Package javax.swing.text.html

Source Code of javax.swing.text.html.TableView$CellView

/*
* @(#)TableView.java  1.41 06/05/12
*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*/
package javax.swing.text.html;

import java.awt.*;
import java.util.BitSet;
import java.util.Vector;
import java.util.Arrays;
import javax.swing.SizeRequirements;
import javax.swing.event.DocumentEvent;

import javax.swing.text.*;

/**
* HTML table view. 
*
* @author  Timothy Prinzing
* @version 1.41 05/12/06
* @see     View
*/
/*public*/ class TableView extends BoxView implements ViewFactory {

    /**
     * Constructs a TableView for the given element.
     *
     * @param elem the element that this view is responsible for
     */
    public TableView(Element elem) {
  super(elem, View.Y_AXIS);
  rows = new Vector();
  gridValid = false;
  captionIndex = -1;
        totalColumnRequirements = new SizeRequirements();
    }

    /**
     * Creates a new table row.
     *
     * @param elem an element
     * @return the row
     */
    protected RowView createTableRow(Element elem) {
  // PENDING(prinz) need to add support for some of the other
  // elements, but for now just ignore anything that is not
  // a TR.
  Object o = elem.getAttributes().getAttribute(StyleConstants.NameAttribute);
  if (o == HTML.Tag.TR) {
      return new RowView(elem);
  }
  return null;
    }

    /**
     * The number of columns in the table.
     */
    public int getColumnCount() {
  return columnSpans.length;
    }

    /**
     * Fetches the span (width) of the given column. 
     * This is used by the nested cells to query the
     * sizes of grid locations outside of themselves.
     */
    public int getColumnSpan(int col) {
  if (col < columnSpans.length) {
      return columnSpans[col];
  }
  return 0;
    }

    /**
     * The number of rows in the table.
     */
    public int getRowCount() {
  return rows.size();
    }

    /**
     * Fetch the span of multiple rows.  This includes
     * the border area.
     */
    public int getMultiRowSpan(int row0, int row1) {
  RowView rv0 = getRow(row0);
  RowView rv1 = getRow(row1);
  if ((rv0 != null) && (rv1 != null)) {
      int index0 = rv0.viewIndex;
      int index1 = rv1.viewIndex;
      int span = getOffset(Y_AXIS, index1) - getOffset(Y_AXIS, index0) +
    getSpan(Y_AXIS, index1);
      return span;
  }
  return 0;
    }

    /**
     * Fetches the span (height) of the given row.
     */
    public int getRowSpan(int row) {
  RowView rv = getRow(row);
  if (rv != null) {
      return getSpan(Y_AXIS, rv.viewIndex);
  }
  return 0;
    }

    RowView getRow(int row) {
  if (row < rows.size()) {
      return (RowView) rows.elementAt(row);
  }
  return null;
    }

    protected View getViewAtPoint(int x, int y, Rectangle alloc) {
  int n = getViewCount();
  View v = null;
  Rectangle allocation = new Rectangle();
  for (int i = 0; i < n; i++) {
      allocation.setBounds(alloc);
      childAllocation(i, allocation);
      v = getView(i);
      if (v instanceof RowView) {
    v = ((RowView)v).findViewAtPoint(x, y, allocation);
    if (v != null) {
        alloc.setBounds(allocation);
        return v;
    }
      }
  }
        return super.getViewAtPoint(x, y, alloc);
    }

    /**
     * Determines the number of columns occupied by
     * the table cell represented by given element.
     */
    protected int getColumnsOccupied(View v) {
  AttributeSet a = v.getElement().getAttributes();

        if (a.isDefined(HTML.Attribute.COLSPAN)) {
            String s = (String) a.getAttribute(HTML.Attribute.COLSPAN);
            if (s != null) {
                try {
                    return Integer.parseInt(s);
                } catch (NumberFormatException nfe) {
                    // fall through to one column
                }
            }
        }

  return 1;
    }

    /**
     * Determines the number of rows occupied by
     * the table cell represented by given element.
     */
    protected int getRowsOccupied(View v) {
  AttributeSet a = v.getElement().getAttributes();

        if (a.isDefined(HTML.Attribute.ROWSPAN)) {
            String s = (String) a.getAttribute(HTML.Attribute.ROWSPAN);
            if (s != null) {
                try {
                    return Integer.parseInt(s);
                } catch (NumberFormatException nfe) {
                    // fall through to one row
                }
            }
        }

  return 1;
    }

    protected void invalidateGrid() {
  gridValid = false;
    }

    protected StyleSheet getStyleSheet() {
  HTMLDocument doc = (HTMLDocument) getDocument();
  return doc.getStyleSheet();
    }

    /**
     * Update the insets, which contain the caption if there
     * is a caption.
     */
    void updateInsets() {
  short top = (short) painter.getInset(TOP, this);
  short bottom = (short) painter.getInset(BOTTOM, this);
  if (captionIndex != -1) {
      View caption = getView(captionIndex);
      short h = (short) caption.getPreferredSpan(Y_AXIS);
      AttributeSet a = caption.getAttributes();
      Object align = a.getAttribute(CSS.Attribute.CAPTION_SIDE);
      if ((align != null) && (align.equals("bottom"))) {
    bottom += h;
      } else {
    top += h;
      }
  }
  setInsets(top, (short) painter.getInset(LEFT, this),
      bottom, (short) painter.getInset(RIGHT, this));
    }

    /**
     * Update any cached values that come from attributes.
     */
    protected void setPropertiesFromAttributes() {
  StyleSheet sheet = getStyleSheet();
  attr = sheet.getViewAttributes(this);
  painter = sheet.getBoxPainter(attr);
  if (attr != null) {
      setInsets((short) painter.getInset(TOP, this),
          (short) painter.getInset(LEFT, this),
        (short) painter.getInset(BOTTOM, this),
          (short) painter.getInset(RIGHT, this));

      CSS.LengthValue lv = (CSS.LengthValue)
    attr.getAttribute(CSS.Attribute.BORDER_SPACING);
      if (lv != null) {
    cellSpacing = (int) lv.getValue();
      } else {
    cellSpacing = 0;
      }
      lv = (CSS.LengthValue)                               
        attr.getAttribute(CSS.Attribute.BORDER_TOP_WIDTH);
      if (lv != null) {                                    
        borderWidth = (int) lv.getValue();               
      } else {                                             
        borderWidth = 0;                                 
      }                                                    

    }
    }

    /**
     * Fill in the grid locations that are placeholders
     * for multi-column, multi-row, and missing grid
     * locations.
     */
    void updateGrid() {
  if (! gridValid) {
      relativeCells = false;
      multiRowCells = false;

