk. This is useful to allow
* parsing with the document in an unlocked state and
* prepare an element structure modification. This method
* takes an array of tokens that describe how to update an
* element structure so the time within a write lock can
* be greatly reduced in an asynchronous update situation.
* <p>
* This method is thread safe, although most Swing methods
* are not. Please see
* <A HREF="http://docs.oracle.com/javase/tutorial/uiswing/concurrency/index.html">Concurrency
* in Swing</A> for more information.
*
* @param offset the starting offset >= 0
* @param data the element data
* @exception BadLocationException for an invalid starting offset
*/
protected void insert(int offset, ElementSpec[] data) throws BadLocationException {
if (data == null || data.length == 0) {
return;
}
try {
writeLock();
// install the content
Content c = getContent();
int n = data.length;
StringBuilder sb = new StringBuilder();
for (int i = 0; i < n; i++) {
ElementSpec es = data[i];
if (es.getLength() > 0) {
sb.append(es.getArray(), es.getOffset(), es.getLength());
}
}
if (sb.length() == 0) {
// Nothing to insert, bail.
return;
}
UndoableEdit cEdit = c.insertString(offset, sb.toString());
// create event and build the element structure
int length = sb.length();
DefaultDocumentEvent evnt =
new DefaultDocumentEvent(offset, length, DocumentEvent.EventType.INSERT);
evnt.addEdit(cEdit);
buffer.insert(offset, length, data, evnt);
// update bidi (possibly)
super.insertUpdate(evnt, null);
// notify the listeners
evnt.end();
fireInsertUpdate(evnt);
fireUndoableEditUpdate(new UndoableEditEvent(this, evnt));
} finally {
writeUnlock();
}
}
/**
* Removes an element from this document.
*
* <p>The element is removed from its parent element, as well as
* the text in the range identified by the element. If the
* element isn't associated with the document, {@code
* IllegalArgumentException} is thrown.</p>
*
* <p>As empty branch elements are not allowed in the document, if the
* element is the sole child, its parent element is removed as well,
* recursively. This means that when replacing all the children of a
* particular element, new children should be added <em>before</em>
* removing old children.
*
* <p>Element removal results in two events being fired, the
* {@code DocumentEvent} for changes in element structure and {@code
* UndoableEditEvent} for changes in document content.</p>
*
* <p>If the element contains end-of-content mark (the last {@code
* "\n"} character in document), this character is not removed;
* instead, preceding leaf element is extended to cover the
* character. If the last leaf already ends with {@code "\n",} it is
* included in content removal.</p>
*
* <p>If the element is {@code null,} {@code NullPointerException} is
* thrown. If the element structure would become invalid after the removal,
* for example if the element is the document root element, {@code
* IllegalArgumentException} is thrown. If the current element structure is
* invalid, {@code IllegalStateException} is thrown.</p>
*
* @param elem the element to remove
* @throws NullPointerException if the element is {@code null}
* @throws IllegalArgumentException if the element could not be removed
* @throws IllegalStateException if the element structure is invalid
*
* @since 1.7
*/
public void removeElement(Element elem) {
try {
writeLock();
removeElementImpl(elem);
} finally {
writeUnlock();
}
}
private void removeElementImpl(Element elem) {
if (elem.getDocument() != this) {
throw new IllegalArgumentException("element doesn't belong to document");
}
BranchElement parent = (BranchElement) elem.getParentElement();
if (parent == null) {
throw new IllegalArgumentException("can't remove the root element");
}
int startOffset = elem.getStartOffset();
int removeFrom = startOffset;
int endOffset = elem.getEndOffset();
int removeTo = endOffset;
int lastEndOffset = getLength() + 1;
Content content = getContent();
boolean atEnd = false;
boolean isComposedText = Utilities.isComposedTextElement(elem);
if (endOffset >= lastEndOffset) {
// element includes the last "\n" character, needs special handling
if (startOffset <= 0) {
throw new IllegalArgumentException("can't remove the whole content");
}
removeTo = lastEndOffset - 1; // last "\n" must not be removed
try {
if (content.getString(startOffset - 1, 1).charAt(0) == '\n') {
removeFrom--; // preceding leaf ends with "\n", remove it
}
} catch (BadLocationException ble) { // can't happen
throw new IllegalStateException(ble);
}
atEnd = true;
}
int length = removeTo - removeFrom;
DefaultDocumentEvent dde = new DefaultDocumentEvent(removeFrom,
length, DefaultDocumentEvent.EventType.REMOVE);
UndoableEdit ue = null;
// do not leave empty branch elements
while (parent.getElementCount() == 1) {
elem = parent;
parent = (BranchElement) parent.getParentElement();
if (parent == null) { // shouldn't happen
throw new IllegalStateException("invalid element structure");
}
}
Element[] removed = { elem };
Element[] added = {};
int index = parent.getElementIndex(startOffset);
parent.replace(index, 1, added);
dde.addEdit(new ElementEdit(parent, index, removed, added));
if (length > 0) {
try {
ue = content.remove(removeFrom, length);
if (ue != null) {
dde.addEdit(ue);
}
} catch (BadLocationException ble) {
// can only happen if the element structure is severely broken
throw new IllegalStateException(ble);
}
lastEndOffset -= length;
}
if (atEnd) {
// preceding leaf element should be extended to cover orphaned "\n"
Element prevLeaf = parent.getElement(parent.getElementCount() - 1);
while ((prevLeaf != null) && !prevLeaf.isLeaf()) {
prevLeaf = prevLeaf.getElement(prevLeaf.getElementCount() - 1);
}
if (prevLeaf == null) { // shouldn't happen
throw new IllegalStateException("invalid element structure");
}
int prevStartOffset = prevLeaf.getStartOffset();
BranchElement prevParent = (BranchElement) prevLeaf.getParentElement();
int prevIndex = prevParent.getElementIndex(prevStartOffset);
Element newElem;
newElem = createLeafElement(prevParent, prevLeaf.getAttributes(),
prevStartOffset, lastEndOffset);
Element[] prevRemoved = { prevLeaf };
Element[] prevAdded = { newElem };
prevParent.replace(prevIndex, 1, prevAdded);
dde.addEdit(new ElementEdit(prevParent, prevIndex,
prevRemoved, prevAdded));
}
postRemoveUpdate(dde);
dde.end();
fireRemoveUpdate(dde);
if (! (isComposedText && (ue != null))) {
// do not fire UndoabeEdit event for composed text edit (unsupported)
fireUndoableEditUpdate(new UndoableEditEvent(this, dde));
}
}
/**
* Adds a new style into the logical style hierarchy. Style attributes
* resolve from bottom up so an attribute specified in a child
* will override an attribute specified in the parent.
*
* @param nm the name of the style (must be unique within the
* collection of named styles). The name may be null if the style
* is unnamed, but the caller is responsible
* for managing the reference returned as an unnamed style can't
* be fetched by name. An unnamed style may be useful for things
* like character attribute overrides such as found in a style
* run.
* @param parent the parent style. This may be null if unspecified
* attributes need not be resolved in some other style.
* @return the style
*/
public Style addStyle(String nm, Style parent) {
StyleContext styles = (StyleContext) getAttributeContext();
return styles.addStyle(nm, parent);
}
/**
* Removes a named style previously added to the document.
*
* @param nm the name of the style to remove
*/
public void removeStyle(String nm) {
StyleContext styles = (StyleContext) getAttributeContext();
styles.removeStyle(nm);
}
/**
* Fetches a named style previously added.
*
* @param nm the name of the style
* @return the style
*/
public Style getStyle(String nm) {
StyleContext styles = (StyleContext) getAttributeContext();
return styles.getStyle(nm);
}
/**
* Fetches the list of of style names.
*
* @return all the style names
*/
public Enumeration<?> getStyleNames() {
return ((StyleContext) getAttributeContext()).getStyleNames();
}
/**
* Sets the logical style to use for the paragraph at the
* given position. If attributes aren't explicitly set
* for character and paragraph attributes they will resolve
* through the logical style assigned to the paragraph, which
* in turn may resolve through some hierarchy completely
* independent of the element hierarchy in the document.
* <p>
* This method is thread safe, although most Swing methods
* are not. Please see
* <A HREF="http://docs.oracle.com/javase/tutorial/uiswing/concurrency/index.html">Concurrency
* in Swing</A> for more information.
*
* @param pos the offset from the start of the document >= 0
* @param s the logical style to assign to the paragraph, null if none
*/
public void setLogicalStyle(int pos, Style s) {
Element paragraph = getParagraphElement(pos);
if ((paragraph != null) && (paragraph instanceof AbstractElement)) {
try {
writeLock();
StyleChangeUndoableEdit edit = new StyleChangeUndoableEdit((AbstractElement)paragraph, s);
((AbstractElement)paragraph).setResolveParent(s);
int p0 = paragraph.getStartOffset();
int p1 = paragraph.getEndOffset();
DefaultDocumentEvent e =
new DefaultDocumentEvent(p0, p1 - p0, DocumentEvent.EventType.CHANGE);
e.addEdit(edit);
e.end();
fireChangedUpdate(e);
fireUndoableEditUpdate(new UndoableEditEvent(this, e));
} finally {
writeUnlock();
}
}
}
/**
* Fetches the logical style assigned to the paragraph
* represented by the given position.
