/*
* Encog(tm) Examples v3.0 - Java Version
* http://www.heatonresearch.com/encog/
* http://code.google.com/p/encog-java/
* Copyright 2008-2011 Heaton Research, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* For more information on Heaton Research copyrights, licenses
* and trademarks visit:
* http://www.heatonresearch.com/copyright
*/
package org.encog.examples.neural.resume;
import java.io.File;
import java.util.Arrays;
import org.encog.ml.data.MLDataSet;
import org.encog.ml.data.basic.BasicMLDataSet;
import org.encog.ml.train.strategy.RequiredImprovementStrategy;
import org.encog.neural.networks.BasicNetwork;
import org.encog.neural.networks.training.propagation.TrainingContinuation;
import org.encog.neural.networks.training.propagation.resilient.ResilientPropagation;
import org.encog.util.obj.SerializeObject;
import org.encog.util.simple.EncogUtility;
public class TrainResume {
public static double XOR_INPUT[][] = { { 0.0, 0.0 }, { 1.0, 0.0 },
{ 0.0, 1.0 }, { 1.0, 1.0 } };
public static double XOR_IDEAL[][] = { { 0.0 }, { 1.0 }, { 1.0 }, { 0.0 } };
public static void main(String[] args)
{
MLDataSet trainingSet = new BasicMLDataSet(XOR_INPUT, XOR_IDEAL);
BasicNetwork network = EncogUtility.simpleFeedForward(2, 4, 0, 1, false);
ResilientPropagation train = new ResilientPropagation(network, trainingSet);
train.addStrategy(new RequiredImprovementStrategy(5));
System.out.println("Perform initial train.");
EncogUtility.trainToError(train,0.01);
TrainingContinuation cont = train.pause();
System.out.println(Arrays.toString((double[])cont.getContents().get(ResilientPropagation.LAST_GRADIENTS)));
System.out.println(Arrays.toString((double[])cont.getContents().get(ResilientPropagation.UPDATE_VALUES)));
try
{
cont = (TrainingContinuation)SerializeObject.load(new File("resume.ser"));
}
catch(Exception ex)
{
ex.printStackTrace();
}
System.out.println("Now trying a second train, with continue from the first. Should stop after one iteration");
ResilientPropagation train2 = new ResilientPropagation(network, trainingSet);
train2.resume(cont);
EncogUtility.trainToError(train2,0.01);
}
}