      // determine which views are table rows and clear out
      // grid points marked filled.
      captionIndex = -1;
      rows.removeAllElements();
      int n = getViewCount();
      for (int i = 0; i < n; i++) {
    View v = getView(i);
    if (v instanceof RowView) {
        rows.addElement(v);
        RowView rv = (RowView) v;
        rv.clearFilledColumns();
        rv.rowIndex = rows.size() - 1;
        rv.viewIndex = i;
    } else {
        Object o = v.getElement().getAttributes().getAttribute(StyleConstants.NameAttribute);
        if (o instanceof HTML.Tag) {
      HTML.Tag kind = (HTML.Tag) o;
      if (kind == HTML.Tag.CAPTION) {
          captionIndex = i;
      }
        }
    }
      }

      int maxColumns = 0;
      int nrows = rows.size();
      for (int row = 0; row < nrows; row++) {
    RowView rv = getRow(row);
    int col = 0;
    for (int cell = 0; cell < rv.getViewCount(); cell++, col++) {
        View cv = rv.getView(cell);
        if (! relativeCells) {
      AttributeSet a = cv.getAttributes();
      CSS.LengthValue lv = (CSS.LengthValue)
          a.getAttribute(CSS.Attribute.WIDTH);
      if ((lv != null) && (lv.isPercentage())) {
          relativeCells = true;
      }
        }
        // advance to a free column
        for (; rv.isFilled(col); col++);
        int rowSpan = getRowsOccupied(cv);
        if (rowSpan > 1) {
      multiRowCells = true;
        }
        int colSpan = getColumnsOccupied(cv);
        if ((colSpan > 1) || (rowSpan > 1)) {
      // fill in the overflow entries for this cell
      int rowLimit = row + rowSpan;
      int colLimit = col + colSpan;
      for (int i = row; i < rowLimit; i++) {
          for (int j = col; j < colLimit; j++) {
        if (i != row || j != col) {
            addFill(i, j);
        }
          }
      }
      if (colSpan > 1) {
          col += colSpan - 1;
      }
        }
    }
    maxColumns = Math.max(maxColumns, col);
      }

      // setup the column layout/requirements
      columnSpans = new int[maxColumns];
      columnOffsets = new int[maxColumns];
      columnRequirements = new SizeRequirements[maxColumns];
      for (int i = 0; i < maxColumns; i++) {
    columnRequirements[i] = new SizeRequirements();
                columnRequirements[i].maximum = Integer.MAX_VALUE;
      }
      gridValid = true;
  }
    }

    /**
     * Mark a grid location as filled in for a cells overflow.
     */
    void addFill(int row, int col) {
  RowView rv = getRow(row);
  if (rv != null) {
      rv.fillColumn(col);
  }
    }

    /**
     * Layout the columns to fit within the given target span.
     *
     * @param targetSpan the given span for total of all the table
     *  columns
     * @param reqs the requirements desired for each column.  This
     *  is the column maximum of the cells minimum, preferred, and
     *  maximum requested span
     * @param spans the return value of how much to allocated to
     *  each column
     * @param offsets the return value of the offset from the
     *  origin for each column
     * @return the offset from the origin and the span for each column
     *  in the offsets and spans parameters
     */
    protected void layoutColumns(int targetSpan, int[] offsets, int[] spans,
         SizeRequirements[] reqs) {
        //clean offsets and spans
        Arrays.fill(offsets, 0);
        Arrays.fill(spans, 0);
  colIterator.setLayoutArrays(offsets, spans, targetSpan);
  CSS.calculateTiledLayout(colIterator, targetSpan);
    }

    /**
     * Calculate the requirements for each column.  The calculation
     * is done as two passes over the table.  The table cells that
     * occupy a single column are scanned first to determine the
     * maximum of minimum, preferred, and maximum spans along the
     * give axis.  Table cells that span multiple columns are excluded
     * from the first pass.  A second pass is made to determine if
     * the cells that span multiple columns are satisfied.  If the
     * column requirements are not satisified, the needs of the
     * multi-column cell is mixed into the existing column requirements.
     * The calculation of the multi-column distribution is based upon
     * the proportions of the existing column requirements and taking
     * into consideration any constraining maximums.
     */
    void calculateColumnRequirements(int axis) {
        // clean columnRequirements
        for (SizeRequirements req : columnRequirements) {
            req.minimum = 0;
            req.preferred = 0;
            req.maximum = Integer.MAX_VALUE;
        }
  Container host = getContainer();
  if (host != null) {
      if (host instanceof JTextComponent) {
    skipComments = !((JTextComponent)host).isEditable();
      } else {
    skipComments = true;
      }
  }
  // pass 1 - single column cells
  boolean hasMultiColumn = false;
  int nrows = getRowCount();
  for (int i = 0; i < nrows; i++) {
      RowView row = getRow(i);
      int col = 0;
      int ncells = row.getViewCount();
      for (int cell = 0; cell < ncells; cell++) {
    View cv = row.getView(cell);
    if (skipComments && !(cv instanceof CellView)) {
        continue;
    }
    for (; row.isFilled(col); col++); // advance to a free column
    int rowSpan = getRowsOccupied(cv);
    int colSpan = getColumnsOccupied(cv);
    if (colSpan == 1) {
        checkSingleColumnCell(axis, col, cv);
    } else {
        hasMultiColumn = true;
        col += colSpan - 1;
    }
    col++;
      }
  }

  // pass 2 - multi-column cells
  if (hasMultiColumn) {
      for (int i = 0; i < nrows; i++) {
    RowView row = getRow(i);
    int col = 0;
    int ncells = row.getViewCount();
    for (int cell = 0; cell < ncells; cell++) {
        View cv = row.getView(cell);
        if (skipComments && !(cv instanceof CellView)) {
      continue;
        }
        for (; row.isFilled(col); col++); // advance to a free column
        int colSpan = getColumnsOccupied(cv);
        if (colSpan > 1) {
      checkMultiColumnCell(axis, col, colSpan, cv);
      col += colSpan - 1;
        }
        col++;
    }
      }
  }
    }

    /**
     * check the requirements of a table cell that spans a single column.
     */
    void checkSingleColumnCell(int axis, int col, View v) {
  SizeRequirements req = columnRequirements[col];
  req.minimum = Math.max((int) v.getMinimumSpan(axis), req.minimum);
  req.preferred = Math.max((int) v.getPreferredSpan(axis), req.preferred);
    }

