/*
* Encog(tm) Examples v3.0 - Java Version
* http://www.heatonresearch.com/encog/
* http://code.google.com/p/encog-java/
* Copyright 2008-2011 Heaton Research, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* For more information on Heaton Research copyrights, licenses
* and trademarks visit:
* http://www.heatonresearch.com/copyright
*/
package org.encog.examples.neural.persist;
import java.io.File;
import org.encog.ml.data.MLDataSet;
import org.encog.ml.data.basic.BasicMLDataSet;
import org.encog.ml.train.MLTrain;
import org.encog.neural.networks.BasicNetwork;
import org.encog.neural.networks.layers.BasicLayer;
import org.encog.neural.networks.training.propagation.resilient.ResilientPropagation;
import org.encog.persist.EncogDirectoryPersistence;
public class EncogPersistence {
public static final String FILENAME = "encogexample.eg";
public static double XOR_INPUT[][] = { { 0.0, 0.0 }, { 1.0, 0.0 },
{ 0.0, 1.0 }, { 1.0, 1.0 } };
public static double XOR_IDEAL[][] = { { 0.0 }, { 1.0 }, { 1.0 }, { 0.0 } };
public void trainAndSave() {
System.out.println("Training XOR network to under 1% error rate.");
BasicNetwork network = new BasicNetwork();
network.addLayer(new BasicLayer(2));
network.addLayer(new BasicLayer(2));
network.addLayer(new BasicLayer(1));
network.getStructure().finalizeStructure();
network.reset();
MLDataSet trainingSet = new BasicMLDataSet(XOR_INPUT, XOR_IDEAL);
// train the neural network
final MLTrain train = new ResilientPropagation(network, trainingSet);
do {
train.iteration();
} while (train.getError() > 0.009);
double e = network.calculateError(trainingSet);
System.out.println("Network traiined to error: " + e);
System.out.println("Saving network");
EncogDirectoryPersistence.saveObject(new File(FILENAME), network);
}
public void loadAndEvaluate() {
System.out.println("Loading network");
BasicNetwork network = (BasicNetwork)EncogDirectoryPersistence.loadObject(new File(FILENAME));
MLDataSet trainingSet = new BasicMLDataSet(XOR_INPUT, XOR_IDEAL);
double e = network.calculateError(trainingSet);
System.out
.println("Loaded network's error is(should be same as above): "
+ e);
}
public static void main(String[] args) {
try {
EncogPersistence program = new EncogPersistence();
program.trainAndSave();
program.loadAndEvaluate();
} catch (Throwable t) {
t.printStackTrace();
}
}
}