Package java.awt.geom

Source Code of java.awt.geom.AreaIterator

/*
* @(#)Area.java  1.21 06/02/24
*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*/

package java.awt.geom;

import java.awt.Shape;
import java.awt.Rectangle;
import java.util.Vector;
import java.util.Enumeration;
import java.util.NoSuchElementException;
import sun.awt.geom.Curve;
import sun.awt.geom.Crossings;
import sun.awt.geom.AreaOp;

/**
* An <code>Area</code> object stores and manipulates a
* resolution-independent description of an enclosed area of
* 2-dimensional space.
* <code>Area</code> objects can be transformed and can perform
* various Constructive Area Geometry (CAG) operations when combined
* with other <code>Area</code> objects.
* The CAG operations include area
* {@link #add addition}, {@link #subtract subtraction},
* {@link #intersect intersection}, and {@link #exclusiveOr exclusive or}.
* See the linked method documentation for examples of the various
* operations.
* <p>
* The <code>Area</code> class implements the <code>Shape</code>
* interface and provides full support for all of its hit-testing
* and path iteration facilities, but an <code>Area</code> is more
* specific than a generalized path in a number of ways:
* <ul>
* <li>Only closed paths and sub-paths are stored.
*     <code>Area</code> objects constructed from unclosed paths
*     are implicitly closed during construction as if those paths
*     had been filled by the <code>Graphics2D.fill</code> method.
* <li>The interiors of the individual stored sub-paths are all
*     non-empty and non-overlapping.  Paths are decomposed during
*     construction into separate component non-overlapping parts,
*     empty pieces of the path are discarded, and then these
*     non-empty and non-overlapping properties are maintained
*     through all subsequent CAG operations.  Outlines of different
*     component sub-paths may touch each other, as long as they
*     do not cross so that their enclosed areas overlap.
* <li>The geometry of the path describing the outline of the
*     <code>Area</code> resembles the path from which it was
*     constructed only in that it describes the same enclosed
*     2-dimensional area, but may use entirely different types
*     and ordering of the path segments to do so.
* </ul>
* Interesting issues which are not always obvious when using
* the <code>Area</code> include:
* <ul>
* <li>Creating an <code>Area</code> from an unclosed (open)
*     <code>Shape</code> results in a closed outline in the
*     <code>Area</code> object.
* <li>Creating an <code>Area</code> from a <code>Shape</code>
*     which encloses no area (even when "closed") produces an
*     empty <code>Area</code>.  A common example of this issue
*     is that producing an <code>Area</code> from a line will
*     be empty since the line encloses no area.  An empty
*     <code>Area</code> will iterate no geometry in its
*     <code>PathIterator</code> objects.
* <li>A self-intersecting <code>Shape</code> may be split into
*     two (or more) sub-paths each enclosing one of the
*     non-intersecting portions of the original path.
* <li>An <code>Area</code> may take more path segments to
*     describe the same geometry even when the original
*     outline is simple and obvious.  The analysis that the
*     <code>Area</code> class must perform on the path may
*     not reflect the same concepts of "simple and obvious"
*     as a human being perceives.
* </ul>
*
* @since 1.2
*/
public class Area implements Shape, Cloneable {
    private static Vector EmptyCurves = new Vector();

    private Vector curves;

    /**
     * Default constructor which creates an empty area.
     * @since 1.2
     */
    public Area() {
  curves = EmptyCurves;
    }