*
* @param p the location to translate to a paragraph
* and determine the logical style assigned >= 0. This
* is an offset from the start of the document.
* @return the style, null if none
*/
public Style getLogicalStyle(int p) {
Style s = null;
Element paragraph = getParagraphElement(p);
if (paragraph != null) {
AttributeSet a = paragraph.getAttributes();
AttributeSet parent = a.getResolveParent();
if (parent instanceof Style) {
s = (Style) parent;
}
}
return s;
}
/**
* Sets attributes for some part of the document.
* A write lock is held by this operation while changes
* are being made, and a DocumentEvent is sent to the listeners
* after the change has been successfully completed.
* <p>
* This method is thread safe, although most Swing methods
* are not. Please see
* <A HREF="http://docs.oracle.com/javase/tutorial/uiswing/concurrency/index.html">Concurrency
* in Swing</A> for more information.
*
* @param offset the offset in the document >= 0
* @param length the length >= 0
* @param s the attributes
* @param replace true if the previous attributes should be replaced
* before setting the new attributes
*/
public void setCharacterAttributes(int offset, int length, AttributeSet s, boolean replace) {
if (length == 0) {
return;
}
try {
writeLock();
DefaultDocumentEvent changes =
new DefaultDocumentEvent(offset, length, DocumentEvent.EventType.CHANGE);
// split elements that need it
buffer.change(offset, length, changes);
AttributeSet sCopy = s.copyAttributes();
// PENDING(prinz) - this isn't a very efficient way to iterate
int lastEnd;
for (int pos = offset; pos < (offset + length); pos = lastEnd) {
Element run = getCharacterElement(pos);
lastEnd = run.getEndOffset();
if (pos == lastEnd) {
// offset + length beyond length of document, bail.
break;
}
MutableAttributeSet attr = (MutableAttributeSet) run.getAttributes();
changes.addEdit(new AttributeUndoableEdit(run, sCopy, replace));
if (replace) {
attr.removeAttributes(attr);
}
attr.addAttributes(s);
}
changes.end();
fireChangedUpdate(changes);
fireUndoableEditUpdate(new UndoableEditEvent(this, changes));
} finally {
writeUnlock();
}
}
/**
* Sets attributes for a paragraph.
* <p>
* This method is thread safe, although most Swing methods
* are not. Please see
* <A HREF="http://docs.oracle.com/javase/tutorial/uiswing/concurrency/index.html">Concurrency
* in Swing</A> for more information.
*
* @param offset the offset into the paragraph >= 0
* @param length the number of characters affected >= 0
* @param s the attributes
* @param replace whether to replace existing attributes, or merge them
*/
public void setParagraphAttributes(int offset, int length, AttributeSet s,
boolean replace) {
try {
writeLock();
DefaultDocumentEvent changes =
new DefaultDocumentEvent(offset, length, DocumentEvent.EventType.CHANGE);
AttributeSet sCopy = s.copyAttributes();
// PENDING(prinz) - this assumes a particular element structure
Element section = getDefaultRootElement();
int index0 = section.getElementIndex(offset);
int index1 = section.getElementIndex(offset + ((length > 0) ? length - 1 : 0));
boolean isI18N = Boolean.TRUE.equals(getProperty(I18NProperty));
boolean hasRuns = false;
for (int i = index0; i <= index1; i++) {
Element paragraph = section.getElement(i);
MutableAttributeSet attr = (MutableAttributeSet) paragraph.getAttributes();
changes.addEdit(new AttributeUndoableEdit(paragraph, sCopy, replace));
if (replace) {
attr.removeAttributes(attr);
}
attr.addAttributes(s);
if (isI18N && !hasRuns) {
hasRuns = (attr.getAttribute(TextAttribute.RUN_DIRECTION) != null);
}
}
if (hasRuns) {
updateBidi( changes );
}
changes.end();
fireChangedUpdate(changes);
fireUndoableEditUpdate(new UndoableEditEvent(this, changes));
} finally {
writeUnlock();
}
}
/**
* Gets the paragraph element at the offset <code>pos</code>.
* A paragraph consists of at least one child Element, which is usually
* a leaf.
*
* @param pos the starting offset >= 0
* @return the element
*/
public Element getParagraphElement(int pos) {
Element e;
for (e = getDefaultRootElement(); ! e.isLeaf(); ) {
int index = e.getElementIndex(pos);
e = e.getElement(index);
}
if(e != null)
return e.getParentElement();
return e;
}
/**
* Gets a character element based on a position.
*
* @param pos the position in the document >= 0
* @return the element
*/
public Element getCharacterElement(int pos) {
Element e;
for (e = getDefaultRootElement(); ! e.isLeaf(); ) {
int index = e.getElementIndex(pos);
e = e.getElement(index);
}
return e;
}
// --- local methods -------------------------------------------------
/**
* Updates document structure as a result of text insertion. This
* will happen within a write lock. This implementation simply
* parses the inserted content for line breaks and builds up a set
* of instructions for the element buffer.
*
* @param chng a description of the document change
* @param attr the attributes
*/
protected void insertUpdate(DefaultDocumentEvent chng, AttributeSet attr) {
int offset = chng.getOffset();
int length = chng.getLength();
if (attr == null) {
attr = SimpleAttributeSet.EMPTY;
}
// Paragraph attributes should come from point after insertion.
// You really only notice this when inserting at a paragraph
// boundary.
Element paragraph = getParagraphElement(offset + length);
AttributeSet pattr = paragraph.getAttributes();
// Character attributes should come from actual insertion point.
Element pParagraph = getParagraphElement(offset);
Element run = pParagraph.getElement(pParagraph.getElementIndex
(offset));
int endOffset = offset + length;
boolean insertingAtBoundry = (run.getEndOffset() == endOffset);
AttributeSet cattr = run.getAttributes();
try {
Segment s = new Segment();
Vector<ElementSpec> parseBuffer = new Vector<ElementSpec>();
ElementSpec lastStartSpec = null;
boolean insertingAfterNewline = false;
short lastStartDirection = ElementSpec.OriginateDirection;
// Check if the previous character was a newline.
if (offset > 0) {
getText(offset - 1, 1, s);
if (s.array[s.offset] == '\n') {
// Inserting after a newline.
insertingAfterNewline = true;
lastStartDirection = createSpecsForInsertAfterNewline
(paragraph, pParagraph, pattr, parseBuffer,
offset, endOffset);
for(int counter = parseBuffer.size() - 1; counter >= 0;
counter--) {
ElementSpec spec = parseBuffer.elementAt(counter);
if(spec.getType() == ElementSpec.StartTagType) {
lastStartSpec = spec;
break;
}
}
}
}
// If not inserting after a new line, pull the attributes for
// new paragraphs from the paragraph under the insertion point.
if(!insertingAfterNewline)
pattr = pParagraph.getAttributes();
getText(offset, length, s);
char[] txt = s.array;
int n = s.offset + s.count;
int lastOffset = s.offset;
for (int i = s.offset; i < n; i++) {
if (txt[i] == '\n') {
int breakOffset = i + 1;
parseBuffer.addElement(
new ElementSpec(attr, ElementSpec.ContentType,
breakOffset - lastOffset));
parseBuffer.addElement(
new ElementSpec(null, ElementSpec.EndTagType));
lastStartSpec = new ElementSpec(pattr, ElementSpec.
StartTagType);
parseBuffer.addElement(lastStartSpec);
lastOffset = breakOffset;
}
}
if (lastOffset < n) {
parseBuffer.addElement(
new ElementSpec(attr, ElementSpec.ContentType,
n - lastOffset));
}
ElementSpec first = parseBuffer.firstElement();
int docLength = getLength();
// Check for join previous of first content.
if(first.getType() == ElementSpec.ContentType &&
cattr.isEqual(attr)) {
first.setDirection(ElementSpec.JoinPreviousDirection);
}
// Do a join fracture/next for last start spec if necessary.
if(lastStartSpec != null) {
if(insertingAfterNewline) {
lastStartSpec.setDirection(lastStartDirection);
}
// Join to the fracture if NOT inserting at the end
// (fracture only happens when not inserting at end of
// paragraph).
else if(pParagraph.getEndOffset() != endOffset) {
lastStartSpec.setDirection(ElementSpec.
JoinFractureDirection);
}
// Join to next if parent of pParagraph has another
// element after pParagraph, and it isn't a leaf.
else {
Element parent = pParagraph.getParentElement();
int pParagraphIndex = parent.getElementIndex(offset);
if((pParagraphIndex + 1) < parent.getElementCount() &&
!parent.getElement(pParagraphIndex + 1).isLeaf()) {
lastStartSpec.setDirection(ElementSpec.
