Package org.aspectj.weaver

Source Code of org.aspectj.weaver.ResolvedType

/* *******************************************************************
* Copyright (c) 2002 Palo Alto Research Center, Incorporated (PARC).
* All rights reserved.
* This program and the accompanying materials are made available
* under the terms of the Eclipse Public License v1.0
* which accompanies this distribution and is available at
* http://www.eclipse.org/legal/epl-v10.html
* Contributors:
*     PARC     initial implementation
*     Alexandre Vasseur    @AspectJ ITDs
* ******************************************************************/

package org.aspectj.weaver;

import java.lang.reflect.Modifier;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Queue;
import java.util.Set;

import org.aspectj.bridge.IMessage;
import org.aspectj.bridge.ISourceLocation;
import org.aspectj.bridge.Message;
import org.aspectj.bridge.MessageUtil;
import org.aspectj.util.FuzzyBoolean;
import org.aspectj.weaver.AjAttribute.WeaverVersionInfo;
import org.aspectj.weaver.Iterators.Getter;
import org.aspectj.weaver.patterns.Declare;
import org.aspectj.weaver.patterns.PerClause;

public abstract class ResolvedType extends UnresolvedType implements AnnotatedElement {

  public static final ResolvedType[] EMPTY_RESOLVED_TYPE_ARRAY = new ResolvedType[0];
  public static final String PARAMETERIZED_TYPE_IDENTIFIER = "P";

  // Set temporarily during a type pattern match call - this currently used to hold the
  // annotations that may be attached to a type when it used as a parameter
  public ResolvedType[] temporaryAnnotationTypes;
  private ResolvedType[] resolvedTypeParams;
  private String binaryPath;

  protected World world;

  private int bits;

  private static int AnnotationBitsInitialized = 0x0001;
  private static int AnnotationMarkedInherited = 0x0002;
  private static int MungersAnalyzed = 0x0004;
  private static int HasParentMunger = 0x0008;
  private static int TypeHierarchyCompleteBit = 0x0010;

  protected ResolvedType(String signature, World world) {
    super(signature);
    this.world = world;
  }

  protected ResolvedType(String signature, String signatureErasure, World world) {
    super(signature, signatureErasure);
    this.world = world;
  }

  /**
   * Returns an iterator through ResolvedType objects representing all the direct supertypes of this type. That is, through the
   * superclass, if any, and all declared interfaces.
   */
  public final Iterator<ResolvedType> getDirectSupertypes() {
    Iterator<ResolvedType> interfacesIterator = Iterators.array(getDeclaredInterfaces());
    ResolvedType superclass = getSuperclass();
    if (superclass == null) {
      return interfacesIterator;
    } else {
      return Iterators.snoc(interfacesIterator, superclass);
    }
  }

  public abstract ResolvedMember[] getDeclaredFields();

  public abstract ResolvedMember[] getDeclaredMethods();

  public abstract ResolvedType[] getDeclaredInterfaces();

  public abstract ResolvedMember[] getDeclaredPointcuts();

  public boolean isCacheable() {
    return true;
  }

  /**
   * @return the superclass of this type, or null (if this represents a jlObject, primitive, or void)
   */
  public abstract ResolvedType getSuperclass();

  public abstract int getModifiers();

  // return true if this resolved type couldn't be found (but we know it's name maybe)
  public boolean isMissing() {
    return false;
  }

  // FIXME asc I wonder if in some circumstances MissingWithKnownSignature
  // should not be considered
  // 'really' missing as some code can continue based solely on the signature
  public static boolean isMissing(UnresolvedType unresolved) {
    if (unresolved instanceof ResolvedType) {
      ResolvedType resolved = (ResolvedType) unresolved;
      return resolved.isMissing();
    } else {
      return (unresolved == MISSING);
    }
  }

  public ResolvedType[] getAnnotationTypes() {
    return EMPTY_RESOLVED_TYPE_ARRAY;
  }

  public AnnotationAJ getAnnotationOfType(UnresolvedType ofType) {
    return null;
  }

  // public final UnresolvedType getSuperclass(World world) {
  // return getSuperclass();
  // }

  // This set contains pairs of types whose signatures are concatenated
  // together, this means with a fast lookup we can tell if two types
  // are equivalent.
  protected static Set<String> validBoxing = new HashSet<String>();

  static {
    validBoxing.add("Ljava/lang/Byte;B");
    validBoxing.add("Ljava/lang/Character;C");
    validBoxing.add("Ljava/lang/Double;D");
    validBoxing.add("Ljava/lang/Float;F");
    validBoxing.add("Ljava/lang/Integer;I");
    validBoxing.add("Ljava/lang/Long;J");
    validBoxing.add("Ljava/lang/Short;S");
    validBoxing.add("Ljava/lang/Boolean;Z");
    validBoxing.add("BLjava/lang/Byte;");
    validBoxing.add("CLjava/lang/Character;");
    validBoxing.add("DLjava/lang/Double;");
    validBoxing.add("FLjava/lang/Float;");
    validBoxing.add("ILjava/lang/Integer;");
    validBoxing.add("JLjava/lang/Long;");
    validBoxing.add("SLjava/lang/Short;");
    validBoxing.add("ZLjava/lang/Boolean;");
  }

  // utilities
  public ResolvedType getResolvedComponentType() {
    return null;
  }

  public World getWorld() {
    return world;
  }

  // ---- things from object

  @Override
  public final boolean equals(Object other) {
    if (other instanceof ResolvedType) {
      return this == other;
    } else {
      return super.equals(other);
    }
  }

  // ---- difficult things

  /**
   * returns an iterator through all of the fields of this type, in order for checking from JVM spec 2ed 5.4.3.2. This means that
   * the order is
   * <p/>
   * <ul>
   * <li>fields from current class</li>
   * <li>recur into direct superinterfaces</li>
   * <li>recur into superclass</li>
   * </ul>
   * <p/>
   * We keep a hashSet of interfaces that we've visited so we don't spiral out into 2^n land.
   */
  public Iterator<ResolvedMember> getFields() {
    final Iterators.Filter<ResolvedType> dupFilter = Iterators.dupFilter();
    Iterators.Getter<ResolvedType, ResolvedType> typeGetter = new Iterators.Getter<ResolvedType, ResolvedType>() {
      public Iterator<ResolvedType> get(ResolvedType o) {
        return dupFilter.filter(o.getDirectSupertypes());
      }
    };
    return Iterators.mapOver(Iterators.recur(this, typeGetter), FieldGetterInstance);
  }

  /**
   * returns an iterator through all of the methods of this type, in order for checking from JVM spec 2ed 5.4.3.3. This means that
   * the order is
   * <p/>
   * <ul>
   * <li>methods from current class</li>
   * <li>recur into superclass, all the way up, not touching interfaces</li>
   * <li>recur into all superinterfaces, in some unspecified order (but those 'closest' to this type are first)</li>
   * </ul>
   * <p/>
   *
   * @param wantGenerics is true if the caller would like all generics information, otherwise those methods are collapsed to their
   *        erasure
   */
  public Iterator<ResolvedMember> getMethods(boolean wantGenerics, boolean wantDeclaredParents) {
    return Iterators.mapOver(getHierarchy(wantGenerics, wantDeclaredParents), MethodGetterInstance);
  }

  public Iterator<ResolvedMember> getMethodsIncludingIntertypeDeclarations(boolean wantGenerics, boolean wantDeclaredParents) {
    return Iterators.mapOver(getHierarchy(wantGenerics, wantDeclaredParents), MethodGetterWithItdsInstance);
  }

  /**
   * An Iterators.Getter that returns an iterator over all methods declared on some resolved type.
   */
  private static class MethodGetter implements Iterators.Getter<ResolvedType, ResolvedMember> {
    public Iterator<ResolvedMember> get(ResolvedType type) {
      return Iterators.array(type.getDeclaredMethods());
    }
  }

  /**
   * An Iterators.Getter that returns an iterator over all pointcuts declared on some resolved type.
   */
  private static class PointcutGetter implements Iterators.Getter<ResolvedType, ResolvedMember> {
    public Iterator<ResolvedMember> get(ResolvedType o) {
      return Iterators.array(o.getDeclaredPointcuts());
    }
  }

  // OPTIMIZE could cache the result of discovering ITDs

  // Getter that returns all declared methods for a type through an iterator - including intertype declarations
  private static class MethodGetterIncludingItds implements Iterators.Getter<ResolvedType, ResolvedMember> {
    public Iterator<ResolvedMember> get(ResolvedType type) {
      ResolvedMember[] methods = type.getDeclaredMethods();
      if (type.interTypeMungers != null) {
        int additional = 0;
        for (ConcreteTypeMunger typeTransformer : type.interTypeMungers) {
          ResolvedMember rm = typeTransformer.getSignature();
          // BUG won't this include fields? When we are looking for methods
          if (rm != null) { // new parent type munger can have null signature
            additional++;
          }
        }
        if (additional > 0) {
          ResolvedMember[] methods2 = new ResolvedMember[methods.length + additional];
          System.arraycopy(methods, 0, methods2, 0, methods.length);
          additional = methods.length;
          for (ConcreteTypeMunger typeTransformer : type.interTypeMungers) {
            ResolvedMember rm = typeTransformer.getSignature();
            if (rm != null) { // new parent type munger can have null signature
              methods2[additional++] = typeTransformer.getSignature();
            }
          }
          methods = methods2;
        }
      }
      return Iterators.array(methods);
    }
  }

  /**
   * An Iterators.Getter that returns an iterator over all fields declared on some resolved type.
   */
  private static class FieldGetter implements Iterators.Getter<ResolvedType, ResolvedMember> {
    public Iterator<ResolvedMember> get(ResolvedType type) {
      return Iterators.array(type.getDeclaredFields());
    }
  }

  private final static MethodGetter MethodGetterInstance = new MethodGetter();
  private final static MethodGetterIncludingItds MethodGetterWithItdsInstance = new MethodGetterIncludingItds();
  private final static PointcutGetter PointcutGetterInstance = new PointcutGetter();
  private final static FieldGetter FieldGetterInstance = new FieldGetter();

  /**
   * Return an iterator over the types in this types hierarchy - starting with this type first, then all superclasses up to Object
   * and then all interfaces (starting with those 'nearest' this type).
   *
   * @param wantGenerics true if the caller wants full generic information
   * @param wantDeclaredParents true if the caller even wants those parents introduced via declare parents
   * @return an iterator over all types in the hierarchy of this type
   */
  public Iterator<ResolvedType> getHierarchy() {
    return getHierarchy(false, false);
  }

  public Iterator<ResolvedType> getHierarchy(final boolean wantGenerics, final boolean wantDeclaredParents) {

    final Iterators.Getter<ResolvedType, ResolvedType> interfaceGetter = new Iterators.Getter<ResolvedType, ResolvedType>() {
      List<String> alreadySeen = new ArrayList<String>(); // Strings are signatures (ResolvedType.getSignature())

      public Iterator<ResolvedType> get(ResolvedType type) {
        ResolvedType[] interfaces = type.getDeclaredInterfaces();

        // remove interfaces introduced by declare parents
        // relatively expensive but hopefully uncommon
        if (!wantDeclaredParents && type.hasNewParentMungers()) {
          // Throw away interfaces from that array if they were decp'd onto here
          List<Integer> forRemoval = new ArrayList<Integer>();
          for (ConcreteTypeMunger munger : type.interTypeMungers) {
            if (munger.getMunger() != null) {
              ResolvedTypeMunger m = munger.getMunger();
              if (m.getKind() == ResolvedTypeMunger.Parent) {
                ResolvedType newType = ((NewParentTypeMunger) m).getNewParent();
                if (!wantGenerics && newType.isParameterizedOrGenericType()) {
                  newType = newType.getRawType();
                }
                for (int ii = 0; ii < interfaces.length; ii++) {
                  ResolvedType iface = interfaces[ii];
                  if (!wantGenerics && iface.isParameterizedOrGenericType()) {
                    iface = iface.getRawType();
                  }
                  if (newType.getSignature().equals(iface.getSignature())) { // pr171953
                    forRemoval.add(ii);
                  }
                }
              }
            }
          }
          // Found some to remove from those we are going to iterate over
          if (forRemoval.size() > 0) {
            ResolvedType[] interfaces2 = new ResolvedType[interfaces.length - forRemoval.size()];
            int p = 0;
            for (int ii = 0; ii < interfaces.length; ii++) {
              if (!forRemoval.contains(ii)) {
                interfaces2[p++] = interfaces[ii];
              }
            }
            interfaces = interfaces2;
          }
        }
        return new Iterators.ResolvedTypeArrayIterator(interfaces, alreadySeen, wantGenerics);
      }
    };