    /**
     * The <code>Area</code> class creates an area geometry from the
     * specified {@link Shape} object.  The geometry is explicitly
     * closed, if the <code>Shape</code> is not already closed.  The
     * fill rule (even-odd or winding) specified by the geometry of the
     * <code>Shape</code> is used to determine the resulting enclosed area.
     * @param s  the <code>Shape</code> from which the area is constructed
     * @throws NullPointerException if <code>s</code> is null
     * @since 1.2
     */
    public Area(Shape s) {
  if (s instanceof Area) {
      curves = ((Area) s).curves;
  } else {
            curves = pathToCurves(s.getPathIterator(null));
        }
    }

    private static Vector pathToCurves(PathIterator pi) {
  Vector curves = new Vector();
  int windingRule = pi.getWindingRule();
  // coords array is big enough for holding:
  //     coordinates returned from currentSegment (6)
  //     OR
  //         two subdivided quadratic curves (2+4+4=10)
  //         AND
  //             0-1 horizontal splitting parameters
  //             OR
  //             2 parametric equation derivative coefficients
  //     OR
  //         three subdivided cubic curves (2+6+6+6=20)
  //         AND
  //             0-2 horizontal splitting parameters
  //             OR
  //             3 parametric equation derivative coefficients
  double coords[] = new double[23];
  double movx = 0, movy = 0;
  double curx = 0, cury = 0;
  double newx, newy;
  while (!pi.isDone()) {
      switch (pi.currentSegment(coords)) {
      case PathIterator.SEG_MOVETO:
    Curve.insertLine(curves, curx, cury, movx, movy);
    curx = movx = coords[0];
    cury = movy = coords[1];
    Curve.insertMove(curves, movx, movy);
    break;
      case PathIterator.SEG_LINETO:
    newx = coords[0];
    newy = coords[1];
    Curve.insertLine(curves, curx, cury, newx, newy);
    curx = newx;
    cury = newy;
    break;
      case PathIterator.SEG_QUADTO:
    newx = coords[2];
    newy = coords[3];
    Curve.insertQuad(curves, curx, cury, coords);
    curx = newx;
    cury = newy;
    break;
      case PathIterator.SEG_CUBICTO:
    newx = coords[4];
    newy = coords[5];
    Curve.insertCubic(curves, curx, cury, coords);
    curx = newx;
    cury = newy;
    break;
      case PathIterator.SEG_CLOSE:
    Curve.insertLine(curves, curx, cury, movx, movy);
    curx = movx;
    cury = movy;
    break;
      }
      pi.next();
  }
  Curve.insertLine(curves, curx, cury, movx, movy);
  AreaOp operator;
  if (windingRule == PathIterator.WIND_EVEN_ODD) {
      operator = new AreaOp.EOWindOp();
  } else {
      operator = new AreaOp.NZWindOp();
  }
  return operator.calculate(curves, EmptyCurves);
    }

    /**
     * Adds the shape of the specified <code>Area</code> to the
     * shape of this <code>Area</code>.
     * The resulting shape of this <code>Area</code> will include
     * the union of both shapes, or all areas that were contained
     * in either this or the specified <code>Area</code>.
     * <pre>
     *     // Example:
     *     Area a1 = new Area([triangle 0,0 =&gt; 8,0 =&gt; 0,8]);
     *     Area a2 = new Area([triangle 0,0 =&gt; 8,0 =&gt; 8,8]);
     *     a1.add(a2);
     *
     *        a1(before)     +         a2         =     a1(after)
     *
     *     ################     ################     ################
     *     ##############         ##############     ################
     *     ############             ############     ################
     *     ##########                 ##########     ################
     *     ########                     ########     ################
     *     ######                         ######     ######    ######
     *     ####                             ####     ####        ####
     *     ##                                 ##     ##            ##
     * </pre>
     * @param   rhs  the <code>Area</code> to be added to the
     *          current shape
     * @throws NullPointerException if <code>rhs</code> is null
     * @since 1.2
     */
    public void add(Area rhs) {
  curves = new AreaOp.AddOp().calculate(this.curves, rhs.curves);
  invalidateBounds();
    }