    /**
     * check the requirements of a table cell that spans multiple
     * columns.
     */
    void checkMultiColumnCell(int axis, int col, int ncols, View v) {
  // calculate the totals
  long min = 0;
  long pref = 0;
  long max = 0;
  for (int i = 0; i < ncols; i++) {
      SizeRequirements req = columnRequirements[col + i];
      min += req.minimum;
      pref += req.preferred;
      max += req.maximum;
  }

  // check if the minimum size needs adjustment.
  int cmin = (int) v.getMinimumSpan(axis);
  if (cmin > min) {
      /*
       * the columns that this cell spans need adjustment to fit
       * this table cell.... calculate the adjustments.
       */
      SizeRequirements[] reqs = new SizeRequirements[ncols];
      for (int i = 0; i < ncols; i++) {
    reqs[i] = columnRequirements[col + i];
      }
      int[] spans = new int[ncols];
      int[] offsets = new int[ncols];
      SizeRequirements.calculateTiledPositions(cmin, null, reqs,
                 offsets, spans);
      // apply the adjustments
      for (int i = 0; i < ncols; i++) {
    SizeRequirements req = reqs[i];
    req.minimum = Math.max(spans[i], req.minimum);
    req.preferred = Math.max(req.minimum, req.preferred);
    req.maximum = Math.max(req.preferred, req.maximum);
      }
  }

  // check if the preferred size needs adjustment.
  int cpref = (int) v.getPreferredSpan(axis);
  if (cpref > pref) {
      /*
       * the columns that this cell spans need adjustment to fit
       * this table cell.... calculate the adjustments.
       */
      SizeRequirements[] reqs = new SizeRequirements[ncols];
      for (int i = 0; i < ncols; i++) {
    reqs[i] = columnRequirements[col + i];
      }
      int[] spans = new int[ncols];
      int[] offsets = new int[ncols];
      SizeRequirements.calculateTiledPositions(cpref, null, reqs,
                 offsets, spans);
      // apply the adjustments
      for (int i = 0; i < ncols; i++) {
    SizeRequirements req = reqs[i];
    req.preferred = Math.max(spans[i], req.preferred);
    req.maximum = Math.max(req.preferred, req.maximum);
      }
  }

    }

    // --- BoxView methods -----------------------------------------

    /**
     * Calculate the requirements for the minor axis.  This is called by
     * the superclass whenever the requirements need to be updated (i.e.
     * a preferenceChanged was messaged through this view). 
     * <p>
     * This is implemented to calculate the requirements as the sum of the
     * requirements of the columns and then adjust it if the
     * CSS width or height attribute is specified and applicable to
     * the axis.
     */
    protected SizeRequirements calculateMinorAxisRequirements(int axis, SizeRequirements r) {
  updateGrid();
 
  // calculate column requirements for each column
  calculateColumnRequirements(axis);


  // the requirements are the sum of the columns.
  if (r == null) {
      r = new SizeRequirements();
  }
  long min = 0;
  long pref = 0;
  int n = columnRequirements.length;
  for (int i = 0; i < n; i++) {
      SizeRequirements req = columnRequirements[i];
      min += req.minimum;
      pref += req.preferred;
  }
  int adjust = (n + 1) * cellSpacing + 2 * borderWidth;
  min += adjust;
  pref += adjust;
  r.minimum = (int) min;
  r.preferred = (int) pref;
  r.maximum = (int) pref;


  AttributeSet attr = getAttributes();
        CSS.LengthValue cssWidth = (CSS.LengthValue)attr.getAttribute(
                                                    CSS.Attribute.WIDTH);

  if (BlockView.spanSetFromAttributes(axis, r, cssWidth, null)) {
            if (r.minimum < (int)min) {
                // The user has requested a smaller size than is needed to
                // show the table, override it.
                r.maximum = r.minimum = r.preferred = (int) min;
            }
        }
        totalColumnRequirements.minimum = r.minimum;
        totalColumnRequirements.preferred = r.preferred;
        totalColumnRequirements.maximum = r.maximum;

  // set the alignment
  Object o = attr.getAttribute(CSS.Attribute.TEXT_ALIGN);
  if (o != null) {
      // set horizontal alignment
      String ta = o.toString();
      if (ta.equals("left")) {
    r.alignment = 0;
      } else if (ta.equals("center")) {
    r.alignment = 0.5f;
      } else if (ta.equals("right")) {
    r.alignment = 1;
      } else {
    r.alignment = 0;
      }
  } else {
      r.alignment = 0;
  }
 
  return r;
    }

    /**
     * Calculate the requirements for the major axis.  This is called by
     * the superclass whenever the requirements need to be updated (i.e.
     * a preferenceChanged was messaged through this view). 
     * <p>
     * This is implemented to provide the superclass behavior adjusted for
     * multi-row table cells.
     */
    protected SizeRequirements calculateMajorAxisRequirements(int axis, SizeRequirements r) {
  updateInsets();
  rowIterator.updateAdjustments();
  r = CSS.calculateTiledRequirements(rowIterator, r);
  r.maximum = r.preferred;
  return r;
    }

    /**
     * Perform layout for the minor axis of the box (i.e. the
     * axis orthoginal to the axis that it represents).  The results
     * of the layout should be placed in the given arrays which represent
     * the allocations to the children along the minor axis.  This
     * is called by the superclass whenever the layout needs to be
     * updated along the minor axis.
     * <p>
     * This is implemented to call the
     * <a href="#layoutColumns">layoutColumns</a> method, and then
     * forward to the superclass to actually carry out the layout
     * of the tables rows.
     *
     * @param targetSpan the total span given to the view, which
     *  whould be used to layout the children
     * @param axis the axis being layed out
     * @param offsets the offsets from the origin of the view for
     *  each of the child views.  This is a return value and is
     *  filled in by the implementation of this method
     * @param spans the span of each child view;  this is a return
     *  value and is filled in by the implementation of this method
     * @return the offset and span for each child view in the
     *  offsets and spans parameters
     */
    protected void layoutMinorAxis(int targetSpan, int axis, int[] offsets, int[] spans) {
  // make grid is properly represented
  updateGrid();

  // all of the row layouts are invalid, so mark them that way
  int n = getRowCount();
  for (int i = 0; i < n; i++) {
      RowView row = getRow(i);
      row.layoutChanged(axis);
  }

  // calculate column spans
  layoutColumns(targetSpan, columnOffsets, columnSpans, columnRequirements);

  // continue normal layout
  super.layoutMinorAxis(targetSpan, axis, offsets, spans);
    }