JoinNextDirection);
}
}
}
// Do a JoinNext for last spec if it is content, it doesn't
// already have a direction set, no new paragraphs have been
// inserted or a new paragraph has been inserted and its join
// direction isn't originate, and the element at endOffset
// is a leaf.
if(insertingAtBoundry && endOffset < docLength) {
ElementSpec last = parseBuffer.lastElement();
if(last.getType() == ElementSpec.ContentType &&
last.getDirection() != ElementSpec.JoinPreviousDirection &&
((lastStartSpec == null && (paragraph == pParagraph ||
insertingAfterNewline)) ||
(lastStartSpec != null && lastStartSpec.getDirection() !=
ElementSpec.OriginateDirection))) {
Element nextRun = paragraph.getElement(paragraph.
getElementIndex(endOffset));
// Don't try joining to a branch!
if(nextRun.isLeaf() &&
attr.isEqual(nextRun.getAttributes())) {
last.setDirection(ElementSpec.JoinNextDirection);
}
}
}
// If not inserting at boundary and there is going to be a
// fracture, then can join next on last content if cattr
// matches the new attributes.
else if(!insertingAtBoundry && lastStartSpec != null &&
lastStartSpec.getDirection() ==
ElementSpec.JoinFractureDirection) {
ElementSpec last = parseBuffer.lastElement();
if(last.getType() == ElementSpec.ContentType &&
last.getDirection() != ElementSpec.JoinPreviousDirection &&
attr.isEqual(cattr)) {
last.setDirection(ElementSpec.JoinNextDirection);
}
}
// Check for the composed text element. If it is, merge the character attributes
// into this element as well.
if (Utilities.isComposedTextAttributeDefined(attr)) {
MutableAttributeSet mattr = (MutableAttributeSet) attr;
mattr.addAttributes(cattr);
mattr.addAttribute(AbstractDocument.ElementNameAttribute,
AbstractDocument.ContentElementName);
// Assure that the composed text element is named properly
// and doesn't have the CR attribute defined.
mattr.addAttribute(StyleConstants.NameAttribute,
AbstractDocument.ContentElementName);
if (mattr.isDefined(IMPLIED_CR)) {
mattr.removeAttribute(IMPLIED_CR);
}
}
ElementSpec[] spec = new ElementSpec[parseBuffer.size()];
parseBuffer.copyInto(spec);
buffer.insert(offset, length, spec, chng);
} catch (BadLocationException bl) {
}
super.insertUpdate( chng, attr );
}
/**
* This is called by insertUpdate when inserting after a new line.
* It generates, in <code>parseBuffer</code>, ElementSpecs that will
* position the stack in <code>paragraph</code>.<p>
* It returns the direction the last StartSpec should have (this don't
* necessarily create the last start spec).
*/
short createSpecsForInsertAfterNewline(Element paragraph,
Element pParagraph, AttributeSet pattr, Vector<ElementSpec> parseBuffer,
int offset, int endOffset) {
// Need to find the common parent of pParagraph and paragraph.
if(paragraph.getParentElement() == pParagraph.getParentElement()) {
// The simple (and common) case that pParagraph and
// paragraph have the same parent.
ElementSpec spec = new ElementSpec(pattr, ElementSpec.EndTagType);
parseBuffer.addElement(spec);
spec = new ElementSpec(pattr, ElementSpec.StartTagType);
parseBuffer.addElement(spec);
if(pParagraph.getEndOffset() != endOffset)
return ElementSpec.JoinFractureDirection;
Element parent = pParagraph.getParentElement();
if((parent.getElementIndex(offset) + 1) < parent.getElementCount())
return ElementSpec.JoinNextDirection;
}
else {
// Will only happen for text with more than 2 levels.
// Find the common parent of a paragraph and pParagraph
Vector<Element> leftParents = new Vector<Element>();
Vector<Element> rightParents = new Vector<Element>();
Element e = pParagraph;
while(e != null) {
leftParents.addElement(e);
e = e.getParentElement();
}
e = paragraph;
int leftIndex = -1;
while(e != null && (leftIndex = leftParents.indexOf(e)) == -1) {
rightParents.addElement(e);
e = e.getParentElement();
}
if(e != null) {
// e identifies the common parent.
// Build the ends.
for(int counter = 0; counter < leftIndex;
counter++) {
parseBuffer.addElement(new ElementSpec
(null, ElementSpec.EndTagType));
}
// And the starts.
ElementSpec spec;
for(int counter = rightParents.size() - 1;
counter >= 0; counter--) {
spec = new ElementSpec(rightParents.elementAt(counter).getAttributes(),
ElementSpec.StartTagType);
if(counter > 0)
spec.setDirection(ElementSpec.JoinNextDirection);
parseBuffer.addElement(spec);
}
// If there are right parents, then we generated starts
// down the right subtree and there will be an element to
// join to.
if(rightParents.size() > 0)
return ElementSpec.JoinNextDirection;
// No right subtree, e.getElement(endOffset) is a
// leaf. There will be a facture.
return ElementSpec.JoinFractureDirection;
}
// else: Could throw an exception here, but should never get here!
}
return ElementSpec.OriginateDirection;
}
/**
* Updates document structure as a result of text removal.
*
* @param chng a description of the document change
*/
protected void removeUpdate(DefaultDocumentEvent chng) {
super.removeUpdate(chng);
buffer.remove(chng.getOffset(), chng.getLength(), chng);
}
/**
* Creates the root element to be used to represent the
* default document structure.
*
* @return the element base
*/
protected AbstractElement createDefaultRoot() {
// grabs a write-lock for this initialization and
// abandon it during initialization so in normal
// operation we can detect an illegitimate attempt
// to mutate attributes.
writeLock();
BranchElement section = new SectionElement();
BranchElement paragraph = new BranchElement(section, null);
LeafElement brk = new LeafElement(paragraph, null, 0, 1);
Element[] buff = new Element[1];
buff[0] = brk;
paragraph.replace(0, 0, buff);
buff[0] = paragraph;
section.replace(0, 0, buff);
writeUnlock();
return section;
}
/**
* Gets the foreground color from an attribute set.
*
* @param attr the attribute set
* @return the color
*/
public Color getForeground(AttributeSet attr) {
StyleContext styles = (StyleContext) getAttributeContext();
return styles.getForeground(attr);
}
/**
* Gets the background color from an attribute set.
*
* @param attr the attribute set
* @return the color
*/
public Color getBackground(AttributeSet attr) {
StyleContext styles = (StyleContext) getAttributeContext();
return styles.getBackground(attr);
}
/**
* Gets the font from an attribute set.
*
* @param attr the attribute set
* @return the font
*/
public Font getFont(AttributeSet attr) {
StyleContext styles = (StyleContext) getAttributeContext();
return styles.getFont(attr);
}
/**
* Called when any of this document's styles have changed.
* Subclasses may wish to be intelligent about what gets damaged.
*
* @param style The Style that has changed.
*/
protected void styleChanged(Style style) {
// Only propagate change updated if have content
if (getLength() != 0) {
// lazily create a ChangeUpdateRunnable
if (updateRunnable == null) {
updateRunnable = new ChangeUpdateRunnable();
}
// We may get a whole batch of these at once, so only
// queue the runnable if it is not already pending
synchronized(updateRunnable) {
if (!updateRunnable.isPending) {
SwingUtilities.invokeLater(updateRunnable);
updateRunnable.isPending = true;
}
}
}
}
/**
* Adds a document listener for notification of any changes.
*
* @param listener the listener
* @see Document#addDocumentListener
*/
public void addDocumentListener(DocumentListener listener) {
synchronized(listeningStyles) {
int oldDLCount = listenerList.getListenerCount
(DocumentListener.class);
super.addDocumentListener(listener);
if (oldDLCount == 0) {
if (styleContextChangeListener == null) {
styleContextChangeListener =
createStyleContextChangeListener();
}
if (styleContextChangeListener != null) {
StyleContext styles = (StyleContext)getAttributeContext();
List<ChangeListener> staleListeners =
AbstractChangeHandler.getStaleListeners(styleContextChangeListener);
for (ChangeListener l: staleListeners) {
styles.removeChangeListener(l);
}
styles.addChangeListener(styleContextChangeListener);
}
updateStylesListeningTo();
}
}
}
/**
* Removes a document listener.
*
* @param listener the listener
* @see Document#removeDocumentListener
*/
public void removeDocumentListener(DocumentListener listener) {
synchronized(listeningStyles) {
super.removeDocumentListener(listener);
if (listenerList.getListenerCount(DocumentListener.class) == 0) {
for (int counter = listeningStyles.size() - 1; counter >= 0;
counter--) {
listeningStyles.elementAt(counter).
removeChangeListener(styleChangeListener);
}
listeningStyles.removeAllElements();
if (styleContextChangeListener != null) {
StyleContext styles = (StyleContext)getAttributeContext();
styles.removeChangeListener(styleContextChangeListener);
}
}
}
}
/**
* Returns a new instance of StyleChangeHandler.