    /**
     * Subtracts the shape of the specified <code>Area</code> from the
     * shape of this <code>Area</code>.
     * The resulting shape of this <code>Area</code> will include
     * areas that were contained only in this <code>Area</code>
     * and not in the specified <code>Area</code>.
     * <pre>
     *     // Example:
     *     Area a1 = new Area([triangle 0,0 =&gt; 8,0 =&gt; 0,8]);
     *     Area a2 = new Area([triangle 0,0 =&gt; 8,0 =&gt; 8,8]);
     *     a1.subtract(a2);
     *
     *        a1(before)     -         a2         =     a1(after)
     *
     *     ################     ################
     *     ##############         ##############     ##
     *     ############             ############     ####
     *     ##########                 ##########     ######
     *     ########                     ########     ########
     *     ######                         ######     ######
     *     ####                             ####     ####
     *     ##                                 ##     ##
     * </pre>
     * @param   rhs  the <code>Area</code> to be subtracted from the
     *    current shape
     * @throws NullPointerException if <code>rhs</code> is null
     * @since 1.2
     */
    public void subtract(Area rhs) {
  curves = new AreaOp.SubOp().calculate(this.curves, rhs.curves);
  invalidateBounds();
    }

    /**
     * Sets the shape of this <code>Area</code> to the intersection of
     * its current shape and the shape of the specified <code>Area</code>.
     * The resulting shape of this <code>Area</code> will include
     * only areas that were contained in both this <code>Area</code>
     * and also in the specified <code>Area</code>.
     * <pre>
     *     // Example:
     *     Area a1 = new Area([triangle 0,0 =&gt; 8,0 =&gt; 0,8]);
     *     Area a2 = new Area([triangle 0,0 =&gt; 8,0 =&gt; 8,8]);
     *     a1.intersect(a2);
     *
     *      a1(before)   intersect     a2         =     a1(after)
     *
     *     ################     ################     ################
     *     ##############         ##############       ############
     *     ############             ############         ########
     *     ##########                 ##########           ####
     *     ########                     ########
     *     ######                         ######
     *     ####                             ####
     *     ##                                 ##
     * </pre>
     * @param   rhs  the <code>Area</code> to be intersected with this
     *    <code>Area</code>
     * @throws NullPointerException if <code>rhs</code> is null
     * @since 1.2
     */
    public void intersect(Area rhs) {
  curves = new AreaOp.IntOp().calculate(this.curves, rhs.curves);
  invalidateBounds();
    }

    /**
     * Sets the shape of this <code>Area</code> to be the combined area
     * of its current shape and the shape of the specified <code>Area</code>,
     * minus their intersection.
     * The resulting shape of this <code>Area</code> will include
     * only areas that were contained in either this <code>Area</code>
     * or in the specified <code>Area</code>, but not in both.
     * <pre>
     *     // Example:
     *     Area a1 = new Area([triangle 0,0 =&gt; 8,0 =&gt; 0,8]);
     *     Area a2 = new Area([triangle 0,0 =&gt; 8,0 =&gt; 8,8]);
     *     a1.exclusiveOr(a2);
     *
     *        a1(before)    xor        a2         =     a1(after)
     *
     *     ################     ################
     *     ##############         ##############     ##            ##
     *     ############             ############     ####        ####
     *     ##########                 ##########     ######    ######
     *     ########                     ########     ################
     *     ######                         ######     ######    ######
     *     ####                             ####     ####        ####
     *     ##                                 ##     ##            ##
     * </pre>
     * @param   rhs  the <code>Area</code> to be exclusive ORed with this
     *    <code>Area</code>.
     * @throws NullPointerException if <code>rhs</code> is null
     * @since 1.2
     */
    public void exclusiveOr(Area rhs) {
  curves = new AreaOp.XorOp().calculate(this.curves, rhs.curves);
  invalidateBounds();
    }

    /**
     * Removes all of the geometry from this <code>Area</code> and
     * restores it to an empty area.
     * @since 1.2
     */
    public void reset() {
  curves = new Vector();
  invalidateBounds();
    }

    /**
     * Tests whether this <code>Area</code> object encloses any area.
     * @return    <code>true</code> if this <code>Area</code> object
     * represents an empty area; <code>false</code> otherwise.
     * @since 1.2
     */
    public boolean isEmpty() {
  return (curves.size() == 0);
    }