    // If this type is an interface, there are only interfaces to walk
    if (this.isInterface()) {
      return new SuperInterfaceWalker(interfaceGetter, this);
    } else {
      SuperInterfaceWalker superInterfaceWalker = new SuperInterfaceWalker(interfaceGetter);
      Iterator<ResolvedType> superClassesIterator = new SuperClassWalker(this, superInterfaceWalker, wantGenerics);
      // append() will check if the second iterator is empty before appending - but the types which the superInterfaceWalker
      // needs to visit are only accumulated whilst the superClassesIterator is in progress
      return Iterators.append1(superClassesIterator, superInterfaceWalker);
    }
  }

  /**
   * Return a list of methods, first those declared on this class, then those declared on the superclass (recurse) and then those
   * declared on the superinterfaces. This is expensive - use the getMethods() method if you can!
   */
  public List<ResolvedMember> getMethodsWithoutIterator(boolean includeITDs, boolean allowMissing, boolean genericsAware) {
    List<ResolvedMember> methods = new ArrayList<ResolvedMember>();
    Set<String> knowninterfaces = new HashSet<String>();
    addAndRecurse(knowninterfaces, methods, this, includeITDs, allowMissing, genericsAware);
    return methods;
  }

  /**
   * Return a list of the types in the hierarchy of this type, starting with this type. The order in the list is the superclasses
   * followed by the super interfaces.
   *
   * @param genericsAware should the list include parameterized/generic types (if not, they will be collapsed to raw)?
   * @return list of resolvedtypes in this types hierarchy, including this type first
   */
  public List<ResolvedType> getHierarchyWithoutIterator(boolean includeITDs, boolean allowMissing, boolean genericsAware) {
    List<ResolvedType> types = new ArrayList<ResolvedType>();
    Set<String> visited = new HashSet<String>();
    recurseHierarchy(visited, types, this, includeITDs, allowMissing, genericsAware);
    return types;
  }

  private void addAndRecurse(Set<String> knowninterfaces, List<ResolvedMember> collector, ResolvedType resolvedType,
      boolean includeITDs, boolean allowMissing, boolean genericsAware) {
    // Add the methods declared on this type
    collector.addAll(Arrays.asList(resolvedType.getDeclaredMethods()));
    // now add all the inter-typed members too
    if (includeITDs && resolvedType.interTypeMungers != null) {
      for (ConcreteTypeMunger typeTransformer : interTypeMungers) {
        ResolvedMember rm = typeTransformer.getSignature();
        if (rm != null) { // new parent type munger can have null signature
          collector.add(typeTransformer.getSignature());
        }
      }
    }
    // BUG? interface type superclass is Object - is that correct?
    if (!resolvedType.isInterface() && !resolvedType.equals(ResolvedType.OBJECT)) {
      ResolvedType superType = resolvedType.getSuperclass();
      if (superType != null && !superType.isMissing()) {
        if (!genericsAware && superType.isParameterizedOrGenericType()) {
          superType = superType.getRawType();
        }
        // Recurse if we are not at the top
        addAndRecurse(knowninterfaces, collector, superType, includeITDs, allowMissing, genericsAware);
      }
    }
    // Go through the interfaces on the way back down
    ResolvedType[] interfaces = resolvedType.getDeclaredInterfaces();
    for (int i = 0; i < interfaces.length; i++) {
      ResolvedType iface = interfaces[i];
      if (!genericsAware && iface.isParameterizedOrGenericType()) {
        iface = iface.getRawType();
      }
      // we need to know if it is an interface from Parent kind munger
      // as those are used for @AJ ITD and we precisely want to skip those
      boolean shouldSkip = false;
      for (int j = 0; j < resolvedType.interTypeMungers.size(); j++) {
        ConcreteTypeMunger munger = resolvedType.interTypeMungers.get(j);
        if (munger.getMunger() != null && munger.getMunger().getKind() == ResolvedTypeMunger.Parent
            && ((NewParentTypeMunger) munger.getMunger()).getNewParent().equals(iface) // pr171953
        ) {
          shouldSkip = true;
          break;
        }
      }

      // Do not do interfaces more than once
      if (!shouldSkip && !knowninterfaces.contains(iface.getSignature())) {
        knowninterfaces.add(iface.getSignature());
        if (allowMissing && iface.isMissing()) {
          if (iface instanceof MissingResolvedTypeWithKnownSignature) {
            ((MissingResolvedTypeWithKnownSignature) iface).raiseWarningOnMissingInterfaceWhilstFindingMethods();
          }
        } else {
          addAndRecurse(knowninterfaces, collector, iface, includeITDs, allowMissing, genericsAware);
        }
      }
    }
  }

  /**
   * Recurse up a type hierarchy, first the superclasses then the super interfaces.
   */
  private void recurseHierarchy(Set<String> knowninterfaces, List<ResolvedType> collector, ResolvedType resolvedType,
      boolean includeITDs, boolean allowMissing, boolean genericsAware) {
    collector.add(resolvedType);
    if (!resolvedType.isInterface() && !resolvedType.equals(ResolvedType.OBJECT)) {
      ResolvedType superType = resolvedType.getSuperclass();
      if (superType != null && !superType.isMissing()) {
        if (!genericsAware && (superType.isParameterizedType() || superType.isGenericType())) {
          superType = superType.getRawType();
        }
        // Recurse if we are not at the top
        recurseHierarchy(knowninterfaces, collector, superType, includeITDs, allowMissing, genericsAware);
      }
    }
    // Go through the interfaces on the way back down
    ResolvedType[] interfaces = resolvedType.getDeclaredInterfaces();
    for (int i = 0; i < interfaces.length; i++) {
      ResolvedType iface = interfaces[i];
      if (!genericsAware && (iface.isParameterizedType() || iface.isGenericType())) {
        iface = iface.getRawType();
      }
      // we need to know if it is an interface from Parent kind munger
      // as those are used for @AJ ITD and we precisely want to skip those
      boolean shouldSkip = false;
      for (int j = 0; j < resolvedType.interTypeMungers.size(); j++) {
        ConcreteTypeMunger munger = resolvedType.interTypeMungers.get(j);
        if (munger.getMunger() != null && munger.getMunger().getKind() == ResolvedTypeMunger.Parent
            && ((NewParentTypeMunger) munger.getMunger()).getNewParent().equals(iface) // pr171953
        ) {
          shouldSkip = true;
          break;
        }
      }

      // Do not do interfaces more than once
      if (!shouldSkip && !knowninterfaces.contains(iface.getSignature())) {
        knowninterfaces.add(iface.getSignature());
        if (allowMissing && iface.isMissing()) {
          if (iface instanceof MissingResolvedTypeWithKnownSignature) {
            ((MissingResolvedTypeWithKnownSignature) iface).raiseWarningOnMissingInterfaceWhilstFindingMethods();
          }
        } else {
          recurseHierarchy(knowninterfaces, collector, iface, includeITDs, allowMissing, genericsAware);
        }
      }
    }
  }

  public ResolvedType[] getResolvedTypeParameters() {
    if (resolvedTypeParams == null) {
      resolvedTypeParams = world.resolve(typeParameters);
    }
    return resolvedTypeParams;
  }

  /**
   * described in JVM spec 2ed 5.4.3.2
   */
  public ResolvedMember lookupField(Member field) {
    Iterator<ResolvedMember> i = getFields();
    while (i.hasNext()) {
      ResolvedMember resolvedMember = i.next();
      if (matches(resolvedMember, field)) {
        return resolvedMember;
      }
      if (resolvedMember.hasBackingGenericMember() && field.getName().equals(resolvedMember.getName())) {
        // might be worth checking the member behind the parameterized member (see pr137496)
        if (matches(resolvedMember.getBackingGenericMember(), field)) {
          return resolvedMember;
        }
      }
    }
    return null;
  }

  /**
   * described in JVM spec 2ed 5.4.3.3. Doesnt check ITDs.
   *
   * <p>
   * Check the current type for the method. If it is not found, check the super class and any super interfaces. Taking care not to
   * process interfaces multiple times.
   */
  public ResolvedMember lookupMethod(Member m) {
    List<ResolvedType> typesTolookat = new ArrayList<ResolvedType>();
    typesTolookat.add(this);
    int pos = 0;
    while (pos < typesTolookat.size()) {
      ResolvedType type = typesTolookat.get(pos++);
      if (!type.isMissing()) {
        ResolvedMember[] methods = type.getDeclaredMethods();
        if (methods != null) {
          for (int i = 0; i < methods.length; i++) {
            ResolvedMember method = methods[i];
            if (matches(method, m)) {
              return method;
            }
            // might be worth checking the method behind the parameterized method (137496)
            if (method.hasBackingGenericMember() && m.getName().equals(method.getName())) {
              if (matches(method.getBackingGenericMember(), m)) {
                return method;
              }
            }
          }
        }
      }
      // Queue the superclass:
      ResolvedType superclass = type.getSuperclass();
      if (superclass != null) {
        typesTolookat.add(superclass);
      }
      // Queue any interfaces not already checked:
      ResolvedType[] superinterfaces = type.getDeclaredInterfaces();
      if (superinterfaces != null) {
        for (int i = 0; i < superinterfaces.length; i++) {
          ResolvedType interf = superinterfaces[i];
          if (!typesTolookat.contains(interf)) {
            typesTolookat.add(interf);
          }
        }
      }
    }
    return null;
  }

  /**
   * @param member the member to lookup in intertype declarations affecting this type
   * @return the real signature defined by any matching intertype declaration, otherwise null
   */
  public ResolvedMember lookupMethodInITDs(Member member) {
    for (ConcreteTypeMunger typeTransformer : interTypeMungers) {
      if (matches(typeTransformer.getSignature(), member)) {
        return typeTransformer.getSignature();
      }
    }
    return null;
  }

  /**
   * return null if not found
   */
  private ResolvedMember lookupMember(Member m, ResolvedMember[] a) {
    for (int i = 0; i < a.length; i++) {
      ResolvedMember f = a[i];
      if (matches(f, m)) {
        return f;
      }
    }
    return null;
  }

  // Bug (1) Do callers expect ITDs to be involved in the lookup? or do they do their own walk over ITDs?
  /**
   * Looks for the first member in the hierarchy matching aMember. This method differs from lookupMember(Member) in that it takes
   * into account parameters which are type variables - which clearly an unresolved Member cannot do since it does not know
   * anything about type variables.
   */
  public ResolvedMember lookupResolvedMember(ResolvedMember aMember, boolean allowMissing, boolean eraseGenerics) {
    Iterator<ResolvedMember> toSearch = null;
    ResolvedMember found = null;
    if ((aMember.getKind() == Member.METHOD) || (aMember.getKind() == Member.CONSTRUCTOR)) {
      // toSearch = getMethodsWithoutIterator(true, allowMissing, !eraseGenerics).iterator();
      toSearch = getMethodsIncludingIntertypeDeclarations(!eraseGenerics, true);
    } else {
      assert aMember.getKind() == Member.FIELD;
      toSearch = getFields();
    }
    while (toSearch.hasNext()) {
      ResolvedMember candidate = toSearch.next();
      if (eraseGenerics) {
        if (candidate.hasBackingGenericMember()) {
          candidate = candidate.getBackingGenericMember();
        }
      }
      // OPTIMIZE speed up matches? optimize order of checks
      if (candidate.matches(aMember, eraseGenerics)) {
        found = candidate;
        break;
      }
    }

    return found;
  }

  public static boolean matches(Member m1, Member m2) {
    if (m1 == null) {
      return m2 == null;
    }
    if (m2 == null) {
      return false;
    }

    // Check the names
    boolean equalNames = m1.getName().equals(m2.getName());
    if (!equalNames) {
      return false;
    }

    // Check the signatures
    boolean equalSignatures = m1.getSignature().equals(m2.getSignature());
    if (equalSignatures) {
      return true;
    }

    // If they aren't the same, we need to allow for covariance ... where
    // one sig might be ()LCar; and
    // the subsig might be ()LFastCar; - where FastCar is a subclass of Car
    boolean equalCovariantSignatures = m1.getParameterSignature().equals(m2.getParameterSignature());
    if (equalCovariantSignatures) {
      return true;
    }

    return false;
  }

  public static boolean conflictingSignature(Member m1, Member m2) {
    if (m1 == null || m2 == null) {
      return false;
    }

    if (!m1.getName().equals(m2.getName())) {
      return false;
    }
    if (m1.getKind() != m2.getKind()) {
      return false;
    }

    if (m1.getKind() == Member.FIELD) {
      return m1.getDeclaringType().equals(m2.getDeclaringType());
    } else if (m1.getKind() == Member.POINTCUT) {
      return true;
    }