*/
ChangeListener createStyleChangeListener() {
return new StyleChangeHandler(this);
}
/**
* Returns a new instance of StyleContextChangeHandler.
*/
ChangeListener createStyleContextChangeListener() {
return new StyleContextChangeHandler(this);
}
/**
* Adds a ChangeListener to new styles, and removes ChangeListener from
* old styles.
*/
void updateStylesListeningTo() {
synchronized(listeningStyles) {
StyleContext styles = (StyleContext)getAttributeContext();
if (styleChangeListener == null) {
styleChangeListener = createStyleChangeListener();
}
if (styleChangeListener != null && styles != null) {
Enumeration styleNames = styles.getStyleNames();
Vector v = (Vector)listeningStyles.clone();
listeningStyles.removeAllElements();
List<ChangeListener> staleListeners =
AbstractChangeHandler.getStaleListeners(styleChangeListener);
while (styleNames.hasMoreElements()) {
String name = (String)styleNames.nextElement();
Style aStyle = styles.getStyle(name);
int index = v.indexOf(aStyle);
listeningStyles.addElement(aStyle);
if (index == -1) {
for (ChangeListener l: staleListeners) {
aStyle.removeChangeListener(l);
}
aStyle.addChangeListener(styleChangeListener);
}
else {
v.removeElementAt(index);
}
}
for (int counter = v.size() - 1; counter >= 0; counter--) {
Style aStyle = (Style)v.elementAt(counter);
aStyle.removeChangeListener(styleChangeListener);
}
if (listeningStyles.size() == 0) {
styleChangeListener = null;
}
}
}
}
private void readObject(ObjectInputStream s)
throws ClassNotFoundException, IOException {
listeningStyles = new Vector<Style>();
s.defaultReadObject();
// Reinstall style listeners.
if (styleContextChangeListener == null &&
listenerList.getListenerCount(DocumentListener.class) > 0) {
styleContextChangeListener = createStyleContextChangeListener();
if (styleContextChangeListener != null) {
StyleContext styles = (StyleContext)getAttributeContext();
styles.addChangeListener(styleContextChangeListener);
}
updateStylesListeningTo();
}
}
// --- member variables -----------------------------------------------------------
/**
* The default size of the initial content buffer.
*/
public static final int BUFFER_SIZE_DEFAULT = 4096;
protected ElementBuffer buffer;
/** Styles listening to. */
private transient Vector<Style> listeningStyles;
/** Listens to Styles. */
private transient ChangeListener styleChangeListener;
/** Listens to Styles. */
private transient ChangeListener styleContextChangeListener;
/** Run to create a change event for the document */
private transient ChangeUpdateRunnable updateRunnable;
/**
* Default root element for a document... maps out the
* paragraphs/lines contained.
* <p>
* <strong>Warning:</strong>
* Serialized objects of this class will not be compatible with
* future Swing releases. The current serialization support is
* appropriate for short term storage or RMI between applications running
* the same version of Swing. As of 1.4, support for long term storage
* of all JavaBeans™
* has been added to the <code>java.beans</code> package.
* Please see {@link java.beans.XMLEncoder}.
*/
protected class SectionElement extends BranchElement {
/**
* Creates a new SectionElement.
*/
public SectionElement() {
super(null, null);
}
/**
* Gets the name of the element.
*
* @return the name
*/
public String getName() {
return SectionElementName;
}
}
/**
* Specification for building elements.
* <p>
* <strong>Warning:</strong>
* Serialized objects of this class will not be compatible with
* future Swing releases. The current serialization support is
* appropriate for short term storage or RMI between applications running
* the same version of Swing. As of 1.4, support for long term storage
* of all JavaBeans™
* has been added to the <code>java.beans</code> package.
* Please see {@link java.beans.XMLEncoder}.
*/
public static class ElementSpec {
/**
* A possible value for getType. This specifies
* that this record type is a start tag and
* represents markup that specifies the start
* of an element.
*/
public static final short StartTagType = 1;
/**
* A possible value for getType. This specifies
* that this record type is a end tag and
* represents markup that specifies the end
* of an element.
*/
public static final short EndTagType = 2;
/**
* A possible value for getType. This specifies
* that this record type represents content.
*/
public static final short ContentType = 3;
/**
* A possible value for getDirection. This specifies
* that the data associated with this record should
* be joined to what precedes it.
*/
public static final short JoinPreviousDirection = 4;
/**
* A possible value for getDirection. This specifies
* that the data associated with this record should
* be joined to what follows it.
*/
public static final short JoinNextDirection = 5;
/**
* A possible value for getDirection. This specifies
* that the data associated with this record should
* be used to originate a new element. This would be
* the normal value.
*/
public static final short OriginateDirection = 6;
/**
* A possible value for getDirection. This specifies
* that the data associated with this record should
* be joined to the fractured element.
*/
public static final short JoinFractureDirection = 7;
/**
* Constructor useful for markup when the markup will not
* be stored in the document.
*
* @param a the attributes for the element
* @param type the type of the element (StartTagType, EndTagType,
* ContentType)
*/
public ElementSpec(AttributeSet a, short type) {
this(a, type, null, 0, 0);
}
/**
* Constructor for parsing inside the document when
* the data has already been added, but len information
* is needed.
*
* @param a the attributes for the element
* @param type the type of the element (StartTagType, EndTagType,
* ContentType)
* @param len the length >= 0
*/
public ElementSpec(AttributeSet a, short type, int len) {
this(a, type, null, 0, len);
}
/**
* Constructor for creating a spec externally for batch
* input of content and markup into the document.
*
* @param a the attributes for the element
* @param type the type of the element (StartTagType, EndTagType,
* ContentType)
* @param txt the text for the element
* @param offs the offset into the text >= 0
* @param len the length of the text >= 0
*/
public ElementSpec(AttributeSet a, short type, char[] txt,
int offs, int len) {
attr = a;
this.type = type;
this.data = txt;
this.offs = offs;
this.len = len;
this.direction = OriginateDirection;
}
/**
* Sets the element type.
*
* @param type the type of the element (StartTagType, EndTagType,
* ContentType)
*/
public void setType(short type) {
this.type = type;
}
/**
* Gets the element type.
*
* @return the type of the element (StartTagType, EndTagType,
* ContentType)
*/
public short getType() {
return type;
}
/**
* Sets the direction.
*
* @param direction the direction (JoinPreviousDirection,
* JoinNextDirection)
*/
public void setDirection(short direction) {
this.direction = direction;
}
/**
* Gets the direction.
*
* @return the direction (JoinPreviousDirection, JoinNextDirection)
*/
public short getDirection() {
return direction;
}
/**
* Gets the element attributes.
*
* @return the attribute set
*/
public AttributeSet getAttributes() {
return attr;
}
/**
* Gets the array of characters.
*
* @return the array
*/
public char[] getArray() {
return data;
}
/**
* Gets the starting offset.
*
* @return the offset >= 0
*/
public int getOffset() {
return offs;
}
/**
* Gets the length.
*
* @return the length >= 0
*/
public int getLength() {
return len;
}
/**
* Converts the element to a string.
*
* @return the string
*/
public String toString() {
String tlbl = "??";
String plbl = "??";
switch(type) {
case StartTagType:
tlbl = "StartTag";
break;
case ContentType:
tlbl = "Content";
break;
case EndTagType:
tlbl = "EndTag";
break;
}
switch(direction) {
case JoinPreviousDirection:
plbl = "JoinPrevious";
break;
case JoinNextDirection:
plbl = "JoinNext";
break;
case OriginateDirection:
plbl = "Originate";
break;
case JoinFractureDirection:
plbl = "Fracture";
break;
}
return tlbl + ":" + plbl + ":" + getLength();
}
private AttributeSet attr;
private int len;
private short type;
private short direction;
private int offs;
private char[] data;
}
/**
* Class to manage changes to the element
* hierarchy.
* <p>
* <strong>Warning:</strong>
* Serialized objects of this class will not be compatible with
* future Swing releases. The current serialization support is
* appropriate for short term storage or RMI between applications running
* the same version of Swing. As of 1.4, support for long term storage
* of all JavaBeans™
* has been added to the <code>java.beans</code> package.
* Please see {@link java.beans.XMLEncoder}.
*/
public class ElementBuffer implements Serializable {
/**
* Creates a new ElementBuffer.
*
* @param root the root element
* @since 1.4
*/
public ElementBuffer(Element root) {
this.root = root;
changes = new Vector<ElemChanges>();
path = new Stack<ElemChanges>();
}
/**
* Gets the root element.
*
* @return the root element
*/
public Element getRootElement() {
return root;
}
/**
* Inserts new content.
*
* @param offset the starting offset >= 0
* @param length the length >= 0
* @param data the data to insert
* @param de the event capturing this edit
*/
public void insert(int offset, int length, ElementSpec[] data,
DefaultDocumentEvent de) {
if (length == 0) {
// Nothing was inserted, no structure change.
return;
}
insertOp = true;
beginEdits(offset, length);
insertUpdate(data);
endEdits(de);
insertOp = false;
}
void create(int length, ElementSpec[] data, DefaultDocumentEvent de) {
insertOp = true;
beginEdits(offset, length);
// PENDING(prinz) this needs to be fixed to create a new
// root element as well, but requires changes to the
// DocumentEvent to inform the views that there is a new
// root element.