    /**
     * Perform layout for the major axis of the box (i.e. the
     * axis that it represents).  The results
     * of the layout should be placed in the given arrays which represent
     * the allocations to the children along the minor axis.  This
     * is called by the superclass whenever the layout needs to be
     * updated along the minor axis.
     * <p>
     * This method is where the layout of the table rows within the
     * table takes place.  This method is implemented to call the use
     * the RowIterator and the CSS collapsing tile to layout
     * with border spacing and border collapsing capabilities.
     *
     * @param targetSpan the total span given to the view, which
     *  whould be used to layout the children
     * @param axis the axis being layed out
     * @param offsets the offsets from the origin of the view for
     *  each of the child views; this is a return value and is
     *  filled in by the implementation of this method
     * @param spans the span of each child view; this is a return
     *  value and is filled in by the implementation of this method
     * @return the offset and span for each child view in the
     *  offsets and spans parameters
     */
    protected void layoutMajorAxis(int targetSpan, int axis, int[] offsets, int[] spans) {
  rowIterator.setLayoutArrays(offsets, spans);
  CSS.calculateTiledLayout(rowIterator, targetSpan);

  if (captionIndex != -1) {
      // place the caption
      View caption = getView(captionIndex);
      int h = (int) caption.getPreferredSpan(Y_AXIS);
      spans[captionIndex] = h;
      short boxBottom = (short) painter.getInset(BOTTOM, this);
      if (boxBottom != getBottomInset()) {
    offsets[captionIndex] = targetSpan + boxBottom;
      } else {
    offsets[captionIndex] = - getTopInset();
      }
  }
    }

    /**
     * Fetches the child view that represents the given position in
     * the model.  This is implemented to walk through the children
     * looking for a range that contains the given position.  In this
     * view the children do not necessarily have a one to one mapping
     * with the child elements.
     *
     * @param pos  the search position >= 0
     * @param a  the allocation to the table on entry, and the
     *   allocation of the view containing the position on exit
     * @return  the view representing the given position, or
     *   null if there isn't one
     */
    protected View getViewAtPosition(int pos, Rectangle a) {
        int n = getViewCount();
        for (int i = 0; i < n; i++) {
            View v = getView(i);
            int p0 = v.getStartOffset();
            int p1 = v.getEndOffset();
            if ((pos >= p0) && (pos < p1)) {
                // it's in this view.
    if (a != null) {
        childAllocation(i, a);
    }
                return v;
            }
        }
  if (pos == getEndOffset()) {
      View v = getView(n - 1);
      if (a != null) {
    this.childAllocation(n - 1, a);
      }
      return v;
  }
        return null;
    }

    // --- View methods ---------------------------------------------

    /**
     * Fetches the attributes to use when rendering.  This is
     * implemented to multiplex the attributes specified in the
     * model with a StyleSheet.
     */
    public AttributeSet getAttributes() {
  if (attr == null) {
      StyleSheet sheet = getStyleSheet();
      attr = sheet.getViewAttributes(this);
  }
  return attr;
    }

    /**
     * Renders using the given rendering surface and area on that
     * surface.  This is implemented to delegate to the css box
     * painter to paint the border and background prior to the
     * interior.  The superclass culls rendering the children
     * that don't directly intersect the clip and the row may
     * have cells hanging from a row above in it.  The table
     * does not use the superclass rendering behavior and instead
     * paints all of the rows and lets the rows cull those
     * cells not intersecting the clip region.
     *
     * @param g the rendering surface to use
     * @param allocation the allocated region to render into
     * @see View#paint
     */
    public void paint(Graphics g, Shape allocation) {
  // paint the border
  Rectangle a = allocation.getBounds();
  setSize(a.width, a.height);
  if (captionIndex != -1) {
      // adjust the border for the caption
      short top = (short) painter.getInset(TOP, this);
      short bottom = (short) painter.getInset(BOTTOM, this);
      if (top != getTopInset()) {
    int h = getTopInset() - top;
    a.y += h;
    a.height -= h;
      } else {
    a.height -= getBottomInset() - bottom;
      }
  }
        painter.paint(g, a.x, a.y, a.width, a.height, this);
  // paint interior
  int n = getViewCount();
  for (int i = 0; i < n; i++) {
      View v = getView(i);
      v.paint(g, getChildAllocation(i, allocation));
  }
  //super.paint(g, a);
    }

    /**
     * Establishes the parent view for this view.  This is
     * guaranteed to be called before any other methods if the
     * parent view is functioning properly.
     * <p>
     * This is implemented
     * to forward to the superclass as well as call the
     * <a href="#setPropertiesFromAttributes">setPropertiesFromAttributes</a>
     * method to set the paragraph properties from the css
     * attributes.  The call is made at this time to ensure
     * the ability to resolve upward through the parents
     * view attributes.
     *
     * @param parent the new parent, or null if the view is
     *  being removed from a parent it was previously added
     *  to
     */
    public void setParent(View parent) {
  super.setParent(parent);
        if (parent != null) {
      setPropertiesFromAttributes();
        }
    }

    /**
     * Fetches the ViewFactory implementation that is feeding
     * the view hierarchy. 
     * This replaces the ViewFactory with an implementation that
     * calls through to the createTableRow and createTableCell
     * methods.   If the element given to the factory isn't a
     * table row or cell, the request is delegated to the factory
     * produced by the superclass behavior.
     *
     * @return the factory, null if none
     */
    public ViewFactory getViewFactory() {
  return this;
    }

    /**
     * Gives notification that something was inserted into
     * the document in a location that this view is responsible for.
     * This replaces the ViewFactory with an implementation that
     * calls through to the createTableRow and createTableCell
     * methods.   If the element given to the factory isn't a
     * table row or cell, the request is delegated to the factory
     * passed as an argument.
     *
     * @param e the change information from the associated document
     * @param a the current allocation of the view
     * @param f the factory to use to rebuild if the view has children
     * @see View#insertUpdate
     */
    public void insertUpdate(DocumentEvent e, Shape a, ViewFactory f) {
  super.insertUpdate(e, a, this);
    }

    /**
     * Gives notification that something was removed from the document
     * in a location that this view is responsible for.
     * This replaces the ViewFactory with an implementation that
     * calls through to the createTableRow and createTableCell
     * methods.   If the element given to the factory isn't a
     * table row or cell, the request is delegated to the factory
     * passed as an argument.
     *
     * @param e the change information from the associated document
     * @param a the current allocation of the view
     * @param f the factory to use to rebuild if the view has children
     * @see View#removeUpdate
     */
    public void removeUpdate(DocumentEvent e, Shape a, ViewFactory f) {
  super.removeUpdate(e, a, this);
    }