    UnresolvedType[] p1 = m1.getGenericParameterTypes();
    UnresolvedType[] p2 = m2.getGenericParameterTypes();
    if (p1 == null) {
      p1 = m1.getParameterTypes();
    }
    if (p2 == null) {
      p2 = m2.getParameterTypes();
    }
    int n = p1.length;
    if (n != p2.length) {
      return false;
    }

    for (int i = 0; i < n; i++) {
      if (!p1[i].equals(p2[i])) {
        return false;
      }
    }
    return true;
  }

  /**
   * returns an iterator through all of the pointcuts of this type, in order for checking from JVM spec 2ed 5.4.3.2 (as for
   * fields). This means that the order is
   * <p/>
   * <ul>
   * <li>pointcuts from current class</li>
   * <li>recur into direct superinterfaces</li>
   * <li>recur into superclass</li>
   * </ul>
   * <p/>
   * We keep a hashSet of interfaces that we've visited so we don't spiral out into 2^n land.
   */
  public Iterator<ResolvedMember> getPointcuts() {
    final Iterators.Filter<ResolvedType> dupFilter = Iterators.dupFilter();
    // same order as fields
    Iterators.Getter<ResolvedType, ResolvedType> typeGetter = new Iterators.Getter<ResolvedType, ResolvedType>() {
      public Iterator<ResolvedType> get(ResolvedType o) {
        return dupFilter.filter(o.getDirectSupertypes());
      }
    };
    return Iterators.mapOver(Iterators.recur(this, typeGetter), PointcutGetterInstance);
  }

  public ResolvedPointcutDefinition findPointcut(String name) {
    for (Iterator<ResolvedMember> i = getPointcuts(); i.hasNext();) {
      ResolvedPointcutDefinition f = (ResolvedPointcutDefinition) i.next();
      // the ResolvedPointcutDefinition can be null if there are other problems that prevented its resolution
      if (f != null && name.equals(f.getName())) {
        return f;
      }
    }
    // pr120521
    if (!getOutermostType().equals(this)) {
      ResolvedType outerType = getOutermostType().resolve(world);
      ResolvedPointcutDefinition rpd = outerType.findPointcut(name);
      return rpd;
    }
    return null; // should we throw an exception here?
  }

  // all about collecting CrosscuttingMembers

  // ??? collecting data-structure, shouldn't really be a field
  public CrosscuttingMembers crosscuttingMembers;

  public CrosscuttingMembers collectCrosscuttingMembers(boolean shouldConcretizeIfNeeded) {
    crosscuttingMembers = new CrosscuttingMembers(this, shouldConcretizeIfNeeded);
    if (getPerClause() == null) {
      return crosscuttingMembers;
    }
    crosscuttingMembers.setPerClause(getPerClause());
    crosscuttingMembers.addShadowMungers(collectShadowMungers());
    // GENERICITDFIX
    // crosscuttingMembers.addTypeMungers(collectTypeMungers());
    crosscuttingMembers.addTypeMungers(getTypeMungers());
    // FIXME AV - skip but needed ?? or ??
    // crosscuttingMembers.addLateTypeMungers(getLateTypeMungers());
    crosscuttingMembers.addDeclares(collectDeclares(!this.doesNotExposeShadowMungers()));
    crosscuttingMembers.addPrivilegedAccesses(getPrivilegedAccesses());

    // System.err.println("collected cc members: " + this + ", " +
    // collectDeclares());
    return crosscuttingMembers;
  }

  public final List<Declare> collectDeclares(boolean includeAdviceLike) {
    if (!this.isAspect()) {
      return Collections.emptyList();
    }

    List<Declare> ret = new ArrayList<Declare>();
    // if (this.isAbstract()) {
    // for (Iterator i = getDeclares().iterator(); i.hasNext();) {
    // Declare dec = (Declare) i.next();
    // if (!dec.isAdviceLike()) ret.add(dec);
    // }
    //
    // if (!includeAdviceLike) return ret;

    if (!this.isAbstract()) {
      // ret.addAll(getDeclares());
      final Iterators.Filter<ResolvedType> dupFilter = Iterators.dupFilter();
      Iterators.Getter<ResolvedType, ResolvedType> typeGetter = new Iterators.Getter<ResolvedType, ResolvedType>() {
        public Iterator<ResolvedType> get(ResolvedType o) {
          return dupFilter.filter((o).getDirectSupertypes());
        }
      };
      Iterator<ResolvedType> typeIterator = Iterators.recur(this, typeGetter);

      while (typeIterator.hasNext()) {
        ResolvedType ty = typeIterator.next();
        // System.out.println("super: " + ty + ", " + );
        for (Iterator<Declare> i = ty.getDeclares().iterator(); i.hasNext();) {
          Declare dec = i.next();
          if (dec.isAdviceLike()) {
            if (includeAdviceLike) {
              ret.add(dec);
            }
          } else {
            ret.add(dec);
          }
        }
      }
    }

    return ret;
  }

  private final List<ShadowMunger> collectShadowMungers() {
    if (!this.isAspect() || this.isAbstract() || this.doesNotExposeShadowMungers()) {
      return Collections.emptyList();
    }

    List<ShadowMunger> acc = new ArrayList<ShadowMunger>();
    final Iterators.Filter<ResolvedType> dupFilter = Iterators.dupFilter();
    Iterators.Getter<ResolvedType, ResolvedType> typeGetter = new Iterators.Getter<ResolvedType, ResolvedType>() {
      public Iterator<ResolvedType> get(ResolvedType o) {
        return dupFilter.filter((o).getDirectSupertypes());
      }
    };
    Iterator<ResolvedType> typeIterator = Iterators.recur(this, typeGetter);

    while (typeIterator.hasNext()) {
      ResolvedType ty = typeIterator.next();
      acc.addAll(ty.getDeclaredShadowMungers());
    }

    return acc;
  }

  public void addParent(ResolvedType newParent) {
    // Nothing to do for anything except a ReferenceType
  }

  protected boolean doesNotExposeShadowMungers() {
    return false;
  }

  public PerClause getPerClause() {
    return null;
  }

  public Collection<Declare> getDeclares() {
    return Collections.emptyList();
  }

  public Collection<ConcreteTypeMunger> getTypeMungers() {
    return Collections.emptyList();
  }

  public Collection<ResolvedMember> getPrivilegedAccesses() {
    return Collections.emptyList();
  }

  // ---- useful things

  public final boolean isInterface() {
    return Modifier.isInterface(getModifiers());
  }

  public final boolean isAbstract() {
    return Modifier.isAbstract(getModifiers());
  }

  public boolean isClass() {
    return false;
  }

  public boolean isAspect() {
    return false;
  }

  public boolean isAnnotationStyleAspect() {
    return false;
  }

  /**
   * Note: Only overridden by Name subtype.
   */
  public boolean isEnum() {
    return false;
  }

  /**
   * Note: Only overridden by Name subtype.
   */
  public boolean isAnnotation() {
    return false;
  }

  public boolean isAnonymous() {
    return false;
  }

  public boolean isNested() {
    return false;
  }

  public void addAnnotation(AnnotationAJ annotationX) {
    throw new RuntimeException("ResolvedType.addAnnotation() should never be called");
  }

  public AnnotationAJ[] getAnnotations() {
    throw new RuntimeException("ResolvedType.getAnnotations() should never be called");
  }

  /**
   * Note: Only overridden by ReferenceType subtype
   */
  public boolean canAnnotationTargetType() {
    return false;
  }

  /**
   * Note: Only overridden by ReferenceType subtype
   */
  public AnnotationTargetKind[] getAnnotationTargetKinds() {
    return null;
  }

  /**
   * Note: Only overridden by Name subtype.
   */
  public boolean isAnnotationWithRuntimeRetention() {
    return false;
  }

  public boolean isSynthetic() {
    return signature.indexOf("$ajc") != -1;
  }

  public final boolean isFinal() {
    return Modifier.isFinal(getModifiers());
  }

  protected Map<String, UnresolvedType> getMemberParameterizationMap() {
    if (!isParameterizedType()) {
      return Collections.emptyMap();
    }
    TypeVariable[] tvs = getGenericType().getTypeVariables();
    Map<String, UnresolvedType> parameterizationMap = new HashMap<String, UnresolvedType>();
    for (int i = 0; i < tvs.length; i++) {
      parameterizationMap.put(tvs[i].getName(), typeParameters[i]);
    }
    return parameterizationMap;
  }

  public List<ShadowMunger> getDeclaredAdvice() {
    List<ShadowMunger> l = new ArrayList<ShadowMunger>();
    ResolvedMember[] methods = getDeclaredMethods();
    if (isParameterizedType()) {
      methods = getGenericType().getDeclaredMethods();
    }
    Map<String, UnresolvedType> typeVariableMap = getAjMemberParameterizationMap();
    for (int i = 0, len = methods.length; i < len; i++) {
      ShadowMunger munger = methods[i].getAssociatedShadowMunger();
      if (munger != null) {
        if (ajMembersNeedParameterization()) {
          // munger.setPointcut(munger.getPointcut().parameterizeWith(
          // typeVariableMap));
          munger = munger.parameterizeWith(this, typeVariableMap);
          if (munger instanceof Advice) {
            Advice advice = (Advice) munger;
            // update to use the parameterized signature...
            UnresolvedType[] ptypes = methods[i].getGenericParameterTypes();
            UnresolvedType[] newPTypes = new UnresolvedType[ptypes.length];
            for (int j = 0; j < ptypes.length; j++) {
              if (ptypes[j] instanceof TypeVariableReferenceType) {
                TypeVariableReferenceType tvrt = (TypeVariableReferenceType) ptypes[j];
                if (typeVariableMap.containsKey(tvrt.getTypeVariable().getName())) {
                  newPTypes[j] = typeVariableMap.get(tvrt.getTypeVariable().getName());
                } else {
                  newPTypes[j] = ptypes[j];
                }
              } else {
                newPTypes[j] = ptypes[j];
              }
            }
            advice.setBindingParameterTypes(newPTypes);
          }
        }
        munger.setDeclaringType(this);
        l.add(munger);
      }
    }
    return l;
  }

  public List<ShadowMunger> getDeclaredShadowMungers() {
    return getDeclaredAdvice();
  }

  // ---- only for testing!

  public ResolvedMember[] getDeclaredJavaFields() {
    return filterInJavaVisible(getDeclaredFields());
  }

  public ResolvedMember[] getDeclaredJavaMethods() {
    return filterInJavaVisible(getDeclaredMethods());
  }

  private ResolvedMember[] filterInJavaVisible(ResolvedMember[] ms) {
    List<ResolvedMember> l = new ArrayList<ResolvedMember>();
    for (int i = 0, len = ms.length; i < len; i++) {
      if (!ms[i].isAjSynthetic() && ms[i].getAssociatedShadowMunger() == null) {
        l.add(ms[i]);
      }
    }
    return l.toArray(new ResolvedMember[l.size()]);
  }

  public abstract ISourceContext getSourceContext();

  // ---- fields

  public static final ResolvedType[] NONE = new ResolvedType[0];
  public static final ResolvedType[] EMPTY_ARRAY = NONE;

  public static final Primitive BYTE = new Primitive("B", 1, 0);
  public static final Primitive CHAR = new Primitive("C", 1, 1);
  public static final Primitive DOUBLE = new Primitive("D", 2, 2);
  public static final Primitive FLOAT = new Primitive("F", 1, 3);
  public static final Primitive INT = new Primitive("I", 1, 4);
  public static final Primitive LONG = new Primitive("J", 2, 5);
  public static final Primitive SHORT = new Primitive("S", 1, 6);
  public static final Primitive VOID = new Primitive("V", 0, 8);
  public static final Primitive BOOLEAN = new Primitive("Z", 1, 7);
  public static final Missing MISSING = new Missing();

  /** Reset the static state in the primitive types */
  // OPTIMIZE I think we have a bug here because primitives are static and the
  // world they use may vary (or may even be
  // null)
  public static void resetPrimitives() {
    BYTE.world = null;
    CHAR.world = null;
    DOUBLE.world = null;
    FLOAT.world = null;
    INT.world = null;
    LONG.world = null;
    SHORT.world = null;
    VOID.world = null;
    BOOLEAN.world = null;
  }