// Recreate the ending fake element to have the correct offsets.
Element elem = root;
int index = elem.getElementIndex(0);
while (! elem.isLeaf()) {
Element child = elem.getElement(index);
push(elem, index);
elem = child;
index = elem.getElementIndex(0);
}
ElemChanges ec = path.peek();
Element child = ec.parent.getElement(ec.index);
ec.added.addElement(createLeafElement(ec.parent,
child.getAttributes(), getLength(),
child.getEndOffset()));
ec.removed.addElement(child);
while (path.size() > 1) {
pop();
}
int n = data.length;
// Reset the root elements attributes.
AttributeSet newAttrs = null;
if (n > 0 && data[0].getType() == ElementSpec.StartTagType) {
newAttrs = data[0].getAttributes();
}
if (newAttrs == null) {
newAttrs = SimpleAttributeSet.EMPTY;
}
MutableAttributeSet attr = (MutableAttributeSet)root.
getAttributes();
de.addEdit(new AttributeUndoableEdit(root, newAttrs, true));
attr.removeAttributes(attr);
attr.addAttributes(newAttrs);
// fold in the specified subtree
for (int i = 1; i < n; i++) {
insertElement(data[i]);
}
// pop the remaining path
while (path.size() != 0) {
pop();
}
endEdits(de);
insertOp = false;
}
/**
* Removes content.
*
* @param offset the starting offset >= 0
* @param length the length >= 0
* @param de the event capturing this edit
*/
public void remove(int offset, int length, DefaultDocumentEvent de) {
beginEdits(offset, length);
removeUpdate();
endEdits(de);
}
/**
* Changes content.
*
* @param offset the starting offset >= 0
* @param length the length >= 0
* @param de the event capturing this edit
*/
public void change(int offset, int length, DefaultDocumentEvent de) {
beginEdits(offset, length);
changeUpdate();
endEdits(de);
}
/**
* Inserts an update into the document.
*
* @param data the elements to insert
*/
protected void insertUpdate(ElementSpec[] data) {
// push the path
Element elem = root;
int index = elem.getElementIndex(offset);
while (! elem.isLeaf()) {
Element child = elem.getElement(index);
push(elem, (child.isLeaf() ? index : index+1));
elem = child;
index = elem.getElementIndex(offset);
}
// Build a copy of the original path.
insertPath = new ElemChanges[path.size()];
path.copyInto(insertPath);
// Haven't created the fracture yet.
createdFracture = false;
// Insert the first content.
int i;
recreateLeafs = false;
if(data[0].getType() == ElementSpec.ContentType) {
insertFirstContent(data);
pos += data[0].getLength();
i = 1;
}
else {
fractureDeepestLeaf(data);
i = 0;
}
// fold in the specified subtree
int n = data.length;
for (; i < n; i++) {
insertElement(data[i]);
}
// Fracture, if we haven't yet.
if(!createdFracture)
fracture(-1);
// pop the remaining path
while (path.size() != 0) {
pop();
}
// Offset the last index if necessary.
if(offsetLastIndex && offsetLastIndexOnReplace) {
insertPath[insertPath.length - 1].index++;
}
// Make sure an edit is going to be created for each of the
// original path items that have a change.
for(int counter = insertPath.length - 1; counter >= 0;
counter--) {
ElemChanges change = insertPath[counter];
if(change.parent == fracturedParent)
change.added.addElement(fracturedChild);
if((change.added.size() > 0 ||
change.removed.size() > 0) && !changes.contains(change)) {
// PENDING(sky): Do I need to worry about order here?
changes.addElement(change);
}
}
// An insert at 0 with an initial end implies some elements
// will have no children (the bottomost leaf would have length 0)
// this will find what element need to be removed and remove it.
if (offset == 0 && fracturedParent != null &&
data[0].getType() == ElementSpec.EndTagType) {
int counter = 0;
while (counter < data.length &&
data[counter].getType() == ElementSpec.EndTagType) {
counter++;
}
ElemChanges change = insertPath[insertPath.length -
counter - 1];
change.removed.insertElementAt(change.parent.getElement
(--change.index), 0);
}
}
/**
* Updates the element structure in response to a removal from the
* associated sequence in the document. Any elements consumed by the
* span of the removal are removed.
*/
protected void removeUpdate() {
removeElements(root, offset, offset + length);
}
/**
* Updates the element structure in response to a change in the
* document.
*/
protected void changeUpdate() {
boolean didEnd = split(offset, length);
if (! didEnd) {
// need to do the other end
while (path.size() != 0) {
pop();
}
split(offset + length, 0);
}
while (path.size() != 0) {
pop();
}
}
boolean split(int offs, int len) {
boolean splitEnd = false;
// push the path
Element e = root;
int index = e.getElementIndex(offs);
while (! e.isLeaf()) {
push(e, index);
e = e.getElement(index);
index = e.getElementIndex(offs);
}
ElemChanges ec = path.peek();
Element child = ec.parent.getElement(ec.index);
// make sure there is something to do... if the
// offset is already at a boundary then there is
// nothing to do.
if (child.getStartOffset() < offs && offs < child.getEndOffset()) {
// we need to split, now see if the other end is within
// the same parent.
int index0 = ec.index;
int index1 = index0;
if (((offs + len) < ec.parent.getEndOffset()) && (len != 0)) {
// it's a range split in the same parent
index1 = ec.parent.getElementIndex(offs+len);
if (index1 == index0) {
// it's a three-way split
ec.removed.addElement(child);
e = createLeafElement(ec.parent, child.getAttributes(),
child.getStartOffset(), offs);
ec.added.addElement(e);
e = createLeafElement(ec.parent, child.getAttributes(),
offs, offs + len);
ec.added.addElement(e);
e = createLeafElement(ec.parent, child.getAttributes(),
offs + len, child.getEndOffset());
ec.added.addElement(e);
return true;
} else {
child = ec.parent.getElement(index1);
if ((offs + len) == child.getStartOffset()) {
// end is already on a boundary
index1 = index0;
}
}
splitEnd = true;
}
// split the first location
pos = offs;
child = ec.parent.getElement(index0);
ec.removed.addElement(child);
e = createLeafElement(ec.parent, child.getAttributes(),
child.getStartOffset(), pos);
ec.added.addElement(e);
e = createLeafElement(ec.parent, child.getAttributes(),
pos, child.getEndOffset());
ec.added.addElement(e);
// pick up things in the middle
for (int i = index0 + 1; i < index1; i++) {
child = ec.parent.getElement(i);
ec.removed.addElement(child);
ec.added.addElement(child);
}
if (index1 != index0) {
child = ec.parent.getElement(index1);
pos = offs + len;
ec.removed.addElement(child);
e = createLeafElement(ec.parent, child.getAttributes(),
child.getStartOffset(), pos);
ec.added.addElement(e);
e = createLeafElement(ec.parent, child.getAttributes(),
pos, child.getEndOffset());
ec.added.addElement(e);
}
}
return splitEnd;
}
/**
* Creates the UndoableEdit record for the edits made
* in the buffer.
*/
void endEdits(DefaultDocumentEvent de) {
int n = changes.size();
for (int i = 0; i < n; i++) {
ElemChanges ec = changes.elementAt(i);
Element[] removed = new Element[ec.removed.size()];
ec.removed.copyInto(removed);
Element[] added = new Element[ec.added.size()];
ec.added.copyInto(added);
int index = ec.index;
((BranchElement) ec.parent).replace(index, removed.length, added);
ElementEdit ee = new ElementEdit(ec.parent, index, removed, added);
de.addEdit(ee);
}
changes.removeAllElements();
path.removeAllElements();
/*
for (int i = 0; i < n; i++) {
ElemChanges ec = (ElemChanges) changes.elementAt(i);
System.err.print("edited: " + ec.parent + " at: " + ec.index +
" removed " + ec.removed.size());
if (ec.removed.size() > 0) {
int r0 = ((Element) ec.removed.firstElement()).getStartOffset();
int r1 = ((Element) ec.removed.lastElement()).getEndOffset();
System.err.print("[" + r0 + "," + r1 + "]");
}
System.err.print(" added " + ec.added.size());
if (ec.added.size() > 0) {
int p0 = ((Element) ec.added.firstElement()).getStartOffset();
int p1 = ((Element) ec.added.lastElement()).getEndOffset();
System.err.print("[" + p0 + "," + p1 + "]");
}
System.err.println("");
}
*/
}
/**
* Initialize the buffer
*/
void beginEdits(int offset, int length) {
this.offset = offset;
this.length = length;
this.endOffset = offset + length;
pos = offset;
if (changes == null) {
changes = new Vector<ElemChanges>();
} else {
changes.removeAllElements();
}
if (path == null) {
path = new Stack<ElemChanges>();
} else {
path.removeAllElements();
}
fracturedParent = null;
fracturedChild = null;
offsetLastIndex = offsetLastIndexOnReplace = false;
}
/**
* Pushes a new element onto the stack that represents
* the current path.