    /**
     * Gives notification from the document that attributes were changed
     * in a location that this view is responsible for.
     * This replaces the ViewFactory with an implementation that
     * calls through to the createTableRow and createTableCell
     * methods.   If the element given to the factory isn't a
     * table row or cell, the request is delegated to the factory
     * passed as an argument.
     *
     * @param e the change information from the associated document
     * @param a the current allocation of the view
     * @param f the factory to use to rebuild if the view has children
     * @see View#changedUpdate
     */
    public void changedUpdate(DocumentEvent e, Shape a, ViewFactory f) {
  super.changedUpdate(e, a, this);
    }

    protected void forwardUpdate(DocumentEvent.ElementChange ec,
         DocumentEvent e, Shape a, ViewFactory f) {
  super.forwardUpdate(ec, e, a, f);
  // A change in any of the table cells usually effects the whole table,
  // so redraw it all!
  if (a != null) {
      Component c = getContainer();
      if (c != null) {
    Rectangle alloc = (a instanceof Rectangle) ? (Rectangle)a :
                       a.getBounds();
    c.repaint(alloc.x, alloc.y, alloc.width, alloc.height);
      }
  }
    }

    /**
     * Change the child views.  This is implemented to
     * provide the superclass behavior and invalidate the
     * grid so that rows and columns will be recalculated.
     */
    public void replace(int offset, int length, View[] views) {
  super.replace(offset, length, views);
  invalidateGrid();
    }

    // --- ViewFactory methods ------------------------------------------

    /**
     * The table itself acts as a factory for the various
     * views that actually represent pieces of the table.
     * All other factory activity is delegated to the factory
     * returned by the parent of the table.
     */
    public View create(Element elem) {
  Object o = elem.getAttributes().getAttribute(StyleConstants.NameAttribute);
  if (o instanceof HTML.Tag) {
      HTML.Tag kind = (HTML.Tag) o;
      if (kind == HTML.Tag.TR) {
    return createTableRow(elem);
      } else if ((kind == HTML.Tag.TD) || (kind == HTML.Tag.TH)) {
    return new CellView(elem);
      } else if (kind == HTML.Tag.CAPTION) {
    return new javax.swing.text.html.ParagraphView(elem);
      }
  }
  // default is to delegate to the normal factory
  View p = getParent();
  if (p != null) {
      ViewFactory f = p.getViewFactory();
      if (f != null) {
    return f.create(elem);
      }
  }
  return null;
    }
 
    // ---- variables ----------------------------------------------------

    private AttributeSet attr;
    private StyleSheet.BoxPainter painter;

    private int cellSpacing;
    private int borderWidth;

    /**
     * The index of the caption view if there is a caption.
     * This has a value of -1 if there is no caption.  The
     * caption lives in the inset area of the table, and is
     * updated with each time the grid is recalculated.
     */
    private int captionIndex;

    /**
     * Do any of the table cells contain a relative size
     * specification?  This is updated with each call to
     * updateGrid().  If this is true, the ColumnIterator
     * will do extra work to calculate relative cell
     * specifications.
     */
    private boolean relativeCells;

    /**
     * Do any of the table cells span multiple rows?  If
     * true, the RowRequirementIterator will do additional
     * work to adjust the requirements of rows spanned by
     * a single table cell.  This is updated with each call to
     * updateGrid().
     */
    private boolean multiRowCells;

    int[] columnSpans;
    int[] columnOffsets;
    /**
     * SizeRequirements for all the columns.
     */
    SizeRequirements totalColumnRequirements;
    SizeRequirements[] columnRequirements;

    RowIterator rowIterator = new RowIterator();
    ColumnIterator colIterator = new ColumnIterator();

    Vector rows;

    // whether to display comments inside table or not.
    boolean skipComments = false;

    boolean gridValid;
    static final private BitSet EMPTY = new BitSet();

    class ColumnIterator implements CSS.LayoutIterator {

  /**
   * Disable percentage adjustments which should only apply
   * when calculating layout, not requirements.
   */
  void disablePercentages() {
      percentages = null;
  }

  /**
   * Update percentage adjustments if they are needed.
   */
  private void updatePercentagesAndAdjustmentWeights(int span) {
      adjustmentWeights = new int[columnRequirements.length];
      for (int i = 0; i < columnRequirements.length; i++) {
    adjustmentWeights[i] = 0;
      }
      if (relativeCells) {
    percentages = new int[columnRequirements.length];
      } else {
    percentages = null;
      }
      int nrows = getRowCount();
      for (int rowIndex = 0; rowIndex < nrows; rowIndex++) {
    RowView row = getRow(rowIndex);
    int col = 0;
    int ncells = row.getViewCount();
    for (int cell = 0; cell < ncells; cell++, col++) {
        View cv = row.getView(cell);
        for (; row.isFilled(col); col++); // advance to a free column
        int rowSpan = getRowsOccupied(cv);
        int colSpan = getColumnsOccupied(cv);
        AttributeSet a = cv.getAttributes();
        CSS.LengthValue lv = (CSS.LengthValue)
      a.getAttribute(CSS.Attribute.WIDTH);
        if ( lv != null ) {
      int len = (int) (lv.getValue(span) / colSpan + 0.5f);
      for (int i = 0; i < colSpan; i++) {
          if (lv.isPercentage()) {
        // add a percentage requirement
        percentages[col+i] = Math.max(percentages[col+i], len);
                                adjustmentWeights[col + i] = Math.max(adjustmentWeights[col + i], WorstAdjustmentWeight);
          } else {
                                adjustmentWeights[col + i] = Math.max(adjustmentWeights[col + i], WorstAdjustmentWeight - 1);
          }
      }
        }
        col += colSpan - 1;
    }
      }
  }

  /**
   * Set the layout arrays to use for holding layout results
   */
  public void setLayoutArrays(int offsets[], int spans[], int targetSpan) {
      this.offsets = offsets;
      this.spans = spans;
      updatePercentagesAndAdjustmentWeights(targetSpan);
  }

  // --- RequirementIterator methods -------------------

  public int getCount() {
      return columnRequirements.length;
  }

  public void setIndex(int i) {
      col = i;
  }

  public void setOffset(int offs) {
      offsets[col] = offs;
  }

  public int getOffset() {
      return offsets[col];
  }

  public void setSpan(int span) {
      spans[col] = span;
  }

  public int getSpan() {
      return spans[col];
  }

  public float getMinimumSpan(float parentSpan) {
      // do not care for percentages, since min span can't
            // be less than columnRequirements[col].minimum,
      // but can be less than percentage value.
      return columnRequirements[col].minimum;
  }

  public float getPreferredSpan(float parentSpan) {
      if ((percentages != null) && (percentages[col] != 0)) {
                return Math.max(percentages[col], columnRequirements[col].minimum);
      }
      return columnRequirements[col].preferred;
  }

  public float getMaximumSpan(float parentSpan) {
      return columnRequirements[col].maximum;
  }

  public float getBorderWidth() {
      return borderWidth;       
  }                             


  public float getLeadingCollapseSpan() {
      return cellSpacing;
  }

  public float getTrailingCollapseSpan() {
      return cellSpacing;
  }

  public int getAdjustmentWeight() {
      return adjustmentWeights[col];
  }

  /**
   * Current column index
   */
  private int col;