  // ---- types
  public static ResolvedType makeArray(ResolvedType type, int dim) {
    if (dim == 0) {
      return type;
    }
    ResolvedType array = new ArrayReferenceType("[" + type.getSignature(), "[" + type.getErasureSignature(), type.getWorld(),
        type);
    return makeArray(array, dim - 1);
  }

  static class Primitive extends ResolvedType {
    private final int size;
    private final int index;

    Primitive(String signature, int size, int index) {
      super(signature, null);
      this.size = size;
      this.index = index;
      this.typeKind = TypeKind.PRIMITIVE;
    }

    @Override
    public final int getSize() {
      return size;
    }

    @Override
    public final int getModifiers() {
      return Modifier.PUBLIC | Modifier.FINAL;
    }

    @Override
    public final boolean isPrimitiveType() {
      return true;
    }

    public boolean hasAnnotation(UnresolvedType ofType) {
      return false;
    }

    @Override
    public final boolean isAssignableFrom(ResolvedType other) {
      if (!other.isPrimitiveType()) {
        if (!world.isInJava5Mode()) {
          return false;
        }
        return validBoxing.contains(this.getSignature() + other.getSignature());
      }
      return assignTable[((Primitive) other).index][index];
    }

    @Override
    public final boolean isAssignableFrom(ResolvedType other, boolean allowMissing) {
      return isAssignableFrom(other);
    }

    @Override
    public final boolean isCoerceableFrom(ResolvedType other) {
      if (this == other) {
        return true;
      }
      if (!other.isPrimitiveType()) {
        return false;
      }
      if (index > 6 || ((Primitive) other).index > 6) {
        return false;
      }
      return true;
    }

    @Override
    public ResolvedType resolve(World world) {
      this.world = world;
      return super.resolve(world);
    }

    @Override
    public final boolean needsNoConversionFrom(ResolvedType other) {
      if (!other.isPrimitiveType()) {
        return false;
      }
      return noConvertTable[((Primitive) other).index][index];
    }

    private static final boolean[][] assignTable = {// to: B C D F I J S V Z
    // from
        { true, true, true, true, true, true, true, false, false }, // B
        { false, true, true, true, true, true, false, false, false }, // C
        { false, false, true, false, false, false, false, false, false }, // D
        { false, false, true, true, false, false, false, false, false }, // F
        { false, false, true, true, true, true, false, false, false }, // I
        { false, false, true, true, false, true, false, false, false }, // J
        { false, false, true, true, true, true, true, false, false }, // S
        { false, false, false, false, false, false, false, true, false }, // V
        { false, false, false, false, false, false, false, false, true }, // Z
    };
    private static final boolean[][] noConvertTable = {// to: B C D F I J S
    // V Z from
        { true, true, false, false, true, false, true, false, false }, // B
        { false, true, false, false, true, false, false, false, false }, // C
        { false, false, true, false, false, false, false, false, false }, // D
        { false, false, false, true, false, false, false, false, false }, // F
        { false, false, false, false, true, false, false, false, false }, // I
        { false, false, false, false, false, true, false, false, false }, // J
        { false, false, false, false, true, false, true, false, false }, // S
        { false, false, false, false, false, false, false, true, false }, // V
        { false, false, false, false, false, false, false, false, true }, // Z
    };

    // ----

    @Override
    public final ResolvedMember[] getDeclaredFields() {
      return ResolvedMember.NONE;
    }

    @Override
    public final ResolvedMember[] getDeclaredMethods() {
      return ResolvedMember.NONE;
    }

    @Override
    public final ResolvedType[] getDeclaredInterfaces() {
      return ResolvedType.NONE;
    }

    @Override
    public final ResolvedMember[] getDeclaredPointcuts() {
      return ResolvedMember.NONE;
    }

    @Override
    public final ResolvedType getSuperclass() {
      return null;
    }

    @Override
    public ISourceContext getSourceContext() {
      return null;
    }

  }

  static class Missing extends ResolvedType {
    Missing() {
      super(MISSING_NAME, null);
    }

    // public final String toString() {
    // return "<missing>";
    // }
    @Override
    public final String getName() {
      return MISSING_NAME;
    }

    @Override
    public final boolean isMissing() {
      return true;
    }

    public boolean hasAnnotation(UnresolvedType ofType) {
      return false;
    }

    @Override
    public final ResolvedMember[] getDeclaredFields() {
      return ResolvedMember.NONE;
    }

    @Override
    public final ResolvedMember[] getDeclaredMethods() {
      return ResolvedMember.NONE;
    }

    @Override
    public final ResolvedType[] getDeclaredInterfaces() {
      return ResolvedType.NONE;
    }

    @Override
    public final ResolvedMember[] getDeclaredPointcuts() {
      return ResolvedMember.NONE;
    }

    @Override
    public final ResolvedType getSuperclass() {
      return null;
    }

    @Override
    public final int getModifiers() {
      return 0;
    }

    @Override
    public final boolean isAssignableFrom(ResolvedType other) {
      return false;
    }

    @Override
    public final boolean isAssignableFrom(ResolvedType other, boolean allowMissing) {
      return false;
    }

    @Override
    public final boolean isCoerceableFrom(ResolvedType other) {
      return false;
    }

    @Override
    public boolean needsNoConversionFrom(ResolvedType other) {
      return false;
    }

    @Override
    public ISourceContext getSourceContext() {
      return null;
    }

  }

  /**
   * Look up a member, takes into account any ITDs on this type. return null if not found
   */
  public ResolvedMember lookupMemberNoSupers(Member member) {
    ResolvedMember ret = lookupDirectlyDeclaredMemberNoSupers(member);
    if (ret == null && interTypeMungers != null) {
      for (ConcreteTypeMunger tm : interTypeMungers) {
        if (matches(tm.getSignature(), member)) {
          return tm.getSignature();
        }
      }
    }
    return ret;
  }

  public ResolvedMember lookupMemberWithSupersAndITDs(Member member) {
    ResolvedMember ret = lookupMemberNoSupers(member);
    if (ret != null) {
      return ret;
    }

    ResolvedType supert = getSuperclass();
    while (ret == null && supert != null) {
      ret = supert.lookupMemberNoSupers(member);
      if (ret == null) {
        supert = supert.getSuperclass();
      }
    }

    return ret;
  }

  /**
   * as lookupMemberNoSupers, but does not include ITDs
   *
   * @param member
   * @return
   */
  public ResolvedMember lookupDirectlyDeclaredMemberNoSupers(Member member) {
    ResolvedMember ret;
    if (member.getKind() == Member.FIELD) {
      ret = lookupMember(member, getDeclaredFields());
    } else {
      // assert member.getKind() == Member.METHOD || member.getKind() ==
      // Member.CONSTRUCTOR
      ret = lookupMember(member, getDeclaredMethods());
    }
    return ret;
  }

  /**
   * This lookup has specialized behaviour - a null result tells the EclipseTypeMunger that it should make a default
   * implementation of a method on this type.
   *
   * @param member
   * @return
   */
  public ResolvedMember lookupMemberIncludingITDsOnInterfaces(Member member) {
    return lookupMemberIncludingITDsOnInterfaces(member, this);
  }

  private ResolvedMember lookupMemberIncludingITDsOnInterfaces(Member member, ResolvedType onType) {
    ResolvedMember ret = onType.lookupMemberNoSupers(member);
    if (ret != null) {
      return ret;
    } else {
      ResolvedType superType = onType.getSuperclass();
      if (superType != null) {
        ret = lookupMemberIncludingITDsOnInterfaces(member, superType);
      }
      if (ret == null) {
        // try interfaces then, but only ITDs now...
        ResolvedType[] superInterfaces = onType.getDeclaredInterfaces();
        for (int i = 0; i < superInterfaces.length; i++) {
          ret = superInterfaces[i].lookupMethodInITDs(member);
          if (ret != null) {
            return ret;
          }
        }
      }
    }
    return ret;
  }

  protected List<ConcreteTypeMunger> interTypeMungers = new ArrayList<ConcreteTypeMunger>();

  public List<ConcreteTypeMunger> getInterTypeMungers() {
    return interTypeMungers;
  }

  public List<ConcreteTypeMunger> getInterTypeParentMungers() {
    List<ConcreteTypeMunger> l = new ArrayList<ConcreteTypeMunger>();
    for (ConcreteTypeMunger element : interTypeMungers) {
      if (element.getMunger() instanceof NewParentTypeMunger) {
        l.add(element);
      }
    }
    return l;
  }

  /**
   * ??? This method is O(N*M) where N = number of methods and M is number of inter-type declarations in my super
   */
  public List<ConcreteTypeMunger> getInterTypeMungersIncludingSupers() {
    ArrayList<ConcreteTypeMunger> ret = new ArrayList<ConcreteTypeMunger>();
    collectInterTypeMungers(ret);
    return ret;
  }

  public List<ConcreteTypeMunger> getInterTypeParentMungersIncludingSupers() {
    ArrayList<ConcreteTypeMunger> ret = new ArrayList<ConcreteTypeMunger>();
    collectInterTypeParentMungers(ret);
    return ret;
  }

  private void collectInterTypeParentMungers(List<ConcreteTypeMunger> collector) {
    for (Iterator<ResolvedType> iter = getDirectSupertypes(); iter.hasNext();) {
      ResolvedType superType = iter.next();
      superType.collectInterTypeParentMungers(collector);
    }
    collector.addAll(getInterTypeParentMungers());
  }

  protected void collectInterTypeMungers(List<ConcreteTypeMunger> collector) {
    for (Iterator<ResolvedType> iter = getDirectSupertypes(); iter.hasNext();) {
      ResolvedType superType = iter.next();
      if (superType == null) {
        throw new BCException("UnexpectedProblem: a supertype in the hierarchy for " + this.getName() + " is null");
      }
      superType.collectInterTypeMungers(collector);
    }

    outer: for (Iterator<ConcreteTypeMunger> iter1 = collector.iterator(); iter1.hasNext();) {
      ConcreteTypeMunger superMunger = iter1.next();
      if (superMunger.getSignature() == null) {
        continue;
      }

      if (!superMunger.getSignature().isAbstract()) {
        continue;
      }

      for (ConcreteTypeMunger myMunger : getInterTypeMungers()) {
        if (conflictingSignature(myMunger.getSignature(), superMunger.getSignature())) {
          iter1.remove();
          continue outer;
        }
      }

      if (!superMunger.getSignature().isPublic()) {
        continue;
      }

      for (Iterator<ResolvedMember> iter = getMethods(true, true); iter.hasNext();) {
        ResolvedMember method = iter.next();
        if (conflictingSignature(method, superMunger.getSignature())) {
          iter1.remove();
          continue outer;
        }
      }
    }

    collector.addAll(getInterTypeMungers());
  }

  /**
   * Check: 1) That we don't have any abstract type mungers unless this type is abstract. 2) That an abstract ITDM on an interface
   * is declared public. (Compiler limitation) (PR70794)
   */
  public void checkInterTypeMungers() {
    if (isAbstract()) {
      return;
    }

    boolean itdProblem = false;

    for (ConcreteTypeMunger munger : getInterTypeMungersIncludingSupers()) {
      itdProblem = checkAbstractDeclaration(munger) || itdProblem; // Rule 2
    }

    if (itdProblem) {
      return; // If the rules above are broken, return right now
    }

    for (ConcreteTypeMunger munger : getInterTypeMungersIncludingSupers()) {
      if (munger.getSignature() != null && munger.getSignature().isAbstract()) { // Rule 1
        if (munger.getMunger().getKind() == ResolvedTypeMunger.MethodDelegate2) {
          // ignore for @AJ ITD as munger.getSignature() is the
          // interface method hence abstract
        } else {
          world.getMessageHandler()
              .handleMessage(
                  new Message("must implement abstract inter-type declaration: " + munger.getSignature(), "",
                      IMessage.ERROR, getSourceLocation(), null,
                      new ISourceLocation[] { getMungerLocation(munger) }));
        }
      }
    }
  }