    /**
     * Tests whether this <code>Area</code> consists entirely of
     * straight edged polygonal geometry.
     * @return    <code>true</code> if the geometry of this
     * <code>Area</code> consists entirely of line segments;
     * <code>false</code> otherwise.
     * @since 1.2
     */
    public boolean isPolygonal() {
  Enumeration enum_ = curves.elements();
  while (enum_.hasMoreElements()) {
      if (((Curve) enum_.nextElement()).getOrder() > 1) {
    return false;
      }
  }
  return true;
    }

    /**
     * Tests whether this <code>Area</code> is rectangular in shape.
     * @return    <code>true</code> if the geometry of this
     * <code>Area</code> is rectangular in shape; <code>false</code>
     * otherwise.
     * @since 1.2
     */
    public boolean isRectangular() {
  int size = curves.size();
  if (size == 0) {
      return true;
  }
  if (size > 3) {
      return false;
  }
  Curve c1 = (Curve) curves.get(1);
  Curve c2 = (Curve) curves.get(2);
  if (c1.getOrder() != 1 || c2.getOrder() != 1) {
      return false;
  }
  if (c1.getXTop() != c1.getXBot() || c2.getXTop() != c2.getXBot()) {
      return false;
  }
  if (c1.getYTop() != c2.getYTop() || c1.getYBot() != c2.getYBot()) {
      // One might be able to prove that this is impossible...
      return false;
  }
  return true;
    }

    /**
     * Tests whether this <code>Area</code> is comprised of a single
     * closed subpath.  This method returns <code>true</code> if the
     * path contains 0 or 1 subpaths, or <code>false</code> if the path
     * contains more than 1 subpath.  The subpaths are counted by the
     * number of {@link PathIterator#SEG_MOVETO SEG_MOVETO}  segments
     * that appear in the path.
     * @return    <code>true</code> if the <code>Area</code> is comprised
     * of a single basic geometry; <code>false</code> otherwise.
     * @since 1.2
     */
    public boolean isSingular() {
  if (curves.size() < 3) {
      return true;
  }
  Enumeration enum_ = curves.elements();
  enum_.nextElement(); // First Order0 "moveto"
  while (enum_.hasMoreElements()) {
      if (((Curve) enum_.nextElement()).getOrder() == 0) {
    return false;
      }
  }
  return true;
    }

    private Rectangle2D cachedBounds;
    private void invalidateBounds() {
  cachedBounds = null;
    }
    private Rectangle2D getCachedBounds() {
  if (cachedBounds != null) {
      return cachedBounds;
  }
  Rectangle2D r = new Rectangle2D.Double();
  if (curves.size() > 0) {
      Curve c = (Curve) curves.get(0);
      // First point is always an order 0 curve (moveto)
      r.setRect(c.getX0(), c.getY0(), 0, 0);
      for (int i = 1; i < curves.size(); i++) {
    ((Curve) curves.get(i)).enlarge(r);
      }
  }
  return (cachedBounds = r);
    }

    /**
     * Returns a high precision bounding {@link Rectangle2D} that
     * completely encloses this <code>Area</code>.
     * <p>
     * The Area class will attempt to return the tightest bounding
     * box possible for the Shape.  The bounding box will not be
     * padded to include the control points of curves in the outline
     * of the Shape, but should tightly fit the actual geometry of
     * the outline itself.
     * @return    the bounding <code>Rectangle2D</code> for the
     * <code>Area</code>.
     * @since 1.2
     */
    public Rectangle2D getBounds2D() {
  return getCachedBounds().getBounds2D();
    }