  /**
   * percentage values (may be null since there
   * might not be any).
   */
  private int[] percentages;

  private int[] adjustmentWeights;

  private int[] offsets;
  private int[] spans;
    }

    class RowIterator implements CSS.LayoutIterator {

  RowIterator() {
  }

  void updateAdjustments() {
      int axis = Y_AXIS;
      if (multiRowCells) {
    // adjust requirements of multi-row cells
    int n = getRowCount();
    adjustments = new int[n];
    for (int i = 0; i < n; i++) {
        RowView rv = getRow(i);
        if (rv.multiRowCells == true) {
      int ncells = rv.getViewCount();
      for (int j = 0; j < ncells; j++) {
          View v = rv.getView(j);
          int nrows = getRowsOccupied(v);
          if (nrows > 1) {
        int spanNeeded = (int) v.getPreferredSpan(axis);
        adjustMultiRowSpan(spanNeeded, nrows, i);
          }
      }
        }
    }
      } else {
    adjustments = null;
      }
  }

  /**
   * Fixup preferences to accomodate a multi-row table cell
   * if not already covered by existing preferences.  This is
   * a no-op if not all of the rows needed (to do this check/fixup)
   * have arrived yet.
   */
  void adjustMultiRowSpan(int spanNeeded, int nrows, int rowIndex) {
      if ((rowIndex + nrows) > getCount()) {
    // rows are missing (could be a bad rowspan specification)
    // or not all the rows have arrived.  Do the best we can with
    // the current set of rows.
    nrows = getCount() - rowIndex;
    if (nrows < 1) {
        return;
    }
      }
      int span = 0;
      for (int i = 0; i < nrows; i++) {
    RowView rv = getRow(rowIndex + i);
    span += rv.getPreferredSpan(Y_AXIS);
      }
      if (spanNeeded > span) {
    int adjust = (spanNeeded - span);
    int rowAdjust = adjust / nrows;
    int firstAdjust = rowAdjust + (adjust - (rowAdjust * nrows));
    RowView rv = getRow(rowIndex);
                adjustments[rowIndex] = Math.max(adjustments[rowIndex],
                                                 firstAdjust);
    for (int i = 1; i < nrows; i++) {
                    adjustments[rowIndex + i] = Math.max(
                        adjustments[rowIndex + i], rowAdjust);
    }
      }
  }

  void setLayoutArrays(int[] offsets, int[] spans) {
      this.offsets = offsets;
      this.spans = spans;
  }

  // --- RequirementIterator methods -------------------

  public void setOffset(int offs) {
      RowView rv = getRow(row);
      if (rv != null) {
    offsets[rv.viewIndex] = offs;
      }
  }

  public int getOffset() {
      RowView rv = getRow(row);
      if (rv != null) {
    return offsets[rv.viewIndex];
      }
      return 0;
  }

  public void setSpan(int span) {
      RowView rv = getRow(row);
      if (rv != null) {
    spans[rv.viewIndex] = span;
      }
  }

  public int getSpan() {
      RowView rv = getRow(row);
      if (rv != null) {
    return spans[rv.viewIndex];
      }
      return 0;
  }

  public int getCount() {
      return rows.size();
  }

  public void setIndex(int i) {
      row = i;
  }

  public float getMinimumSpan(float parentSpan) {
      return getPreferredSpan(parentSpan);
  }

  public float getPreferredSpan(float parentSpan) {
      RowView rv = getRow(row);
      if (rv != null) {
    int adjust = (adjustments != null) ? adjustments[row] : 0;
    return rv.getPreferredSpan(TableView.this.getAxis()) + adjust;
      }
      return 0;
  }

  public float getMaximumSpan(float parentSpan) {
      return getPreferredSpan(parentSpan);
  }

  public float getBorderWidth() {
      return borderWidth;       
  }                             

  public float getLeadingCollapseSpan() {
      return cellSpacing;
  }

  public float getTrailingCollapseSpan() {
      return cellSpacing;
  }

  public int getAdjustmentWeight() {
      return 0;
  }

  /**
   * Current row index
   */
  private int row;

  /**
   * Adjustments to the row requirements to handle multi-row
   * table cells. 
   */
  private int[] adjustments;

  private int[] offsets;
  private int[] spans;
    }

    /**
     * View of a row in a row-centric table.
     */
    public class RowView extends BoxView {

  /**
   * Constructs a TableView for the given element.
   *
   * @param elem the element that this view is responsible for
   */
        public RowView(Element elem) {
      super(elem, View.X_AXIS);
      fillColumns = new BitSet();
      RowView.this.setPropertiesFromAttributes();
  }

  void clearFilledColumns() {
      fillColumns.and(EMPTY);
  }

  void fillColumn(int col) {
      fillColumns.set(col);
  }

  boolean isFilled(int col) {
      return fillColumns.get(col);
  }

  /**
   * The number of columns present in this row.
   */
  int getColumnCount() {
      int nfill = 0;
      int n = fillColumns.size();
      for (int i = 0; i < n; i++) {
    if (fillColumns.get(i)) {
        nfill ++;
    }
      }
      return getViewCount() + nfill;
  }

  /**
   * Fetches the attributes to use when rendering.  This is
   * implemented to multiplex the attributes specified in the
   * model with a StyleSheet.
   */
        public AttributeSet getAttributes() {
      return attr;
  }

  View findViewAtPoint(int x, int y, Rectangle alloc) {
      int n = getViewCount();
      for (int i = 0; i < n; i++) {
    if (getChildAllocation(i, alloc).contains(x, y)) {
        childAllocation(i, alloc);
        return getView(i);
    }
      }
      return null;
  }

        protected StyleSheet getStyleSheet() {
      HTMLDocument doc = (HTMLDocument) getDocument();
      return doc.getStyleSheet();
  }