  /**
   * See PR70794. This method checks that if an abstract inter-type method declaration is made on an interface then it must also
   * be public. This is a compiler limitation that could be made to work in the future (if someone provides a worthwhile usecase)
   *
   * @return indicates if the munger failed the check
   */
  private boolean checkAbstractDeclaration(ConcreteTypeMunger munger) {
    if (munger.getMunger() != null && (munger.getMunger() instanceof NewMethodTypeMunger)) {
      ResolvedMember itdMember = munger.getSignature();
      ResolvedType onType = itdMember.getDeclaringType().resolve(world);
      if (onType.isInterface() && itdMember.isAbstract() && !itdMember.isPublic()) {
        world.getMessageHandler().handleMessage(
            new Message(WeaverMessages.format(WeaverMessages.ITD_ABSTRACT_MUST_BE_PUBLIC_ON_INTERFACE,
                munger.getSignature(), onType), "", Message.ERROR, getSourceLocation(), null,
                new ISourceLocation[] { getMungerLocation(munger) }));
        return true;
      }
    }
    return false;
  }

  /**
   * Get a source location for the munger. Until intertype mungers remember where they came from, the source location for the
   * munger itself is null. In these cases use the source location for the aspect containing the ITD.
   */
  private ISourceLocation getMungerLocation(ConcreteTypeMunger munger) {
    ISourceLocation sloc = munger.getSourceLocation();
    if (sloc == null) {
      sloc = munger.getAspectType().getSourceLocation();
    }
    return sloc;
  }

  /**
   * Returns a ResolvedType object representing the declaring type of this type, or null if this type does not represent a
   * non-package-level-type.
   * <p/>
   * <strong>Warning</strong>: This is guaranteed to work for all member types. For anonymous/local types, the only guarantee is
   * given in JLS 13.1, where it guarantees that if you call getDeclaringType() repeatedly, you will eventually get the top-level
   * class, but it does not say anything about classes in between.
   *
   * @return the declaring UnresolvedType object, or null.
   */
  public ResolvedType getDeclaringType() {
    if (isArray()) {
      return null;
    }
    String name = getName();
    int lastDollar = name.lastIndexOf('$');
    while (lastDollar > 0) { // allow for classes starting '$' (pr120474)
      ResolvedType ret = world.resolve(UnresolvedType.forName(name.substring(0, lastDollar)), true);
      if (!ResolvedType.isMissing(ret)) {
        return ret;
      }
      lastDollar = name.lastIndexOf('$', lastDollar - 1);
    }
    return null;
  }

  public static boolean isVisible(int modifiers, ResolvedType targetType, ResolvedType fromType) {
    // System.err.println("mod: " + modifiers + ", " + targetType + " and "
    // + fromType);

    if (Modifier.isPublic(modifiers)) {
      return true;
    } else if (Modifier.isPrivate(modifiers)) {
      return targetType.getOutermostType().equals(fromType.getOutermostType());
    } else if (Modifier.isProtected(modifiers)) {
      return samePackage(targetType, fromType) || targetType.isAssignableFrom(fromType);
    } else { // package-visible
      return samePackage(targetType, fromType);
    }
  }

  private static boolean samePackage(ResolvedType targetType, ResolvedType fromType) {
    String p1 = targetType.getPackageName();
    String p2 = fromType.getPackageName();
    if (p1 == null) {
      return p2 == null;
    }
    if (p2 == null) {
      return false;
    }
    return p1.equals(p2);
  }

  /**
   * Checks if the generic type for 'this' and the generic type for 'other' are the same - it can be passed raw or parameterized
   * versions and will just compare the underlying generic type.
   */
  private boolean genericTypeEquals(ResolvedType other) {
    ResolvedType rt = other;
    if (rt.isParameterizedType() || rt.isRawType()) {
      rt.getGenericType();
    }
    if (((isParameterizedType() || isRawType()) && getGenericType().equals(rt)) || (this.equals(other))) {
      return true;
    }
    return false;
  }

  /**
   * Look up the actual occurence of a particular type in the hierarchy for 'this' type. The input is going to be a generic type,
   * and the caller wants to know if it was used in its RAW or a PARAMETERIZED form in this hierarchy.
   *
   * returns null if it can't be found.
   */
  public ResolvedType discoverActualOccurrenceOfTypeInHierarchy(ResolvedType lookingFor) {
    if (!lookingFor.isGenericType()) {
      throw new BCException("assertion failed: method should only be called with generic type, but " + lookingFor + " is "
          + lookingFor.typeKind);
    }

    if (this.equals(ResolvedType.OBJECT)) {
      return null;
    }

    if (genericTypeEquals(lookingFor)) {
      return this;
    }

    ResolvedType superT = getSuperclass();
    if (superT.genericTypeEquals(lookingFor)) {
      return superT;
    }

    ResolvedType[] superIs = getDeclaredInterfaces();
    for (int i = 0; i < superIs.length; i++) {
      ResolvedType superI = superIs[i];
      if (superI.genericTypeEquals(lookingFor)) {
        return superI;
      }
      ResolvedType checkTheSuperI = superI.discoverActualOccurrenceOfTypeInHierarchy(lookingFor);
      if (checkTheSuperI != null) {
        return checkTheSuperI;
      }
    }
    return superT.discoverActualOccurrenceOfTypeInHierarchy(lookingFor);
  }

  /**
   * Called for all type mungers but only does something if they share type variables with a generic type which they target. When
   * this happens this routine will check for the target type in the target hierarchy and 'bind' any type parameters as
   * appropriate. For example, for the ITD "List<T> I<T>.x" against a type like this: "class A implements I<String>" this routine
   * will return a parameterized form of the ITD "List<String> I.x"
   */
  public ConcreteTypeMunger fillInAnyTypeParameters(ConcreteTypeMunger munger) {
    boolean debug = false;
    ResolvedMember member = munger.getSignature();
    if (munger.isTargetTypeParameterized()) {
      if (debug) {
        System.err.println("Processing attempted parameterization of " + munger + " targetting type " + this);
      }
      if (debug) {
        System.err.println("  This type is " + this + "  (" + typeKind + ")");
      }
      // need to tailor this munger instance for the particular target...
      if (debug) {
        System.err.println("  Signature that needs parameterizing: " + member);
      }
      // Retrieve the generic type
      ResolvedType onTypeResolved = world.resolve(member.getDeclaringType());
      ResolvedType onType = onTypeResolved.getGenericType();
      if (onType == null) {
        // The target is not generic
        getWorld().getMessageHandler().handleMessage(
            MessageUtil.error("The target type for the intertype declaration is not generic",
                munger.getSourceLocation()));
        return munger;
      }
      member.resolve(world); // Ensure all parts of the member are resolved
      if (debug) {
        System.err.println("  Actual target ontype: " + onType + "  (" + onType.typeKind + ")");
      }
      // quickly find the targettype in the type hierarchy for this type
      // (it will be either RAW or PARAMETERIZED)
      ResolvedType actualTarget = discoverActualOccurrenceOfTypeInHierarchy(onType);
      if (actualTarget == null) {
        throw new BCException("assertion failed: asked " + this + " for occurrence of " + onType + " in its hierarchy??");
      }

      // only bind the tvars if its a parameterized type or the raw type
      // (in which case they collapse to bounds) - don't do it
      // for generic types ;)
      if (!actualTarget.isGenericType()) {
        if (debug) {
          System.err.println("Occurrence in " + this + " is actually " + actualTarget + "  (" + actualTarget.typeKind
              + ")");
          // parameterize the signature
          // ResolvedMember newOne =
          // member.parameterizedWith(actualTarget.getTypeParameters(),
          // onType,actualTarget.isParameterizedType());
        }
      }
      // if (!actualTarget.isRawType())
      munger = munger.parameterizedFor(actualTarget);
      if (debug) {
        System.err.println("New sig: " + munger.getSignature());
      }

      if (debug) {
        System.err.println("=====================================");
      }
    }
    return munger;
  }

  /**
   * Add an intertype munger to this type. isDuringCompilation tells us if we should be checking for an error scenario where two
   * ITD fields are trying to use the same name. When this happens during compilation one of them is altered to get mangled name
   * but when it happens during weaving it is too late and we need to put out an error asking them to recompile.
   */
  public void addInterTypeMunger(ConcreteTypeMunger munger, boolean isDuringCompilation) {
    ResolvedMember sig = munger.getSignature();
    bits = (bits & ~MungersAnalyzed); // clear the bit - as the mungers have changed
    if (sig == null || munger.getMunger() == null || munger.getMunger().getKind() == ResolvedTypeMunger.PrivilegedAccess) {
      interTypeMungers.add(munger);
      return;
    }

    // ConcreteTypeMunger originalMunger = munger;
    // we will use the 'parameterized' ITD for all the comparisons but we
    // say the original
    // one passed in actually matched as it will be added to the intertype
    // member finder
    // for the target type. It is possible we only want to do this if a
    // generic type
    // is discovered and the tvar is collapsed to a bound?
    munger = fillInAnyTypeParameters(munger);
    sig = munger.getSignature(); // possibly changed when type parms filled in

    if (sig.getKind() == Member.METHOD) {
      // OPTIMIZE can this be sped up?
      if (clashesWithExistingMember(munger, getMethods(true, false))) { // ITDs checked below
        return;
      }
      if (this.isInterface()) {
        // OPTIMIZE this set of methods are always the same - must we keep creating them as a list?
        if (clashesWithExistingMember(munger, Arrays.asList(world.getCoreType(OBJECT).getDeclaredMethods()).iterator())) {
          return;
        }
      }
    } else if (sig.getKind() == Member.FIELD) {
      if (clashesWithExistingMember(munger, Arrays.asList(getDeclaredFields()).iterator())) {
        return;
      }
      // Cannot cope with two version '2' style mungers for the same field on the same type
      // Must error and request the user recompile at least one aspect with the
      // -Xset:itdStyle=1 option
      if (!isDuringCompilation) {
        ResolvedTypeMunger thisRealMunger = munger.getMunger();
        if (thisRealMunger instanceof NewFieldTypeMunger) {
          NewFieldTypeMunger newFieldTypeMunger = (NewFieldTypeMunger) thisRealMunger;
          if (newFieldTypeMunger.version == NewFieldTypeMunger.VersionTwo) {
            String thisRealMungerSignatureName = newFieldTypeMunger.getSignature().getName();
            for (ConcreteTypeMunger typeMunger : interTypeMungers) {
              if (typeMunger.getMunger() instanceof NewFieldTypeMunger) {
                if (typeMunger.getSignature().getKind() == Member.FIELD) {
                  NewFieldTypeMunger existing = (NewFieldTypeMunger) typeMunger.getMunger();
                  if (existing.getSignature().getName().equals(thisRealMungerSignatureName)
                      && existing.version == NewFieldTypeMunger.VersionTwo
                      // this check ensures no problem for a clash with an ITD on an interface
                      && existing.getSignature().getDeclaringType()
                          .equals(newFieldTypeMunger.getSignature().getDeclaringType())) {

                    // report error on the aspect
                    StringBuffer sb = new StringBuffer();
                    sb.append("Cannot handle two aspects both attempting to use new style ITDs for the same named field ");
                    sb.append("on the same target type.  Please recompile at least one aspect with '-Xset:itdVersion=1'.");
                    sb.append(" Aspects involved: " + munger.getAspectType().getName() + " and "
                        + typeMunger.getAspectType().getName() + ".");
                    sb.append(" Field is named '" + existing.getSignature().getName() + "'");
                    getWorld().getMessageHandler().handleMessage(
                        new Message(sb.toString(), getSourceLocation(), true));
                    return;
                  }
                }
              }
            }
          }
        }
      }
    } else {
      if (clashesWithExistingMember(munger, Arrays.asList(getDeclaredMethods()).iterator())) {
        return;
      }
    }

    // now compare to existingMungers
    for (Iterator<ConcreteTypeMunger> i = interTypeMungers.iterator(); i.hasNext();) {
      ConcreteTypeMunger existingMunger = i.next();
      if (conflictingSignature(existingMunger.getSignature(), munger.getSignature())) {
        // System.err.println("match " + munger + " with " +
        // existingMunger);
        if (isVisible(munger.getSignature().getModifiers(), munger.getAspectType(), existingMunger.getAspectType())) {
          // System.err.println("    is visible");
          int c = compareMemberPrecedence(sig, existingMunger.getSignature());
          if (c == 0) {
            c = getWorld().compareByPrecedenceAndHierarchy(munger.getAspectType(), existingMunger.getAspectType());
          }
          // System.err.println("       compare: " + c);
          if (c < 0) {
            // the existing munger dominates the new munger
            checkLegalOverride(munger.getSignature(), existingMunger.getSignature(), 0x11, null);
            return;
          } else if (c > 0) {
            // the new munger dominates the existing one
            checkLegalOverride(existingMunger.getSignature(), munger.getSignature(), 0x11, null);
            i.remove();
            break;
          } else {
            interTypeConflictError(munger, existingMunger);
            interTypeConflictError(existingMunger, munger);
            return;
          }
        }
      }
    }
    // System.err.println("adding: " + munger + " to " + this);
    // we are adding the parameterized form of the ITD to the list of
    // mungers. Within it, the munger knows the original declared
    // signature for the ITD so it can be retrieved.
    interTypeMungers.add(munger);
  }