* @param record Whether or not the push should be
* recorded as an element change or not.
* @param isFracture true if pushing on an element that was created
* as the result of a fracture.
*/
void push(Element e, int index, boolean isFracture) {
ElemChanges ec = new ElemChanges(e, index, isFracture);
path.push(ec);
}
void push(Element e, int index) {
push(e, index, false);
}
void pop() {
ElemChanges ec = path.peek();
path.pop();
if ((ec.added.size() > 0) || (ec.removed.size() > 0)) {
changes.addElement(ec);
} else if (! path.isEmpty()) {
Element e = ec.parent;
if(e.getElementCount() == 0) {
// if we pushed a branch element that didn't get
// used, make sure its not marked as having been added.
ec = path.peek();
ec.added.removeElement(e);
}
}
}
/**
* move the current offset forward by n.
*/
void advance(int n) {
pos += n;
}
void insertElement(ElementSpec es) {
ElemChanges ec = path.peek();
switch(es.getType()) {
case ElementSpec.StartTagType:
switch(es.getDirection()) {
case ElementSpec.JoinNextDirection:
// Don't create a new element, use the existing one
// at the specified location.
Element parent = ec.parent.getElement(ec.index);
if(parent.isLeaf()) {
// This happens if inserting into a leaf, followed
// by a join next where next sibling is not a leaf.
if((ec.index + 1) < ec.parent.getElementCount())
parent = ec.parent.getElement(ec.index + 1);
else
throw new StateInvariantError("Join next to leaf");
}
// Not really a fracture, but need to treat it like
// one so that content join next will work correctly.
// We can do this because there will never be a join
// next followed by a join fracture.
push(parent, 0, true);
break;
case ElementSpec.JoinFractureDirection:
if(!createdFracture) {
// Should always be something on the stack!
fracture(path.size() - 1);
}
// If parent isn't a fracture, fracture will be
// fracturedChild.
if(!ec.isFracture) {
push(fracturedChild, 0, true);
}
else
// Parent is a fracture, use 1st element.
push(ec.parent.getElement(0), 0, true);
break;
default:
Element belem = createBranchElement(ec.parent,
es.getAttributes());
ec.added.addElement(belem);
push(belem, 0);
break;
}
break;
case ElementSpec.EndTagType:
pop();
break;
case ElementSpec.ContentType:
int len = es.getLength();
if (es.getDirection() != ElementSpec.JoinNextDirection) {
Element leaf = createLeafElement(ec.parent, es.getAttributes(),
pos, pos + len);
ec.added.addElement(leaf);
}
else {
// JoinNext on tail is only applicable if last element
// and attributes come from that of first element.
// With a little extra testing it would be possible
// to NOT due this again, as more than likely fracture()
// created this element.
if(!ec.isFracture) {
Element first = null;
if(insertPath != null) {
for(int counter = insertPath.length - 1;
counter >= 0; counter--) {
if(insertPath[counter] == ec) {
if(counter != (insertPath.length - 1))
first = ec.parent.getElement(ec.index);
break;
}
}
}
if(first == null)
first = ec.parent.getElement(ec.index + 1);
Element leaf = createLeafElement(ec.parent, first.
getAttributes(), pos, first.getEndOffset());
ec.added.addElement(leaf);
ec.removed.addElement(first);
}
else {
// Parent was fractured element.
Element first = ec.parent.getElement(0);
Element leaf = createLeafElement(ec.parent, first.
getAttributes(), pos, first.getEndOffset());
ec.added.addElement(leaf);
ec.removed.addElement(first);
}
}
pos += len;
break;
}
}
/**
* Remove the elements from <code>elem</code> in range
* <code>rmOffs0</code>, <code>rmOffs1</code>. This uses
* <code>canJoin</code> and <code>join</code> to handle joining
* the endpoints of the insertion.
*
* @return true if elem will no longer have any elements.
*/
boolean removeElements(Element elem, int rmOffs0, int rmOffs1) {
if (! elem.isLeaf()) {
// update path for changes
int index0 = elem.getElementIndex(rmOffs0);
int index1 = elem.getElementIndex(rmOffs1);
push(elem, index0);
ElemChanges ec = path.peek();
// if the range is contained by one element,
// we just forward the request
if (index0 == index1) {
Element child0 = elem.getElement(index0);
if(rmOffs0 <= child0.getStartOffset() &&
rmOffs1 >= child0.getEndOffset()) {
// Element totally removed.
ec.removed.addElement(child0);
}
else if(removeElements(child0, rmOffs0, rmOffs1)) {
ec.removed.addElement(child0);
}
} else {
// the removal range spans elements. If we can join
// the two endpoints, do it. Otherwise we remove the
// interior and forward to the endpoints.
Element child0 = elem.getElement(index0);
Element child1 = elem.getElement(index1);
boolean containsOffs1 = (rmOffs1 < elem.getEndOffset());
if (containsOffs1 && canJoin(child0, child1)) {
// remove and join
for (int i = index0; i <= index1; i++) {
ec.removed.addElement(elem.getElement(i));
}
Element e = join(elem, child0, child1, rmOffs0, rmOffs1);
ec.added.addElement(e);
} else {
// remove interior and forward
int rmIndex0 = index0 + 1;
int rmIndex1 = index1 - 1;
if (child0.getStartOffset() == rmOffs0 ||
(index0 == 0 &&
child0.getStartOffset() > rmOffs0 &&
child0.getEndOffset() <= rmOffs1)) {
// start element completely consumed
child0 = null;
rmIndex0 = index0;
}
if (!containsOffs1) {
child1 = null;
rmIndex1++;
}
else if (child1.getStartOffset() == rmOffs1) {
// end element not touched
child1 = null;
}
if (rmIndex0 <= rmIndex1) {
ec.index = rmIndex0;
}
for (int i = rmIndex0; i <= rmIndex1; i++) {
ec.removed.addElement(elem.getElement(i));
}
if (child0 != null) {
if(removeElements(child0, rmOffs0, rmOffs1)) {
ec.removed.insertElementAt(child0, 0);
ec.index = index0;
}
}
if (child1 != null) {
if(removeElements(child1, rmOffs0, rmOffs1)) {
ec.removed.addElement(child1);
}
}
}
}
// publish changes
pop();
// Return true if we no longer have any children.
if(elem.getElementCount() == (ec.removed.size() -
ec.added.size())) {
return true;
}
}
return false;
}
/**
* Can the two given elements be coelesced together
* into one element?
*/
boolean canJoin(Element e0, Element e1) {
if ((e0 == null) || (e1 == null)) {
return false;
}
// Don't join a leaf to a branch.
boolean leaf0 = e0.isLeaf();
boolean leaf1 = e1.isLeaf();
if(leaf0 != leaf1) {
return false;
}
if (leaf0) {
// Only join leaves if the attributes match, otherwise
// style information will be lost.
return e0.getAttributes().isEqual(e1.getAttributes());
}
// Only join non-leafs if the names are equal. This may result
// in loss of style information, but this is typically acceptable
// for non-leafs.
String name0 = e0.getName();
String name1 = e1.getName();
if (name0 != null) {
return name0.equals(name1);
}
if (name1 != null) {
return name1.equals(name0);
}
// Both names null, treat as equal.
return true;
}
/**
* Joins the two elements carving out a hole for the
* given removed range.
*/
Element join(Element p, Element left, Element right, int rmOffs0, int rmOffs1) {
if (left.isLeaf() && right.isLeaf()) {
return createLeafElement(p, left.getAttributes(), left.getStartOffset(),
right.getEndOffset());
} else if ((!left.isLeaf()) && (!right.isLeaf())) {
// join two branch elements. This copies the children before
// the removal range on the left element, and after the removal
// range on the right element. The two elements on the edge
// are joined if possible and needed.
Element to = createBranchElement(p, left.getAttributes());
int ljIndex = left.getElementIndex(rmOffs0);
int rjIndex = right.getElementIndex(rmOffs1);
Element lj = left.getElement(ljIndex);
if (lj.getStartOffset() >= rmOffs0) {
lj = null;
}
Element rj = right.getElement(rjIndex);
if (rj.getStartOffset() == rmOffs1) {
rj = null;
}
Vector<Element> children = new Vector<Element>();
// transfer the left
for (int i = 0; i < ljIndex; i++) {
children.addElement(clone(to, left.getElement(i)));
}
// transfer the join/middle
if (canJoin(lj, rj)) {
Element e = join(to, lj, rj, rmOffs0, rmOffs1);
children.addElement(e);
} else {
if (lj != null) {
children.addElement(cloneAsNecessary(to, lj, rmOffs0, rmOffs1));
}
if (rj != null) {
children.addElement(cloneAsNecessary(to, rj, rmOffs0, rmOffs1));
}
}
// transfer the right
int n = right.getElementCount();
for (int i = (rj == null) ? rjIndex : rjIndex + 1; i < n; i++) {
children.addElement(clone(to, right.getElement(i)));
}
// install the children
Element[] c = new Element[children.size()];
children.copyInto(c);
((BranchElement)to).replace(0, 0, c);
return to;
} else {
throw new StateInvariantError(
"No support to join leaf element with non-leaf element");
}
}
/**
* Creates a copy of this element, with a different
* parent.