    /**
     * Returns a bounding {@link Rectangle} that completely encloses
     * this <code>Area</code>.
     * <p>
     * The Area class will attempt to return the tightest bounding
     * box possible for the Shape.  The bounding box will not be
     * padded to include the control points of curves in the outline
     * of the Shape, but should tightly fit the actual geometry of
     * the outline itself.  Since the returned object represents
     * the bounding box with integers, the bounding box can only be
     * as tight as the nearest integer coordinates that encompass
     * the geometry of the Shape.
     * @return    the bounding <code>Rectangle</code> for the
     * <code>Area</code>.
     * @since 1.2
     */
    public Rectangle getBounds() {
  return getCachedBounds().getBounds();
    }

    /**
     * Returns an exact copy of this <code>Area</code> object.
     * @return    Created clone object
     * @since 1.2
     */
    public Object clone() {
  return new Area(this);
    }

    /**
     * Tests whether the geometries of the two <code>Area</code> objects
     * are equal.
     * This method will return false if the argument is null.
     * @param   other  the <code>Area</code> to be compared to this
     *    <code>Area</code>
     * @return  <code>true</code> if the two geometries are equal;
     *    <code>false</code> otherwise.
     * @since 1.2
     */
    public boolean equals(Area other) {
  // REMIND: A *much* simpler operation should be possible...
  // Should be able to do a curve-wise comparison since all Areas
  // should evaluate their curves in the same top-down order.
  if (other == this) {
      return true;
  }
  if (other == null) {
      return false;
  }
  Vector c = new AreaOp.XorOp().calculate(this.curves, other.curves);
  return c.isEmpty();
    }

    /**
     * Transforms the geometry of this <code>Area</code> using the specified
     * {@link AffineTransform}.  The geometry is transformed in place, which
     * permanently changes the enclosed area defined by this object.
     * @param t  the transformation used to transform the area
     * @throws NullPointerException if <code>t</code> is null
     * @since 1.2
     */
    public void transform(AffineTransform t) {
        if (t == null) {
            throw new NullPointerException("transform must not be null");
        }
  // REMIND: A simpler operation can be performed for some types
  // of transform.
        curves = pathToCurves(getPathIterator(t));
  invalidateBounds();
    }

    /**
     * Creates a new <code>Area</code> object that contains the same
     * geometry as this <code>Area</code> transformed by the specified
     * <code>AffineTransform</code>.  This <code>Area</code> object
     * is unchanged.
     * @param t  the specified <code>AffineTransform</code> used to transform
     *           the new <code>Area</code>
     * @throws NullPointerException if <code>t</code> is null
     * @return   a new <code>Area</code> object representing the transformed
     *           geometry.
     * @since 1.2
     */
    public Area createTransformedArea(AffineTransform t) {
        Area a = new Area(this);
        a.transform(t);
        return a;
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean contains(double x, double y) {
  if (!getCachedBounds().contains(x, y)) {
      return false;
  }
  Enumeration enum_ = curves.elements();
  int crossings = 0;
  while (enum_.hasMoreElements()) {
      Curve c = (Curve) enum_.nextElement();
      crossings += c.crossingsFor(x, y);
  }
  return ((crossings & 1) == 1);
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean contains(Point2D p) {
  return contains(p.getX(), p.getY());
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean contains(double x, double y, double w, double h) {
  if (w < 0 || h < 0) {
      return false;
  }
  if (!getCachedBounds().contains(x, y, w, h)) {
      return false;
  }
  Crossings c = Crossings.findCrossings(curves, x, y, x+w, y+h);
  return (c != null && c.covers(y, y+h));
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean contains(Rectangle2D r) {
  return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean intersects(double x, double y, double w, double h) {
  if (w < 0 || h < 0) {
      return false;
  }
  if (!getCachedBounds().intersects(x, y, w, h)) {
      return false;
  }
  Crossings c = Crossings.findCrossings(curves, x, y, x+w, y+h);
  return (c == null || !c.isEmpty());
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean intersects(Rectangle2D r) {
  return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
    }