  /**
   * Compare the type transformer with the existing members. A clash may not be an error (the ITD may be the 'default
   * implementation') so returning false is not always a sign of an error.
   *
   * @return true if there is a clash
   */
  private boolean clashesWithExistingMember(ConcreteTypeMunger typeTransformer, Iterator<ResolvedMember> existingMembers) {
    ResolvedMember typeTransformerSignature = typeTransformer.getSignature();

    // ResolvedType declaringAspectType = munger.getAspectType();
    // if (declaringAspectType.isRawType()) declaringAspectType =
    // declaringAspectType.getGenericType();
    // if (declaringAspectType.isGenericType()) {
    //
    // ResolvedType genericOnType =
    // getWorld().resolve(sig.getDeclaringType()).getGenericType();
    // ConcreteTypeMunger ctm =
    // munger.parameterizedFor(discoverActualOccurrenceOfTypeInHierarchy
    // (genericOnType));
    // sig = ctm.getSignature(); // possible sig change when type
    // }
    // if (munger.getMunger().hasTypeVariableAliases()) {
    // ResolvedType genericOnType =
    // getWorld().resolve(sig.getDeclaringType()).getGenericType();
    // ConcreteTypeMunger ctm =
    // munger.parameterizedFor(discoverActualOccurrenceOfTypeInHierarchy(
    // genericOnType));
    // sig = ctm.getSignature(); // possible sig change when type parameters
    // filled in
    // }
    while (existingMembers.hasNext()) {
      ResolvedMember existingMember = existingMembers.next();
      // don't worry about clashing with bridge methods
      if (existingMember.isBridgeMethod()) {
        continue;
      }
      if (conflictingSignature(existingMember, typeTransformerSignature)) {
        // System.err.println("conflict: existingMember=" +
        // existingMember + "   typeMunger=" + munger);
        // System.err.println(munger.getSourceLocation() + ", " +
        // munger.getSignature() + ", " +
        // munger.getSignature().getSourceLocation());

        if (isVisible(existingMember.getModifiers(), this, typeTransformer.getAspectType())) {
          int c = compareMemberPrecedence(typeTransformerSignature, existingMember);
          // System.err.println("   c: " + c);
          if (c < 0) {
            // existingMember dominates munger
            checkLegalOverride(typeTransformerSignature, existingMember, 0x10, typeTransformer.getAspectType());
            return true;
          } else if (c > 0) {
            // munger dominates existingMember
            checkLegalOverride(existingMember, typeTransformerSignature, 0x01, typeTransformer.getAspectType());
            // interTypeMungers.add(munger);
            // ??? might need list of these overridden abstracts
            continue;
          } else {
            // bridge methods can differ solely in return type.
            // FIXME this whole method seems very hokey - unaware of covariance/varargs/bridging - it
            // could do with a rewrite !
            boolean sameReturnTypes = (existingMember.getReturnType().equals(typeTransformerSignature.getReturnType()));
            if (sameReturnTypes) {
              // pr206732 - if the existingMember is due to a
              // previous application of this same ITD (which can
              // happen if this is a binary type being brought in
              // from the aspectpath). The 'better' fix is
              // to recognize it is from the aspectpath at a
              // higher level and dont do this, but that is rather
              // more work.
              boolean isDuplicateOfPreviousITD = false;
              ResolvedType declaringRt = existingMember.getDeclaringType().resolve(world);
              WeaverStateInfo wsi = declaringRt.getWeaverState();
              if (wsi != null) {
                List<ConcreteTypeMunger> mungersAffectingThisType = wsi.getTypeMungers(declaringRt);
                if (mungersAffectingThisType != null) {
                  for (Iterator<ConcreteTypeMunger> iterator = mungersAffectingThisType.iterator(); iterator
                      .hasNext() && !isDuplicateOfPreviousITD;) {
                    ConcreteTypeMunger ctMunger = iterator.next();
                    // relatively crude check - is the ITD
                    // for the same as the existingmember
                    // and does it come
                    // from the same aspect
                    if (ctMunger.getSignature().equals(existingMember)
                        && ctMunger.aspectType.equals(typeTransformer.getAspectType())) {
                      isDuplicateOfPreviousITD = true;
                    }
                  }
                }
              }
              if (!isDuplicateOfPreviousITD) {
                // b275032 - this is OK if it is the default ctor and that default ctor was generated
                // at compile time, otherwise we cannot overwrite it
                if (!(typeTransformerSignature.getName().equals("<init>") && existingMember.isDefaultConstructor())) {
                  String aspectName = typeTransformer.getAspectType().getName();
                  ISourceLocation typeTransformerLocation = typeTransformer.getSourceLocation();
                  ISourceLocation existingMemberLocation = existingMember.getSourceLocation();
                  String msg = WeaverMessages.format(WeaverMessages.ITD_MEMBER_CONFLICT, aspectName,
                      existingMember);

                  // this isn't quite right really... as I think the errors should only be recorded against
                  // what is currently being processed or they may get lost or reported twice

                  // report error on the aspect
                  getWorld().getMessageHandler().handleMessage(new Message(msg, typeTransformerLocation, true));

                  // report error on the affected type, if we can
                  if (existingMemberLocation != null) {
                    getWorld().getMessageHandler()
                        .handleMessage(new Message(msg, existingMemberLocation, true));
                  }
                  return true; // clash - so ignore this itd
                }
              }
            }
          }
        } else if (isDuplicateMemberWithinTargetType(existingMember, this, typeTransformerSignature)) {
          getWorld().getMessageHandler().handleMessage(
              MessageUtil.error(WeaverMessages.format(WeaverMessages.ITD_MEMBER_CONFLICT, typeTransformer
                  .getAspectType().getName(), existingMember), typeTransformer.getSourceLocation()));
          return true;
        }
      }
    }
    return false;
  }

  // we know that the member signature matches, but that the member in the
  // target type is not visible to the aspect.
  // this may still be disallowed if it would result in two members within the
  // same declaring type with the same
  // signature AND more than one of them is concrete AND they are both visible
  // within the target type.
  private boolean isDuplicateMemberWithinTargetType(ResolvedMember existingMember, ResolvedType targetType,
      ResolvedMember itdMember) {
    if ((existingMember.isAbstract() || itdMember.isAbstract())) {
      return false;
    }
    UnresolvedType declaringType = existingMember.getDeclaringType();
    if (!targetType.equals(declaringType)) {
      return false;
    }
    // now have to test that itdMember is visible from targetType
    if (Modifier.isPrivate(itdMember.getModifiers())) {
      return false;
    }
    if (itdMember.isPublic()) {
      return true;
    }
    // must be in same package to be visible then...
    if (!targetType.getPackageName().equals(itdMember.getDeclaringType().getPackageName())) {
      return false;
    }

    // trying to put two members with the same signature into the exact same
    // type..., and both visible in that type.
    return true;
  }

  /**
   * @param transformerPosition which parameter is the type transformer (0x10 for first, 0x01 for second, 0x11 for both, 0x00 for
   *        neither)
   * @param aspectType the declaring type of aspect defining the *first* type transformer
   * @return true if the override is legal note: calling showMessage with two locations issues TWO messages, not ONE message with
   *         an additional source location.
   */
  public boolean checkLegalOverride(ResolvedMember parent, ResolvedMember child, int transformerPosition, ResolvedType aspectType) {
    // System.err.println("check: " + child.getDeclaringType() +
    // " overrides " + parent.getDeclaringType());
    if (Modifier.isFinal(parent.getModifiers())) {
      // If the ITD matching is occurring due to pulling in a BinaryTypeBinding then this check can incorrectly
      // signal an error because the ITD transformer being examined here will exactly match the member it added
      // during the first round of compilation. This situation can only occur if the ITD is on an interface whilst
      // the class is the top most implementor. If the ITD is on the same type that received it during compilation,
      // this method won't be called as the previous check for precedence level will return 0.

      if (transformerPosition == 0x10 && aspectType != null) {
        ResolvedType nonItdDeclaringType = child.getDeclaringType().resolve(world);
        WeaverStateInfo wsi = nonItdDeclaringType.getWeaverState();
        if (wsi != null) {
          List<ConcreteTypeMunger> transformersOnThisType = wsi.getTypeMungers(nonItdDeclaringType);
          if (transformersOnThisType != null) {
            for (ConcreteTypeMunger transformer : transformersOnThisType) {
              // relatively crude check - is the ITD
              // for the same as the existingmember
              // and does it come
              // from the same aspect
              if (transformer.aspectType.equals(aspectType)) {
                if (parent.equalsApartFromDeclaringType(transformer.getSignature())) {
                  return true;
                }
              }
            }
          }
        }
      }

      world.showMessage(Message.ERROR, WeaverMessages.format(WeaverMessages.CANT_OVERRIDE_FINAL_MEMBER, parent),
          child.getSourceLocation(), null);
      return false;
    }

    boolean incompatibleReturnTypes = false;
    // In 1.5 mode, allow for covariance on return type
    if (world.isInJava5Mode() && parent.getKind() == Member.METHOD) {

      // Look at the generic types when doing this comparison
      ResolvedType rtParentReturnType = parent.resolve(world).getGenericReturnType().resolve(world);
      ResolvedType rtChildReturnType = child.resolve(world).getGenericReturnType().resolve(world);
      incompatibleReturnTypes = !rtParentReturnType.isAssignableFrom(rtChildReturnType);
      // For debug, uncomment this bit and we'll repeat the check - stick
      // a breakpoint on the call
      // if (incompatibleReturnTypes) {
      // incompatibleReturnTypes =
      // !rtParentReturnType.isAssignableFrom(rtChildReturnType);
      // }
    } else {
      incompatibleReturnTypes = !parent.getReturnType().equals(child.getReturnType());
    }

    if (incompatibleReturnTypes) {
      world.showMessage(IMessage.ERROR, WeaverMessages.format(WeaverMessages.ITD_RETURN_TYPE_MISMATCH, parent, child),
          child.getSourceLocation(), parent.getSourceLocation());
      return false;
    }
    if (parent.getKind() == Member.POINTCUT) {
      UnresolvedType[] pTypes = parent.getParameterTypes();
      UnresolvedType[] cTypes = child.getParameterTypes();
      if (!Arrays.equals(pTypes, cTypes)) {
        world.showMessage(IMessage.ERROR, WeaverMessages.format(WeaverMessages.ITD_PARAM_TYPE_MISMATCH, parent, child),
            child.getSourceLocation(), parent.getSourceLocation());
        return false;
      }
    }
    // System.err.println("check: " + child.getModifiers() +
    // " more visible " + parent.getModifiers());
    if (isMoreVisible(parent.getModifiers(), child.getModifiers())) {
      world.showMessage(IMessage.ERROR, WeaverMessages.format(WeaverMessages.ITD_VISIBILITY_REDUCTION, parent, child),
          child.getSourceLocation(), parent.getSourceLocation());
      return false;
    }

    // check declared exceptions
    ResolvedType[] childExceptions = world.resolve(child.getExceptions());
    ResolvedType[] parentExceptions = world.resolve(parent.getExceptions());
    ResolvedType runtimeException = world.resolve("java.lang.RuntimeException");
    ResolvedType error = world.resolve("java.lang.Error");

    outer: for (int i = 0, leni = childExceptions.length; i < leni; i++) {
      // System.err.println("checking: " + childExceptions[i]);
      if (runtimeException.isAssignableFrom(childExceptions[i])) {
        continue;
      }
      if (error.isAssignableFrom(childExceptions[i])) {
        continue;
      }

      for (int j = 0, lenj = parentExceptions.length; j < lenj; j++) {
        if (parentExceptions[j].isAssignableFrom(childExceptions[i])) {
          continue outer;
        }
      }