*
* @param parent the parent element
* @param clonee the element to be cloned
* @return the copy
*/
public Element clone(Element parent, Element clonee) {
if (clonee.isLeaf()) {
return createLeafElement(parent, clonee.getAttributes(),
clonee.getStartOffset(),
clonee.getEndOffset());
}
Element e = createBranchElement(parent, clonee.getAttributes());
int n = clonee.getElementCount();
Element[] children = new Element[n];
for (int i = 0; i < n; i++) {
children[i] = clone(e, clonee.getElement(i));
}
((BranchElement)e).replace(0, 0, children);
return e;
}
/**
* Creates a copy of this element, with a different
* parent. Children of this element included in the
* removal range will be discarded.
*/
Element cloneAsNecessary(Element parent, Element clonee, int rmOffs0, int rmOffs1) {
if (clonee.isLeaf()) {
return createLeafElement(parent, clonee.getAttributes(),
clonee.getStartOffset(),
clonee.getEndOffset());
}
Element e = createBranchElement(parent, clonee.getAttributes());
int n = clonee.getElementCount();
ArrayList<Element> childrenList = new ArrayList<Element>(n);
for (int i = 0; i < n; i++) {
Element elem = clonee.getElement(i);
if (elem.getStartOffset() < rmOffs0 || elem.getEndOffset() > rmOffs1) {
childrenList.add(cloneAsNecessary(e, elem, rmOffs0, rmOffs1));
}
}
Element[] children = new Element[childrenList.size()];
children = childrenList.toArray(children);
((BranchElement)e).replace(0, 0, children);
return e;
}
/**
* Determines if a fracture needs to be performed. A fracture
* can be thought of as moving the right part of a tree to a
* new location, where the right part is determined by what has
* been inserted. <code>depth</code> is used to indicate a
* JoinToFracture is needed to an element at a depth
* of <code>depth</code>. Where the root is 0, 1 is the children
* of the root...
* <p>This will invoke <code>fractureFrom</code> if it is determined
* a fracture needs to happen.
*/
void fracture(int depth) {
int cLength = insertPath.length;
int lastIndex = -1;
boolean needRecreate = recreateLeafs;
ElemChanges lastChange = insertPath[cLength - 1];
// Use childAltered to determine when a child has been altered,
// that is the point of insertion is less than the element count.
boolean childAltered = ((lastChange.index + 1) <
lastChange.parent.getElementCount());
int deepestAlteredIndex = (needRecreate) ? cLength : -1;
int lastAlteredIndex = cLength - 1;
createdFracture = true;
// Determine where to start recreating from.
// Start at - 2, as first one is indicated by recreateLeafs and
// childAltered.
for(int counter = cLength - 2; counter >= 0; counter--) {
ElemChanges change = insertPath[counter];
if(change.added.size() > 0 || counter == depth) {
lastIndex = counter;
if(!needRecreate && childAltered) {
needRecreate = true;
if(deepestAlteredIndex == -1)
deepestAlteredIndex = lastAlteredIndex + 1;
}
}
if(!childAltered && change.index <
change.parent.getElementCount()) {
childAltered = true;
lastAlteredIndex = counter;
}
}
if(needRecreate) {
// Recreate all children to right of parent starting
// at lastIndex.
if(lastIndex == -1)
lastIndex = cLength - 1;
fractureFrom(insertPath, lastIndex, deepestAlteredIndex);
}
}
/**
* Recreates the elements to the right of the insertion point.
* This starts at <code>startIndex</code> in <code>changed</code>,
* and calls duplicate to duplicate existing elements.
* This will also duplicate the elements along the insertion
* point, until a depth of <code>endFractureIndex</code> is
* reached, at which point only the elements to the right of
* the insertion point are duplicated.
*/
void fractureFrom(ElemChanges[] changed, int startIndex,
int endFractureIndex) {
// Recreate the element representing the inserted index.
ElemChanges change = changed[startIndex];
Element child;
Element newChild;
int changeLength = changed.length;
if((startIndex + 1) == changeLength)
child = change.parent.getElement(change.index);
else
child = change.parent.getElement(change.index - 1);
if(child.isLeaf()) {
newChild = createLeafElement(change.parent,
child.getAttributes(), Math.max(endOffset,
child.getStartOffset()), child.getEndOffset());
}
else {
newChild = createBranchElement(change.parent,
child.getAttributes());
}
fracturedParent = change.parent;
fracturedChild = newChild;
// Recreate all the elements to the right of the
// insertion point.
Element parent = newChild;
while(++startIndex < endFractureIndex) {
boolean isEnd = ((startIndex + 1) == endFractureIndex);
boolean isEndLeaf = ((startIndex + 1) == changeLength);
// Create the newChild, a duplicate of the elment at
// index. This isn't done if isEnd and offsetLastIndex are true
// indicating a join previous was done.
change = changed[startIndex];
// Determine the child to duplicate, won't have to duplicate
// if at end of fracture, or offseting index.
if(isEnd) {
if(offsetLastIndex || !isEndLeaf)
child = null;
else
child = change.parent.getElement(change.index);
}
else {
child = change.parent.getElement(change.index - 1);
}
// Duplicate it.
if(child != null) {
if(child.isLeaf()) {
newChild = createLeafElement(parent,
child.getAttributes(), Math.max(endOffset,
child.getStartOffset()), child.getEndOffset());
}
else {
newChild = createBranchElement(parent,
child.getAttributes());
}
}
else
newChild = null;
// Recreate the remaining children (there may be none).
int kidsToMove = change.parent.getElementCount() -
change.index;
Element[] kids;
int moveStartIndex;
int kidStartIndex = 1;
if(newChild == null) {
// Last part of fracture.
if(isEndLeaf) {
kidsToMove--;
moveStartIndex = change.index + 1;
}
else {
moveStartIndex = change.index;
}
kidStartIndex = 0;
kids = new Element[kidsToMove];
}
else {
if(!isEnd) {
// Branch.
kidsToMove++;
moveStartIndex = change.index;
}
else {
// Last leaf, need to recreate part of it.
moveStartIndex = change.index + 1;
}
kids = new Element[kidsToMove];
kids[0] = newChild;
}
for(int counter = kidStartIndex; counter < kidsToMove;
counter++) {
Element toMove =change.parent.getElement(moveStartIndex++);
kids[counter] = recreateFracturedElement(parent, toMove);
change.removed.addElement(toMove);
}
((BranchElement)parent).replace(0, 0, kids);
parent = newChild;
}
}
/**
* Recreates <code>toDuplicate</code>. This is called when an
* element needs to be created as the result of an insertion. This
* will recurse and create all the children. This is similar to
* <code>clone</code>, but deteremines the offsets differently.
*/
Element recreateFracturedElement(Element parent, Element toDuplicate) {
if(toDuplicate.isLeaf()) {
return createLeafElement(parent, toDuplicate.getAttributes(),
Math.max(toDuplicate.getStartOffset(),
endOffset),
toDuplicate.getEndOffset());
}
// Not a leaf
Element newParent = createBranchElement(parent, toDuplicate.
getAttributes());
int childCount = toDuplicate.getElementCount();
Element[] newKids = new Element[childCount];
for(int counter = 0; counter < childCount; counter++) {
newKids[counter] = recreateFracturedElement(newParent,
toDuplicate.getElement(counter));
}
((BranchElement)newParent).replace(0, 0, newKids);
return newParent;
}
/**
* Splits the bottommost leaf in <code>path</code>.
* This is called from insert when the first element is NOT content.
*/
void fractureDeepestLeaf(ElementSpec[] specs) {
// Split the bottommost leaf. It will be recreated elsewhere.
ElemChanges ec = path.peek();
Element child = ec.parent.getElement(ec.index);
// Inserts at offset 0 do not need to recreate child (it would
// have a length of 0!).
if (offset != 0) {
Element newChild = createLeafElement(ec.parent,
child.getAttributes(),
child.getStartOffset(),
offset);
ec.added.addElement(newChild);
}
ec.removed.addElement(child);
if(child.getEndOffset() != endOffset)
recreateLeafs = true;
else
offsetLastIndex = true;
}
/**
* Inserts the first content. This needs to be separate to handle
* joining.
*/
void insertFirstContent(ElementSpec[] specs) {
ElementSpec firstSpec = specs[0];
ElemChanges ec = path.peek();
Element child = ec.parent.getElement(ec.index);
int firstEndOffset = offset + firstSpec.getLength();
boolean isOnlyContent = (specs.length == 1);
switch(firstSpec.getDirection()) {
case ElementSpec.JoinPreviousDirection:
if(child.getEndOffset() != firstEndOffset &&
!isOnlyContent) {
// Create the left split part containing new content.