  /**
   * This is called by a child to indicate its
   * preferred span has changed.  This is implemented to
   * execute the superclass behavior and well as try to
   * determine if a row with a multi-row cell hangs across
   * this row.  If a multi-row cell covers this row it also
   * needs to propagate a preferenceChanged so that it will
   * recalculate the multi-row cell.
   *
   * @param child the child view
   * @param width true if the width preference should change
   * @param height true if the height preference should change
   */
        public void preferenceChanged(View child, boolean width, boolean height) {
      super.preferenceChanged(child, width, height);
      if (TableView.this.multiRowCells && height) {
    for (int i = rowIndex  - 1; i >= 0; i--) {
        RowView rv = TableView.this.getRow(i);
        if (rv.multiRowCells) {
      rv.preferenceChanged(null, false, true);
      break;
        }
    }
      }
  }

        // The major axis requirements for a row are dictated by the column
        // requirements. These methods use the value calculated by
        // TableView.
        protected SizeRequirements calculateMajorAxisRequirements(int axis, SizeRequirements r) {
            SizeRequirements req = new SizeRequirements();
            req.minimum = totalColumnRequirements.minimum;
            req.maximum = totalColumnRequirements.maximum;
            req.preferred = totalColumnRequirements.preferred;
            req.alignment = 0f;
            return req;
        }

        public float getMinimumSpan(int axis) {
            float value;

            if (axis == View.X_AXIS) {
                value = totalColumnRequirements.minimum + getLeftInset() +
                        getRightInset();
            }
            else {
                value = super.getMinimumSpan(axis);
            }
            return value;
        }

        public float getMaximumSpan(int axis) {
            float value;

            if (axis == View.X_AXIS) {
                // We're flexible.
                value = (float)Integer.MAX_VALUE;
            }
            else {
                value = super.getMaximumSpan(axis);
            }
            return value;
        }

        public float getPreferredSpan(int axis) {
            float value;

            if (axis == View.X_AXIS) {
                value = totalColumnRequirements.preferred + getLeftInset() +
                        getRightInset();
            }
            else {
                value = super.getPreferredSpan(axis);
            }
            return value;
        }

  public void changedUpdate(DocumentEvent e, Shape a, ViewFactory f) {
      super.changedUpdate(e, a, f);
      int pos = e.getOffset();
      if (pos <= getStartOffset() && (pos + e.getLength()) >=
    getEndOffset()) {
    RowView.this.setPropertiesFromAttributes();
      }
  }
 
  /**
   * Renders using the given rendering surface and area on that
   * surface.  This is implemented to delegate to the css box
   * painter to paint the border and background prior to the
   * interior.
   *
   * @param g the rendering surface to use
   * @param allocation the allocated region to render into
   * @see View#paint
   */
  public void paint(Graphics g, Shape allocation) {
      Rectangle a = (Rectangle) allocation;
      painter.paint(g, a.x, a.y, a.width, a.height, this);
      super.paint(g, a);
  }

  /**
   * Change the child views.  This is implemented to
   * provide the superclass behavior and invalidate the
   * grid so that rows and columns will be recalculated.
   */
        public void replace(int offset, int length, View[] views) {
      super.replace(offset, length, views);
      invalidateGrid();
  }

  /**
   * Calculate the height requirements of the table row.  The
   * requirements of multi-row cells are not considered for this
   * calculation.  The table itself will check and adjust the row
   * requirements for all the rows that have multi-row cells spanning
   * them.  This method updates the multi-row flag that indicates that
   * this row and rows below need additional consideration.
   */
        protected SizeRequirements calculateMinorAxisRequirements(int axis, SizeRequirements r) {
//      return super.calculateMinorAxisRequirements(axis, r);
      long min = 0;
      long pref = 0;
      long max = 0;
      multiRowCells = false;
      int n = getViewCount();
      for (int i = 0; i < n; i++) {
    View v = getView(i);
    if (getRowsOccupied(v) > 1) {
        multiRowCells = true;
        max = Math.max((int) v.getMaximumSpan(axis), max);
    } else {
        min = Math.max((int) v.getMinimumSpan(axis), min);
        pref = Math.max((int) v.getPreferredSpan(axis), pref);
        max = Math.max((int) v.getMaximumSpan(axis), max);
    }
      }

      if (r == null) {
    r = new SizeRequirements();
    r.alignment = 0.5f;
      }
      r.preferred = (int) pref;
      r.minimum = (int) min;
      r.maximum = (int) max;
      return r;
  }

  /**
   * Perform layout for the major axis of the box (i.e. the
   * axis that it represents).  The results of the layout should
   * be placed in the given arrays which represent the allocations
   * to the children along the major axis. 
   * <p>
   * This is re-implemented to give each child the span of the column
   * width for the table, and to give cells that span multiple columns
   * the multi-column span.
   *
   * @param targetSpan the total span given to the view, which
   *  whould be used to layout the children
   * @param axis the axis being layed out
   * @param offsets the offsets from the origin of the view for
   *  each of the child views; this is a return value and is
   *  filled in by the implementation of this method
   * @param spans the span of each child view; this is a return
   *  value and is filled in by the implementation of this method
   * @return the offset and span for each child view in the
   *  offsets and spans parameters
   */
        protected void layoutMajorAxis(int targetSpan, int axis, int[] offsets, int[] spans) {
      int col = 0;
      int ncells = getViewCount();
      for (int cell = 0; cell < ncells; cell++) {
    View cv = getView(cell);
    if (skipComments && !(cv instanceof CellView)) {
        continue;
    }
    for (; isFilled(col); col++); // advance to a free column
    int colSpan = getColumnsOccupied(cv);
    spans[cell] = columnSpans[col];
    offsets[cell] = columnOffsets[col];
    if (colSpan > 1) {
        int n = columnSpans.length;
        for (int j = 1; j < colSpan; j++) {
      // Because the table may be only partially formed, some
      // of the columns may not yet exist.  Therefore we check
      // the bounds.
      if ((col+j) < n) {
          spans[cell] += columnSpans[col+j];
          spans[cell] += cellSpacing;
      }
        }
        col += colSpan - 1;
    }
    col++;
      }
  }