      // this message is now better handled my MethodVerifier in JDT core.
      // world.showMessage(IMessage.ERROR,
      // WeaverMessages.format(WeaverMessages.ITD_DOESNT_THROW,
      // childExceptions[i].getName()),
      // child.getSourceLocation(), null);

      return false;
    }
    boolean parentStatic = Modifier.isStatic(parent.getModifiers());
    boolean childStatic = Modifier.isStatic(child.getModifiers());
    if (parentStatic && !childStatic) {
      world.showMessage(IMessage.ERROR, WeaverMessages.format(WeaverMessages.ITD_OVERRIDDEN_STATIC, child, parent),
          child.getSourceLocation(), null);
      return false;
    } else if (childStatic && !parentStatic) {
      world.showMessage(IMessage.ERROR, WeaverMessages.format(WeaverMessages.ITD_OVERIDDING_STATIC, child, parent),
          child.getSourceLocation(), null);
      return false;
    }
    return true;

  }

  private int compareMemberPrecedence(ResolvedMember m1, ResolvedMember m2) {
    // if (!m1.getReturnType().equals(m2.getReturnType())) return 0;

    // need to allow for the special case of 'clone' - which is like
    // abstract but is
    // not marked abstract. The code below this next line seems to make
    // assumptions
    // about what will have gotten through the compiler based on the normal
    // java rules. clone goes against these...
    if (Modifier.isProtected(m2.getModifiers()) && m2.getName().charAt(0) == 'c') {
      UnresolvedType declaring = m2.getDeclaringType();
      if (declaring != null) {
        if (declaring.getName().equals("java.lang.Object") && m2.getName().equals("clone")) {
          return +1;
        }
      }
    }

    if (Modifier.isAbstract(m1.getModifiers())) {
      return -1;
    }
    if (Modifier.isAbstract(m2.getModifiers())) {
      return +1;
    }

    if (m1.getDeclaringType().equals(m2.getDeclaringType())) {
      return 0;
    }

    ResolvedType t1 = m1.getDeclaringType().resolve(world);
    ResolvedType t2 = m2.getDeclaringType().resolve(world);
    if (t1.isAssignableFrom(t2)) {
      return -1;
    }
    if (t2.isAssignableFrom(t1)) {
      return +1;
    }
    return 0;
  }

  public static boolean isMoreVisible(int m1, int m2) {
    if (Modifier.isPrivate(m1)) {
      return false;
    }
    if (isPackage(m1)) {
      return Modifier.isPrivate(m2);
    }
    if (Modifier.isProtected(m1)) {
      return /* private package */(Modifier.isPrivate(m2) || isPackage(m2));
    }
    if (Modifier.isPublic(m1)) {
      return /* private package protected */!Modifier.isPublic(m2);
    }
    throw new RuntimeException("bad modifier: " + m1);
  }

  private static boolean isPackage(int i) {
    return (0 == (i & (Modifier.PUBLIC | Modifier.PRIVATE | Modifier.PROTECTED)));
  }

  private void interTypeConflictError(ConcreteTypeMunger m1, ConcreteTypeMunger m2) {
    // XXX this works only if we ignore separate compilation issues
    // XXX dual errors possible if (this instanceof BcelObjectType) return;

    // System.err.println("conflict at " + m2.getSourceLocation());
    getWorld().showMessage(
        IMessage.ERROR,
        WeaverMessages.format(WeaverMessages.ITD_CONFLICT, m1.getAspectType().getName(), m2.getSignature(), m2
            .getAspectType().getName()), m2.getSourceLocation(), getSourceLocation());
  }

  public ResolvedMember lookupSyntheticMember(Member member) {
    // ??? horribly inefficient
    // for (Iterator i =
    // System.err.println("lookup " + member + " in " + interTypeMungers);
    for (ConcreteTypeMunger m : interTypeMungers) {
      ResolvedMember ret = m.getMatchingSyntheticMember(member);
      if (ret != null) {
        // System.err.println("   found: " + ret);
        return ret;
      }
    }

    // Handling members for the new array join point
    if (world.isJoinpointArrayConstructionEnabled() && this.isArray()) {
      if (member.getKind() == Member.CONSTRUCTOR) {
        ResolvedMemberImpl ret = new ResolvedMemberImpl(Member.CONSTRUCTOR, this, Modifier.PUBLIC, ResolvedType.VOID,
            "<init>", world.resolve(member.getParameterTypes()));
        // Give the parameters names - they are going to be the dimensions uses to build the array (dim0 > dimN)
        int count = ret.getParameterTypes().length;
        String[] paramNames = new String[count];
        for (int i = 0; i < count; i++) {
          paramNames[i] = new StringBuffer("dim").append(i).toString();
        }
        ret.setParameterNames(paramNames);
        return ret;
      }
    }

    // if (this.getSuperclass() != ResolvedType.OBJECT &&
    // this.getSuperclass() != null) {
    // return getSuperclass().lookupSyntheticMember(member);
    // }

    return null;
  }

  static class SuperClassWalker implements Iterator<ResolvedType> {

    private ResolvedType curr;
    private SuperInterfaceWalker iwalker;
    private boolean wantGenerics;

    public SuperClassWalker(ResolvedType type, SuperInterfaceWalker iwalker, boolean genericsAware) {
      this.curr = type;
      this.iwalker = iwalker;
      this.wantGenerics = genericsAware;
    }

    public boolean hasNext() {
      return curr != null;
    }

    public ResolvedType next() {
      ResolvedType ret = curr;
      if (!wantGenerics && ret.isParameterizedOrGenericType()) {
        ret = ret.getRawType();
      }
      iwalker.push(ret); // tell the interface walker about another class whose interfaces need visiting
      curr = curr.getSuperclass();
      return ret;
    }

    public void remove() {
      throw new UnsupportedOperationException();
    }
  }

  static class SuperInterfaceWalker implements Iterator<ResolvedType> {

    private Getter<ResolvedType, ResolvedType> ifaceGetter;
    Iterator<ResolvedType> delegate = null;
    public Queue<ResolvedType> toPersue = new LinkedList<ResolvedType>();
    public Set<ResolvedType> visited = new HashSet<ResolvedType>();

    SuperInterfaceWalker(Iterators.Getter<ResolvedType, ResolvedType> ifaceGetter) {
      this.ifaceGetter = ifaceGetter;
    }

    SuperInterfaceWalker(Iterators.Getter<ResolvedType, ResolvedType> ifaceGetter, ResolvedType interfaceType) {
      this.ifaceGetter = ifaceGetter;
      this.delegate = Iterators.one(interfaceType);
    }

    public boolean hasNext() {
      if (delegate == null || !delegate.hasNext()) {
        // either we set it up or we have run out, is there anything else to look at?
        if (toPersue.isEmpty()) {
          return false;
        }
        do {
          ResolvedType next = toPersue.remove();
          visited.add(next);
          delegate = ifaceGetter.get(next); // retrieve interfaces from a class or another interface
        } while (!delegate.hasNext() && !toPersue.isEmpty());
      }
      return delegate.hasNext();
    }

    public void push(ResolvedType ret) {
      toPersue.add(ret);
    }

    public ResolvedType next() {
      ResolvedType next = delegate.next();
      // BUG should check for generics and erase?
      // if (!visited.contains(next)) {
      // visited.add(next);
      if (visited.add(next)) {
        toPersue.add(next); // pushes on interfaces already visited?
      }
      return next;
    }

    public void remove() {
      throw new UnsupportedOperationException();
    }
  }

  public void clearInterTypeMungers() {
    if (isRawType()) {
      getGenericType().clearInterTypeMungers();
    }
    // interTypeMungers.clear();
    // BUG? Why can't this be clear() instead: 293620 c6
    interTypeMungers = new ArrayList<ConcreteTypeMunger>();
  }

  public boolean isTopmostImplementor(ResolvedType interfaceType) {
    boolean b = true;
    if (isInterface()) {
      b = false;
    } else if (!interfaceType.isAssignableFrom(this, true)) {
      b = false;
    } else {
      ResolvedType superclass = this.getSuperclass();
      if (superclass.isMissing()) {
        b = true; // we don't know anything about supertype, and it can't be exposed to weaver
      } else if (interfaceType.isAssignableFrom(superclass, true)) { // check that I'm truly the topmost implementor
        b = false;
      }
    }
    // System.out.println("is " + getName() + " topmostimplementor of " + interfaceType + "? " + b);
    return b;
  }

  public ResolvedType getTopmostImplementor(ResolvedType interfaceType) {
    if (isInterface()) {
      return null;
    }
    if (!interfaceType.isAssignableFrom(this)) {
      return null;
    }
    // Check if my super class is an implementor?
    ResolvedType higherType = this.getSuperclass().getTopmostImplementor(interfaceType);
    if (higherType != null) {
      return higherType;
    }
    return this;
  }

  public List<ResolvedMember> getExposedPointcuts() {
    List<ResolvedMember> ret = new ArrayList<ResolvedMember>();
    if (getSuperclass() != null) {
      ret.addAll(getSuperclass().getExposedPointcuts());
    }

    for (ResolvedType type : getDeclaredInterfaces()) {
      addPointcutsResolvingConflicts(ret, Arrays.asList(type.getDeclaredPointcuts()), false);
    }

    addPointcutsResolvingConflicts(ret, Arrays.asList(getDeclaredPointcuts()), true);

    for (ResolvedMember member : ret) {
      ResolvedPointcutDefinition inherited = (ResolvedPointcutDefinition) member;
      if (inherited != null && inherited.isAbstract()) {
        if (!this.isAbstract()) {
          getWorld().showMessage(IMessage.ERROR,
              WeaverMessages.format(WeaverMessages.POINCUT_NOT_CONCRETE, inherited, this.getName()),
              inherited.getSourceLocation(), this.getSourceLocation());
        }
      }
    }
    return ret;
  }

  private void addPointcutsResolvingConflicts(List<ResolvedMember> acc, List<ResolvedMember> added, boolean isOverriding) {
    for (Iterator<ResolvedMember> i = added.iterator(); i.hasNext();) {
      ResolvedPointcutDefinition toAdd = (ResolvedPointcutDefinition) i.next();
      for (Iterator<ResolvedMember> j = acc.iterator(); j.hasNext();) {
        ResolvedPointcutDefinition existing = (ResolvedPointcutDefinition) j.next();
        if (toAdd == null || existing == null || existing == toAdd) {
          continue;
        }
        UnresolvedType pointcutDeclaringTypeUT = existing.getDeclaringType();
        if (pointcutDeclaringTypeUT != null) {
          ResolvedType pointcutDeclaringType = pointcutDeclaringTypeUT.resolve(getWorld());
          if (!isVisible(existing.getModifiers(), pointcutDeclaringType, this)) {
            // if they intended to override it but it is not visible,
            // give them a nicer message
            if (existing.isAbstract() && conflictingSignature(existing, toAdd)) {
              getWorld().showMessage(
                  IMessage.ERROR,
                  WeaverMessages.format(WeaverMessages.POINTCUT_NOT_VISIBLE, existing.getDeclaringType()
                      .getName() + "." + existing.getName() + "()", this.getName()),
                  toAdd.getSourceLocation(), null);
              j.remove();
            }
            continue;
          }
        }
        if (conflictingSignature(existing, toAdd)) {
          if (isOverriding) {
            checkLegalOverride(existing, toAdd, 0x00, null);
            j.remove();
          } else {
            getWorld().showMessage(
                IMessage.ERROR,
                WeaverMessages.format(WeaverMessages.CONFLICTING_INHERITED_POINTCUTS,
                    this.getName() + toAdd.getSignature()), existing.getSourceLocation(),
                toAdd.getSourceLocation());
            j.remove();
          }
        }
      }
      acc.add(toAdd);
    }
  }

  public ISourceLocation getSourceLocation() {
    return null;
  }

  public boolean isExposedToWeaver() {
    return false;
  }

  public WeaverStateInfo getWeaverState() {
    return null;
  }

  /**
   * Overridden by ReferenceType to return a sensible answer for parameterized and raw types.
   *
   * @return
   */
  public ResolvedType getGenericType() {
    // if (!(isParameterizedType() || isRawType()))
    // throw new BCException("The type " + getBaseName() + " is not parameterized or raw - it has no generic type");
    return null;
  }

  @Override
  public ResolvedType getRawType() {
    return super.getRawType().resolve(world);
  }

  public ResolvedType parameterizedWith(UnresolvedType[] typeParameters) {
    if (!(isGenericType() || isParameterizedType())) {
      return this;
    }
    return TypeFactory.createParameterizedType(this.getGenericType(), typeParameters, getWorld());
  }