    /**
     * Creates a {@link PathIterator} for the outline of this
     * <code>Area</code> object.  This <code>Area</code> object is unchanged.
     * @param at an optional <code>AffineTransform</code> to be applied to
     * the coordinates as they are returned in the iteration, or
     * <code>null</code> if untransformed coordinates are desired
     * @return    the <code>PathIterator</code> object that returns the
     *    geometry of the outline of this <code>Area</code>, one
     *    segment at a time.
     * @since 1.2
     */
    public PathIterator getPathIterator(AffineTransform at) {
  return new AreaIterator(curves, at);
    }

    /**
     * Creates a <code>PathIterator</code> for the flattened outline of
     * this <code>Area</code> object.  Only uncurved path segments
     * represented by the SEG_MOVETO, SEG_LINETO, and SEG_CLOSE point
     * types are returned by the iterator.  This <code>Area</code>
     * object is unchanged.
     * @param at an optional <code>AffineTransform</code> to be
     * applied to the coordinates as they are returned in the
     * iteration, or <code>null</code> if untransformed coordinates
     * are desired
     * @param flatness the maximum amount that the control points
     * for a given curve can vary from colinear before a subdivided
     * curve is replaced by a straight line connecting the end points
     * @return    the <code>PathIterator</code> object that returns the
     * geometry of the outline of this <code>Area</code>, one segment
     * at a time.
     * @since 1.2
     */
    public PathIterator getPathIterator(AffineTransform at, double flatness) {
  return new FlatteningPathIterator(getPathIterator(at), flatness);
    }
}

class AreaIterator implements PathIterator {
    private AffineTransform transform;
    private Vector curves;
    private int index;
    private Curve prevcurve;
    private Curve thiscurve;

    public AreaIterator(Vector curves, AffineTransform at) {
  this.curves = curves;
  this.transform = at;
  if (curves.size() >= 1) {
      thiscurve = (Curve) curves.get(0);
  }
    }

    public int getWindingRule() {
  // REMIND: Which is better, EVEN_ODD or NON_ZERO?
  //         The paths calculated could be classified either way.
  //return WIND_EVEN_ODD;
  return WIND_NON_ZERO;
    }

    public boolean isDone() {
  return (prevcurve == null && thiscurve == null);
    }

    public void next() {
  if (prevcurve != null) {
      prevcurve = null;
  } else {
      prevcurve = thiscurve;
      index++;
      if (index < curves.size()) {
    thiscurve = (Curve) curves.get(index);
    if (thiscurve.getOrder() != 0 &&
        prevcurve.getX1() == thiscurve.getX0() &&
        prevcurve.getY1() == thiscurve.getY0())
    {
        prevcurve = null;
    }
      } else {
    thiscurve = null;
      }
  }
    }

    public int currentSegment(float coords[]) {
  double dcoords[] = new double[6];
  int segtype = currentSegment(dcoords);
  int numpoints = (segtype == SEG_CLOSE ? 0
       : (segtype == SEG_QUADTO ? 2
          : (segtype == SEG_CUBICTO ? 3
             : 1)));
  for (int i = 0; i < numpoints * 2; i++) {
      coords[i] = (float) dcoords[i];
  }
  return segtype;
    }

    public int currentSegment(double coords[]) {
  int segtype;
  int numpoints;
  if (prevcurve != null) {
      // Need to finish off junction between curves
      if (thiscurve == null || thiscurve.getOrder() == 0) {
    return SEG_CLOSE;
      }
      coords[0] = thiscurve.getX0();
      coords[1] = thiscurve.getY0();
      segtype = SEG_LINETO;
      numpoints = 1;
  } else if (thiscurve == null) {
      throw new NoSuchElementException("area iterator out of bounds");
  } else {
      segtype = thiscurve.getSegment(coords);
      numpoints = thiscurve.getOrder();
      if (numpoints == 0) {
    numpoints = 1;
      }
  }
  if (transform != null) {
      transform.transform(coords, 0, coords, 0, numpoints);
  }
  return segtype;
    }
}
TOP

Related Classes of java.awt.geom.AreaIterator

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.