  /**
   * Perform layout for the minor axis of the box (i.e. the
   * axis orthoginal to the axis that it represents).  The results
   * of the layout should be placed in the given arrays which represent
   * the allocations to the children along the minor axis.  This
   * is called by the superclass whenever the layout needs to be
   * updated along the minor axis.
   * <p>
   * This is implemented to delegate to the superclass, then adjust
   * the span for any cell that spans multiple rows.
   *
   * @param targetSpan the total span given to the view, which
   *  whould be used to layout the children
   * @param axis the axis being layed out
   * @param offsets the offsets from the origin of the view for
   *  each of the child views; this is a return value and is
   *  filled in by the implementation of this method
   * @param spans the span of each child view; this is a return
   *  value and is filled in by the implementation of this method
   * @return the offset and span for each child view in the
   *  offsets and spans parameters
   */
        protected void layoutMinorAxis(int targetSpan, int axis, int[] offsets, int[] spans) {
      super.layoutMinorAxis(targetSpan, axis, offsets, spans);
      int col = 0;
      int ncells = getViewCount();
      for (int cell = 0; cell < ncells; cell++, col++) {
    View cv = getView(cell);
    for (; isFilled(col); col++); // advance to a free column
    int colSpan = getColumnsOccupied(cv);
    int rowSpan = getRowsOccupied(cv);
    if (rowSpan > 1) {
       
        int row0 = rowIndex;
        int row1 = Math.min(rowIndex + rowSpan - 1, getRowCount()-1);
        spans[cell] = getMultiRowSpan(row0, row1);
    }
    if (colSpan > 1) {
        col += colSpan - 1;
    }
      }
  }

  /**
   * Determines the resizability of the view along the
   * given axis.  A value of 0 or less is not resizable.
   *
   * @param axis may be either View.X_AXIS or View.Y_AXIS
   * @return the resize weight
   * @exception IllegalArgumentException for an invalid axis
   */
        public int getResizeWeight(int axis) {
      return 1;
  }

  /**
   * Fetches the child view that represents the given position in
   * the model.  This is implemented to walk through the children
   * looking for a range that contains the given position.  In this
   * view the children do not necessarily have a one to one mapping
   * with the child elements.
   *
   * @param pos  the search position >= 0
   * @param a  the allocation to the table on entry, and the
   *   allocation of the view containing the position on exit
   * @return  the view representing the given position, or
   *   null if there isn't one
   */
        protected View getViewAtPosition(int pos, Rectangle a) {
      int n = getViewCount();
      for (int i = 0; i < n; i++) {
    View v = getView(i);
    int p0 = v.getStartOffset();
    int p1 = v.getEndOffset();
    if ((pos >= p0) && (pos < p1)) {
        // it's in this view.
        if (a != null) {
      childAllocation(i, a);
        }
        return v;
    }
      }
      if (pos == getEndOffset()) {
    View v = getView(n - 1);
    if (a != null) {
        this.childAllocation(n - 1, a);
    }
    return v;
      }
      return null;
  }

  /**
   * Update any cached values that come from attributes.
   */
  void setPropertiesFromAttributes() {
      StyleSheet sheet = getStyleSheet();
      attr = sheet.getViewAttributes(this);
      painter = sheet.getBoxPainter(attr);
  }

  private StyleSheet.BoxPainter painter;
        private AttributeSet attr;

  /** columns filled by multi-column or multi-row cells */
  BitSet fillColumns;

  /**
   * The row index within the overall grid
   */
  int rowIndex;

  /**
   * The view index (for row index to view index conversion).
   * This is set by the updateGrid method.
   */
  int viewIndex;

  /**
   * Does this table row have cells that span multiple rows?
   */
  boolean multiRowCells;

    }

    /**
     * Default view of an html table cell.  This needs to be moved
     * somewhere else.
     */
    class CellView extends BlockView {

  /**
   * Constructs a TableCell for the given element.
   *
   * @param elem the element that this view is responsible for
   */
        public CellView(Element elem) {
      super(elem, Y_AXIS);
  }

  /**
   * Perform layout for the major axis of the box (i.e. the
   * axis that it represents).  The results of the layout should
   * be placed in the given arrays which represent the allocations
   * to the children along the major axis.  This is called by the
   * superclass to recalculate the positions of the child views
   * when the layout might have changed.
   * <p>
   * This is implemented to delegate to the superclass to
   * tile the children.  If the target span is greater than
   * was needed, the offsets are adjusted to align the children
   * (i.e. position according to the html valign attribute).
   *
   * @param targetSpan the total span given to the view, which
   *  whould be used to layout the children
   * @param axis the axis being layed out
   * @param offsets the offsets from the origin of the view for
   *  each of the child views; this is a return value and is
   *  filled in by the implementation of this method
   * @param spans the span of each child view; this is a return
   *  value and is filled in by the implementation of this method
   * @return the offset and span for each child view in the
   *  offsets and spans parameters
   */
        protected void layoutMajorAxis(int targetSpan, int axis, int[] offsets, int[] spans) {
      super.layoutMajorAxis(targetSpan, axis, offsets, spans);
      // calculate usage
      int used = 0;
      int n = spans.length;
      for (int i = 0; i < n; i++) {
    used += spans[i];
      }

      // calculate adjustments
      int adjust = 0;
      if (used < targetSpan) {
    // PENDING(prinz) change to use the css alignment.
    String valign = (String) getElement().getAttributes().getAttribute(
        HTML.Attribute.VALIGN);
    if (valign == null) {
        AttributeSet rowAttr = getElement().getParentElement().getAttributes();
        valign = (String) rowAttr.getAttribute(HTML.Attribute.VALIGN);
    }
    if ((valign == null) || valign.equals("middle")) {
        adjust = (targetSpan - used) / 2;
    } else if (valign.equals("bottom")) {
        adjust = targetSpan - used;
    }
      }

      // make adjustments.
      if (adjust != 0) {
    for (int i = 0; i < n; i++) {
        offsets[i] += adjust;
    }
      }
  }

  /**
   * Calculate the requirements needed along the major axis.
   * This is called by the superclass whenever the requirements
   * need to be updated (i.e. a preferenceChanged was messaged
   * through this view). 
   * <p>
   * This is implemented to delegate to the superclass, but
   * indicate the maximum size is very large (i.e. the cell
   * is willing to expend to occupy the full height of the row).
   *
   * @param axis the axis being layed out.
   * @param r the requirements to fill in.  If null, a new one
   *  should be allocated.
   */
        protected SizeRequirements calculateMajorAxisRequirements(int axis,
                  SizeRequirements r) {
      SizeRequirements req = super.calculateMajorAxisRequirements(axis, r);
      req.maximum = Integer.MAX_VALUE;
      return req;
  }

        @Override
        protected SizeRequirements calculateMinorAxisRequirements(int axis, SizeRequirements r) {
            SizeRequirements rv = super.calculateMinorAxisRequirements(axis, r);
            //for the cell the minimum should be derived from the child views
            //the parent behaviour is to use CSS for that
            int n = getViewCount();
            int min = 0;
            for (int i = 0; i < n; i++) {
                View v = getView(i);
                min = Math.max((int) v.getMinimumSpan(axis), min);               
            }           
            rv.minimum = Math.min(rv.minimum, min);
            return rv;
        }
    }


}
TOP

Related Classes of javax.swing.text.html.TableView$CellView

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.