  /**
   * Iff I am a parameterized type, and any of my parameters are type variable references, return a version with those type
   * parameters replaced in accordance with the passed bindings.
   */
  @Override
  public UnresolvedType parameterize(Map<String, UnresolvedType> typeBindings) {
    if (!isParameterizedType()) {
      return this;// throw new IllegalStateException(
    }
    // "Can't parameterize a type that is not a parameterized type"
    // );
    boolean workToDo = false;
    for (int i = 0; i < typeParameters.length; i++) {
      if (typeParameters[i].isTypeVariableReference() || (typeParameters[i] instanceof BoundedReferenceType)) {
        workToDo = true;
      }
    }
    if (!workToDo) {
      return this;
    } else {
      UnresolvedType[] newTypeParams = new UnresolvedType[typeParameters.length];
      for (int i = 0; i < newTypeParams.length; i++) {
        newTypeParams[i] = typeParameters[i];
        if (newTypeParams[i].isTypeVariableReference()) {
          TypeVariableReferenceType tvrt = (TypeVariableReferenceType) newTypeParams[i];
          UnresolvedType binding = typeBindings.get(tvrt.getTypeVariable().getName());
          if (binding != null) {
            newTypeParams[i] = binding;
          }
        } else if (newTypeParams[i] instanceof BoundedReferenceType) {
          BoundedReferenceType brType = (BoundedReferenceType) newTypeParams[i];
          newTypeParams[i] = brType.parameterize(typeBindings);
          // brType.parameterize(typeBindings)
        }
      }
      return TypeFactory.createParameterizedType(getGenericType(), newTypeParams, getWorld());
    }
  }

  // public boolean hasParameterizedSuperType() {
  // getParameterizedSuperTypes();
  // return parameterizedSuperTypes.length > 0;
  // }

  // public boolean hasGenericSuperType() {
  // ResolvedType[] superTypes = getDeclaredInterfaces();
  // for (int i = 0; i < superTypes.length; i++) {
  // if (superTypes[i].isGenericType())
  // return true;
  // }
  // return false;
  // }

  // private ResolvedType[] parameterizedSuperTypes = null;

  /**
   * Similar to the above method, but accumulates the super types
   *
   * @return
   */
  // public ResolvedType[] getParameterizedSuperTypes() {
  // if (parameterizedSuperTypes != null)
  // return parameterizedSuperTypes;
  // List accumulatedTypes = new ArrayList();
  // accumulateParameterizedSuperTypes(this, accumulatedTypes);
  // ResolvedType[] ret = new ResolvedType[accumulatedTypes.size()];
  // parameterizedSuperTypes = (ResolvedType[]) accumulatedTypes.toArray(ret);
  // return parameterizedSuperTypes;
  // }
  // private void accumulateParameterizedSuperTypes(ResolvedType forType, List
  // parameterizedTypeList) {
  // if (forType.isParameterizedType()) {
  // parameterizedTypeList.add(forType);
  // }
  // if (forType.getSuperclass() != null) {
  // accumulateParameterizedSuperTypes(forType.getSuperclass(),
  // parameterizedTypeList);
  // }
  // ResolvedType[] interfaces = forType.getDeclaredInterfaces();
  // for (int i = 0; i < interfaces.length; i++) {
  // accumulateParameterizedSuperTypes(interfaces[i], parameterizedTypeList);
  // }
  // }
  /**
   * @return true if assignable to java.lang.Exception
   */
  public boolean isException() {
    return (world.getCoreType(UnresolvedType.JL_EXCEPTION).isAssignableFrom(this));
  }

  /**
   * @return true if it is an exception and it is a checked one, false otherwise.
   */
  public boolean isCheckedException() {
    if (!isException()) {
      return false;
    }
    if (world.getCoreType(UnresolvedType.RUNTIME_EXCEPTION).isAssignableFrom(this)) {
      return false;
    }
    return true;
  }

  /**
   * Determines if variables of this type could be assigned values of another with lots of help. java.lang.Object is convertable
   * from all types. A primitive type is convertable from X iff it's assignable from X. A reference type is convertable from X iff
   * it's coerceable from X. In other words, X isConvertableFrom Y iff the compiler thinks that _some_ value of Y could be
   * assignable to a variable of type X without loss of precision.
   *
   * @param other the other type
   * @param world the {@link World} in which the possible assignment should be checked.
   * @return true iff variables of this type could be assigned values of other with possible conversion
   */
  public final boolean isConvertableFrom(ResolvedType other) {

    // // version from TypeX
    // if (this.equals(OBJECT)) return true;
    // if (this.isPrimitiveType() || other.isPrimitiveType()) return
    // this.isAssignableFrom(other);
    // return this.isCoerceableFrom(other);
    //

    // version from ResolvedTypeX
    if (this.equals(OBJECT)) {
      return true;
    }
    if (world.isInJava5Mode()) {
      if (this.isPrimitiveType() ^ other.isPrimitiveType()) { // If one is
        // primitive
        // and the
        // other
        // isnt
        if (validBoxing.contains(this.getSignature() + other.getSignature())) {
          return true;
        }
      }
    }
    if (this.isPrimitiveType() || other.isPrimitiveType()) {
      return this.isAssignableFrom(other);
    }
    return this.isCoerceableFrom(other);
  }

  /**
   * Determines if the variables of this type could be assigned values of another type without casting. This still allows for
   * assignment conversion as per JLS 2ed 5.2. For object types, this means supertypeOrEqual(THIS, OTHER).
   *
   * @param other the other type
   * @param world the {@link World} in which the possible assignment should be checked.
   * @return true iff variables of this type could be assigned values of other without casting
   * @throws NullPointerException if other is null
   */
  public abstract boolean isAssignableFrom(ResolvedType other);

  public abstract boolean isAssignableFrom(ResolvedType other, boolean allowMissing);

  /**
   * Determines if values of another type could possibly be cast to this type. The rules followed are from JLS 2ed 5.5,
   * "Casting Conversion".
   * <p/>
   * <p>
   * This method should be commutative, i.e., for all UnresolvedType a, b and all World w:
   * <p/>
   * <blockquote>
   *
   * <pre>
   * a.isCoerceableFrom(b, w) == b.isCoerceableFrom(a, w)
   * </pre>
   *
   * </blockquote>
   *
   * @param other the other type
   * @param world the {@link World} in which the possible coersion should be checked.
   * @return true iff values of other could possibly be cast to this type.
   * @throws NullPointerException if other is null.
   */
  public abstract boolean isCoerceableFrom(ResolvedType other);

  public boolean needsNoConversionFrom(ResolvedType o) {
    return isAssignableFrom(o);
  }

  public String getSignatureForAttribute() {
    return signature; // Assume if this is being called that it is for a
    // simple type (eg. void, int, etc)
  }

  private FuzzyBoolean parameterizedWithTypeVariable = FuzzyBoolean.MAYBE;

  /**
   * return true if the parameterization of this type includes a member type variable. Member type variables occur in generic
   * methods/ctors.
   */
  public boolean isParameterizedWithTypeVariable() {
    // MAYBE means we haven't worked it out yet...
    if (parameterizedWithTypeVariable == FuzzyBoolean.MAYBE) {

      // if there are no type parameters then we cant be...
      if (typeParameters == null || typeParameters.length == 0) {
        parameterizedWithTypeVariable = FuzzyBoolean.NO;
        return false;
      }

      for (int i = 0; i < typeParameters.length; i++) {
        ResolvedType aType = (ResolvedType) typeParameters[i];
        if (aType.isTypeVariableReference()
        // Changed according to the problems covered in bug 222648
        // Don't care what kind of type variable - the fact that there
        // is one
        // at all means we can't risk caching it against we get confused
        // later
        // by another variation of the parameterization that just
        // happens to
        // use the same type variable name

        // assume the worst - if its definetly not a type declared one,
        // it could be anything
        // && ((TypeVariableReference)aType).getTypeVariable().
        // getDeclaringElementKind()!=TypeVariable.TYPE
        ) {
          parameterizedWithTypeVariable = FuzzyBoolean.YES;
          return true;
        }
        if (aType.isParameterizedType()) {
          boolean b = aType.isParameterizedWithTypeVariable();
          if (b) {
            parameterizedWithTypeVariable = FuzzyBoolean.YES;
            return true;
          }
        }
        if (aType.isGenericWildcard()) {
          BoundedReferenceType boundedRT = (BoundedReferenceType) aType;
          if (boundedRT.isExtends()) {
            boolean b = false;
            UnresolvedType upperBound = boundedRT.getUpperBound();
            if (upperBound.isParameterizedType()) {
              b = ((ResolvedType) upperBound).isParameterizedWithTypeVariable();
            } else if (upperBound.isTypeVariableReference()
                && ((TypeVariableReference) upperBound).getTypeVariable().getDeclaringElementKind() == TypeVariable.METHOD) {
              b = true;
            }
            if (b) {
              parameterizedWithTypeVariable = FuzzyBoolean.YES;
              return true;
            }
            // FIXME asc need to check additional interface bounds
          }
          if (boundedRT.isSuper()) {
            boolean b = false;
            UnresolvedType lowerBound = boundedRT.getLowerBound();
            if (lowerBound.isParameterizedType()) {
              b = ((ResolvedType) lowerBound).isParameterizedWithTypeVariable();
            } else if (lowerBound.isTypeVariableReference()
                && ((TypeVariableReference) lowerBound).getTypeVariable().getDeclaringElementKind() == TypeVariable.METHOD) {
              b = true;
            }
            if (b) {
              parameterizedWithTypeVariable = FuzzyBoolean.YES;
              return true;
            }
          }
        }
      }
      parameterizedWithTypeVariable = FuzzyBoolean.NO;
    }
    return parameterizedWithTypeVariable.alwaysTrue();
  }

  protected boolean ajMembersNeedParameterization() {
    if (isParameterizedType()) {
      return true;
    }
    if (getSuperclass() != null) {
      return getSuperclass().ajMembersNeedParameterization();
    }
    return false;
  }

  protected Map<String, UnresolvedType> getAjMemberParameterizationMap() {
    Map<String, UnresolvedType> myMap = getMemberParameterizationMap();
    if (myMap.isEmpty()) {
      // might extend a parameterized aspect that we also need to
      // consider...
      if (getSuperclass() != null) {
        return getSuperclass().getAjMemberParameterizationMap();
      }
    }
    return myMap;
  }

  public void setBinaryPath(String binaryPath) {
    this.binaryPath = binaryPath;
  }

  /**
   * Returns the path to the jar or class file from which this binary aspect came or null if not a binary aspect
   */
  public String getBinaryPath() {
    return binaryPath;
  }

  /**
   * Undo any temporary modifications to the type (for example it may be holding annotations temporarily whilst some matching is
   * occurring - These annotations will be added properly during weaving but sometimes for type completion they need to be held
   * here for a while).
   */
  public void ensureConsistent() {
    // Nothing to do for anything except a ReferenceType
  }

  /**
   * For an annotation type, this will return if it is marked with @Inherited
   */
  public boolean isInheritedAnnotation() {
    ensureAnnotationBitsInitialized();
    return (bits & AnnotationMarkedInherited) != 0;
  }

  /*
   * Setup the bitflags if they have not already been done.
   */
  private void ensureAnnotationBitsInitialized() {
    if ((bits & AnnotationBitsInitialized) == 0) {
      bits |= AnnotationBitsInitialized;
      // Is it marked @Inherited?
      if (hasAnnotation(UnresolvedType.AT_INHERITED)) {
        bits |= AnnotationMarkedInherited;
      }
    }
  }

  private boolean hasNewParentMungers() {
    if ((bits & MungersAnalyzed) == 0) {
      bits |= MungersAnalyzed;
      for (ConcreteTypeMunger munger : interTypeMungers) {
        ResolvedTypeMunger resolvedTypeMunger = munger.getMunger();
        if (resolvedTypeMunger != null && resolvedTypeMunger.getKind() == ResolvedTypeMunger.Parent) {
          bits |= HasParentMunger;
        }
      }
    }
    return (bits & HasParentMunger) != 0;
  }

  public void tagAsTypeHierarchyComplete() {
    bits |= TypeHierarchyCompleteBit;
  }

  public boolean isTypeHierarchyComplete() {
    return (bits & TypeHierarchyCompleteBit) != 0;
  }

  /**
   * return the weaver version used to build this type - defaults to the most recent version unless discovered otherwise.
   *
   * @return the (major) version, {@link WeaverVersionInfo}
   */
  public int getCompilerVersion() {
    return WeaverVersionInfo.getCurrentWeaverMajorVersion();
  }
}
TOP

Related Classes of org.aspectj.weaver.ResolvedType

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.