Element newE = createLeafElement(ec.parent,
child.getAttributes(), child.getStartOffset(),
firstEndOffset);
ec.added.addElement(newE);
ec.removed.addElement(child);
// Remainder will be created later.
if(child.getEndOffset() != endOffset)
recreateLeafs = true;
else
offsetLastIndex = true;
}
else {
offsetLastIndex = true;
offsetLastIndexOnReplace = true;
}
// else Inserted at end, and is total length.
// Update index incase something added/removed.
break;
case ElementSpec.JoinNextDirection:
if(offset != 0) {
// Recreate the first element, its offset will have
// changed.
Element newE = createLeafElement(ec.parent,
child.getAttributes(), child.getStartOffset(),
offset);
ec.added.addElement(newE);
// Recreate the second, merge part. We do no checking
// to see if JoinNextDirection is valid here!
Element nextChild = ec.parent.getElement(ec.index + 1);
if(isOnlyContent)
newE = createLeafElement(ec.parent, nextChild.
getAttributes(), offset, nextChild.getEndOffset());
else
newE = createLeafElement(ec.parent, nextChild.
getAttributes(), offset, firstEndOffset);
ec.added.addElement(newE);
ec.removed.addElement(child);
ec.removed.addElement(nextChild);
}
// else nothin to do.
// PENDING: if !isOnlyContent could raise here!
break;
default:
// Inserted into middle, need to recreate split left
// new content, and split right.
if(child.getStartOffset() != offset) {
Element newE = createLeafElement(ec.parent,
child.getAttributes(), child.getStartOffset(),
offset);
ec.added.addElement(newE);
}
ec.removed.addElement(child);
// new content
Element newE = createLeafElement(ec.parent,
firstSpec.getAttributes(),
offset, firstEndOffset);
ec.added.addElement(newE);
if(child.getEndOffset() != endOffset) {
// Signals need to recreate right split later.
recreateLeafs = true;
}
else {
offsetLastIndex = true;
}
break;
}
}
Element root;
transient int pos; // current position
transient int offset;
transient int length;
transient int endOffset;
transient Vector<ElemChanges> changes;
transient Stack<ElemChanges> path;
transient boolean insertOp;
transient boolean recreateLeafs; // For insert.
/** For insert, path to inserted elements. */
transient ElemChanges[] insertPath;
/** Only for insert, set to true when the fracture has been created. */
transient boolean createdFracture;
/** Parent that contains the fractured child. */
transient Element fracturedParent;
/** Fractured child. */
transient Element fracturedChild;
/** Used to indicate when fracturing that the last leaf should be
* skipped. */
transient boolean offsetLastIndex;
/** Used to indicate that the parent of the deepest leaf should
* offset the index by 1 when adding/removing elements in an
* insert. */
transient boolean offsetLastIndexOnReplace;
/*
* Internal record used to hold element change specifications
*/
class ElemChanges {
ElemChanges(Element parent, int index, boolean isFracture) {
this.parent = parent;
this.index = index;
this.isFracture = isFracture;
added = new Vector<Element>();
removed = new Vector<Element>();
}
public String toString() {
return "added: " + added + "\nremoved: " + removed + "\n";
}
Element parent;
int index;
Vector<Element> added;
Vector<Element> removed;
boolean isFracture;
}
}
/**
* An UndoableEdit used to remember AttributeSet changes to an
* Element.
*/
public static class AttributeUndoableEdit extends AbstractUndoableEdit {
public AttributeUndoableEdit(Element element, AttributeSet newAttributes,
boolean isReplacing) {
super();
this.element = element;
this.newAttributes = newAttributes;
this.isReplacing = isReplacing;
// If not replacing, it may be more efficient to only copy the
// changed values...
copy = element.getAttributes().copyAttributes();
}
/**
* Redoes a change.
*
* @exception CannotRedoException if the change cannot be redone
*/
public void redo() throws CannotRedoException {
super.redo();
MutableAttributeSet as = (MutableAttributeSet)element
.getAttributes();
if(isReplacing)
as.removeAttributes(as);
as.addAttributes(newAttributes);
}
/**
* Undoes a change.
*
* @exception CannotUndoException if the change cannot be undone
*/
public void undo() throws CannotUndoException {
super.undo();
MutableAttributeSet as = (MutableAttributeSet)element.getAttributes();
as.removeAttributes(as);
as.addAttributes(copy);
}
// AttributeSet containing additional entries, must be non-mutable!
protected AttributeSet newAttributes;
// Copy of the AttributeSet the Element contained.
protected AttributeSet copy;
// true if all the attributes in the element were removed first.
protected boolean isReplacing;
// Efected Element.
protected Element element;
}
/**
* UndoableEdit for changing the resolve parent of an Element.
*/
static class StyleChangeUndoableEdit extends AbstractUndoableEdit {
public StyleChangeUndoableEdit(AbstractElement element,
Style newStyle) {
super();
this.element = element;
this.newStyle = newStyle;
oldStyle = element.getResolveParent();
}
/**
* Redoes a change.
*
* @exception CannotRedoException if the change cannot be redone
*/
public void redo() throws CannotRedoException {
super.redo();
element.setResolveParent(newStyle);
}
/**
* Undoes a change.
*
* @exception CannotUndoException if the change cannot be undone
*/
public void undo() throws CannotUndoException {
super.undo();
element.setResolveParent(oldStyle);
}
/** Element to change resolve parent of. */
protected AbstractElement element;
/** New style. */
protected Style newStyle;
/** Old style, before setting newStyle. */
protected AttributeSet oldStyle;
}
/**
* Base class for style change handlers with support for stale objects detection.
*/
abstract static class AbstractChangeHandler implements ChangeListener {
/* This has an implicit reference to the handler object. */
private class DocReference extends WeakReference<DefaultStyledDocument> {
DocReference(DefaultStyledDocument d, ReferenceQueue<DefaultStyledDocument> q) {
super(d, q);
}
/**
* Return a reference to the style change handler object.
*/
ChangeListener getListener() {
return AbstractChangeHandler.this;
}
}
/** Class-specific reference queues. */
private final static Map<Class, ReferenceQueue<DefaultStyledDocument>> queueMap
= new HashMap<Class, ReferenceQueue<DefaultStyledDocument>>();
/** A weak reference to the document object. */
private DocReference doc;
AbstractChangeHandler(DefaultStyledDocument d) {
Class c = getClass();
ReferenceQueue<DefaultStyledDocument> q;
synchronized (queueMap) {
q = queueMap.get(c);
if (q == null) {
q = new ReferenceQueue<DefaultStyledDocument>();
queueMap.put(c, q);
}
}
doc = new DocReference(d, q);
}
/**
* Return a list of stale change listeners.
*
* A change listener becomes "stale" when its document is cleaned by GC.
*/
static List<ChangeListener> getStaleListeners(ChangeListener l) {
List<ChangeListener> staleListeners = new ArrayList<ChangeListener>();
ReferenceQueue<DefaultStyledDocument> q = queueMap.get(l.getClass());
if (q != null) {
DocReference r;
synchronized (q) {
while ((r = (DocReference) q.poll()) != null) {
staleListeners.add(r.getListener());
}
}
}
return staleListeners;
}
/**
* The ChangeListener wrapper which guards against dead documents.
*/
public void stateChanged(ChangeEvent e) {
DefaultStyledDocument d = doc.get();
if (d != null) {
fireStateChanged(d, e);
}
}
/** Run the actual class-specific stateChanged() method. */
abstract void fireStateChanged(DefaultStyledDocument d, ChangeEvent e);
}
/**
* Added to all the Styles. When instances of this receive a
* stateChanged method, styleChanged is invoked.
*/
static class StyleChangeHandler extends AbstractChangeHandler {
StyleChangeHandler(DefaultStyledDocument d) {
super(d);
}
void fireStateChanged(DefaultStyledDocument d, ChangeEvent e) {
Object source = e.getSource();
if (source instanceof Style) {
d.styleChanged((Style) source);
} else {
d.styleChanged(null);
}
}
}
/**
* Added to the StyleContext. When the StyleContext changes, this invokes
* <code>updateStylesListeningTo</code>.
*/
static class StyleContextChangeHandler extends AbstractChangeHandler {
StyleContextChangeHandler(DefaultStyledDocument d) {
super(d);
}
void fireStateChanged(DefaultStyledDocument d, ChangeEvent e) {
d.updateStylesListeningTo();
}
}
/**
* When run this creates a change event for the complete document
* and fires it.
*/
class ChangeUpdateRunnable implements Runnable {
boolean isPending = false;
public void run() {
synchronized(this) {
isPending = false;
}
try {
writeLock();
DefaultDocumentEvent dde = new DefaultDocumentEvent(0,
getLength(),
DocumentEvent.EventType.CHANGE);
dde.end();
fireChangedUpdate(dde);
} finally {
writeUnlock();
}
}
}
}