Package utils

Source Code of utils.PermutationGenerator

/*
* Copyright 2003-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package utils;

import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Iterator;
import java.util.List;

import org.junit.Test;

/**
* From Groovy: Systematically generate permutations.
*
* Adapted from Java Code by Michael Gilleland (released with no restrictions)
* using an algorithm described here: Kenneth H. Rosen, Discrete Mathematics and
* Its Applications, 2nd edition (NY: McGraw-Hill, 1991), pp. 282-284
*/
public class PermutationGenerator<E> implements Iterator<List<E>> {
  private int[] a;
  private BigInteger numLeft;

  public BigInteger getNumLeft() {
    return numLeft;
  }

  private BigInteger total;
  private List<E> items;

  /**
   * WARNING: Don't make n too large. Recall that the number of permutations
   * is n! which can be very large, even when n is as small as 20 -- 20! =
   * 2,432,902,008,176,640,000 and 21! is too big to fit into a Java long,
   * which is why we use BigInteger instead.
   *
   * @param items
   *            the items to permute
   */
  public PermutationGenerator(Collection<E> items) {
    this.items = new ArrayList<E>(items);
    int n = items.size();
    if (n < 1) {
      throw new IllegalArgumentException("At least one item required");
    }
    a = new int[n];
    total = getFactorial(n);
    reset();
  }

  public void reset() {
    for (int i = 0; i < a.length; i++) {
      a[i] = i;
    }
    numLeft = new BigInteger(total.toString());
  }

  public BigInteger getTotal() {
    return total;
  }

  public boolean hasNext() {
    return numLeft.compareTo(BigInteger.ZERO) == 1;
  }

  /**
   * Compute factorial (TODO: expose this)
   *
   * @param n
   *            the input integer
   * @return the factorial for n
   */
  private static BigInteger getFactorial(int n) {
    BigInteger fact = BigInteger.ONE;
    for (int i = n; i > 1; i--) {
      fact = fact.multiply(new BigInteger(Integer.toString(i)));
    }
    return fact;
  }

  /**
   * Generate next permutation (algorithm from Rosen p. 284)
   *
   * @return the items permuted
   */
  public List<E> next() {
    if (numLeft.equals(total)) {
      numLeft = numLeft.subtract(BigInteger.ONE);
      return items;
    }

    int temp;

    // Find largest index j with a[j] < a[j+1]
    int j = a.length - 2;
    while (a[j] > a[j + 1]) {
      j--;
    }

    // Find index k such that a[k] is smallest integer
    // greater than a[j] to the right of a[j]
    int k = a.length - 1;
    while (a[j] > a[k]) {
      k--;
    }

    // Interchange a[j] and a[k]
    temp = a[k];
    a[k] = a[j];
    a[j] = temp;

    // Put tail end of permutation after jth position in increasing order
    int r = a.length - 1;
    int s = j + 1;

    while (r > s) {
      temp = a[s];
      a[s] = a[r];
      a[r] = temp;
      r--;
      s++;
    }

    numLeft = numLeft.subtract(BigInteger.ONE);
    List<E> ans = new ArrayList<E>(a.length);
    for (int index : a) {
      ans.add(items.get(index));
    }
    return ans;
  }

  public void remove() {
    throw new UnsupportedOperationException("remove() not allowed for PermutationGenerator");
  }

  /**
   * he total number of combinations of n objects taken k at a time, denoted
   * nCk, is given by
   *
   * n! / (k! * (n - k)!),
   *
   * or n * (n-1) * (n-2)... (n - (k - 1)) / k!
   *
   * @param n
   *            totalSize
   * @param k
   *            comboSize
   * @return
   * @author bran
   */
  public static BigInteger getCombinationsCount(int n, int k) {
    BigInteger bn = getFactorial(n, k);
    BigInteger bk = getFactorial(k);
    BigInteger divide = bn.divide(bk);
    return divide;
  }

  /**
   * take any mutations of length k from n: formula: n!/(n-k)!
   * @param n
   * @param k
   * @return
   */
  public static BigInteger getPermuationCount(int n, int k) {
    BigInteger bn = getFactorial(n);
    BigInteger bk = getFactorial(n - k);
    BigInteger divide = bn.divide(bk);
    return divide;
  }
 
  /**
   * calc   n(n-1)(n-2)... (n - (k - 1))
   * @param n
   * @param k
   * @return
   */
  private static BigInteger getFactorial(int n, int k) {
    if (k > n)
      return null;
    BigInteger fact = BigInteger.ONE;
    for (int i = n, j = 0; j < k; i--, j++) {
      fact = fact.multiply(new BigInteger(Integer.toString(i)));
    }
    return fact;
  }

}
TOP

Related Classes of utils.PermutationGenerator

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.