Package org.bouncycastle.crypto.engines

Source Code of org.bouncycastle.crypto.engines.RC6Engine

package org.bouncycastle.crypto.engines;

import org.bouncycastle.crypto.BlockCipher;
import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.DataLengthException;
import org.bouncycastle.crypto.params.KeyParameter;

/**
* An RC6 engine.
*/
public class RC6Engine
    implements BlockCipher
{
    private static final int wordSize = 32;
    private static final int bytesPerWord = wordSize / 8;

    /*
     * the number of rounds to perform
     */
    private static final int _noRounds = 20;

    /*
     * the expanded key array of size 2*(rounds + 1)
     */
    private int _S[];

    /*
     * our "magic constants" for wordSize 32
     *
     * Pw = Odd((e-2) * 2^wordsize)
     * Qw = Odd((o-2) * 2^wordsize)
     *
     * where e is the base of natural logarithms (2.718281828...)
     * and o is the golden ratio (1.61803398...)
     */
    private static final int    P32 = 0xb7e15163;
    private static final int    Q32 = 0x9e3779b9;

    private static final int    LGW = 5;        // log2(32)

    private boolean forEncryption;

    /**
     * Create an instance of the RC6 encryption algorithm
     * and set some defaults
     */
    public RC6Engine()
    {
        _S            = null;
    }

    public String getAlgorithmName()
    {
        return "RC6";
    }

    public int getBlockSize()
    {
        return 4 * bytesPerWord;
    }

    /**
     * initialise a RC5-32 cipher.
     *
     * @param forEncryption whether or not we are for encryption.
     * @param params the parameters required to set up the cipher.
     * @exception IllegalArgumentException if the params argument is
     * inappropriate.
     */
    public void init(
        boolean             forEncryption,
        CipherParameters    params)
    {
        if (!(params instanceof KeyParameter))
        {
            throw new IllegalArgumentException("invalid parameter passed to RC6 init - " + params.getClass().getName());
        }

        KeyParameter       p = (KeyParameter)params;
        this.forEncryption = forEncryption;
        setKey(p.getKey());
    }

    public int processBlock(
        byte[]  in,
        int     inOff,
        byte[]  out,
        int     outOff)
    {
        int blockSize = getBlockSize();
        if (_S == null)
        {
            throw new IllegalStateException("RC6 engine not initialised");
        }
        if ((inOff + blockSize) > in.length)
        {
            throw new DataLengthException("input buffer too short");
        }
        if ((outOff + blockSize) > out.length)
        {
            throw new DataLengthException("output buffer too short");
        }

        return (forEncryption)
            ?   encryptBlock(in, inOff, out, outOff)
            :   decryptBlock(in, inOff, out, outOff);
    }

    public void reset()
    {
    }

    /**
     * Re-key the cipher.
     * <p>
     * @param  inKey  the key to be used
     */
    private void setKey(
        byte[]      key)
    {

        //
        // KEY EXPANSION:
        //
        // There are 3 phases to the key expansion.
        //
        // Phase 1:
        //   Copy the secret key K[0...b-1] into an array L[0..c-1] of
        //   c = ceil(b/u), where u = wordSize/8 in little-endian order.
        //   In other words, we fill up L using u consecutive key bytes
        //   of K. Any unfilled byte positions in L are zeroed. In the
        //   case that b = c = 0, set c = 1 and L[0] = 0.
        //
        // compute number of dwords
        int c = (key.length + (bytesPerWord - 1)) / bytesPerWord;
        if (c == 0)
        {
            c = 1;
        }
        int[]   L = new int[(key.length + bytesPerWord - 1) / bytesPerWord];

        // load all key bytes into array of key dwords
        for (int i = key.length - 1; i >= 0; i--)
        {
            L[i / bytesPerWord] = (L[i / bytesPerWord] << 8) + (key[i] & 0xff);
        }

        //
        // Phase 2:
        //   Key schedule is placed in a array of 2+2*ROUNDS+2 = 44 dwords.
        //   Initialize S to a particular fixed pseudo-random bit pattern
        //   using an arithmetic progression modulo 2^wordsize determined
        //   by the magic numbers, Pw & Qw.
        //
        _S            = new int[2+2*_noRounds+2];

        _S[0] = P32;
        for (int i=1; i < _S.length; i++)
        {
            _S[i] = (_S[i-1] + Q32);
        }

        //
        // Phase 3:
        //   Mix in the user's secret key in 3 passes over the arrays S & L.
        //   The max of the arrays sizes is used as the loop control
        //
        int iter;

        if (L.length > _S.length)
        {
            iter = 3 * L.length;
        }
        else
        {
            iter = 3 * _S.length;
        }

        int A = 0;
        int B = 0;
        int i = 0, j = 0;

        for (int k = 0; k < iter; k++)
        {
            A = _S[i] = rotateLeft(_S[i] + A + B, 3);
            B =  L[j] = rotateLeft(L[j] + A + B, A+B);
            i = (i+1) % _S.length;
            j = (j+1) %  L.length;
        }
    }

    private int encryptBlock(
        byte[]  in,
        int     inOff,
        byte[]  out,
        int     outOff)
    {
        // load A,B,C and D registers from in.
        int A = bytesToWord(in, inOff);
        int B = bytesToWord(in, inOff + bytesPerWord);
        int C = bytesToWord(in, inOff + bytesPerWord*2);
        int D = bytesToWord(in, inOff + bytesPerWord*3);
       
        // Do pseudo-round #0: pre-whitening of B and D
        B += _S[0];
        D += _S[1];

        // perform round #1,#2 ... #ROUNDS of encryption
        for (int i = 1; i <= _noRounds; i++)
        {
            int t = 0,u = 0;
           
            t = B*(2*B+1);
            t = rotateLeft(t,5);
           
            u = D*(2*D+1);
            u = rotateLeft(u,5);
           
            A ^= t;
            A = rotateLeft(A,u);
            A += _S[2*i];
           
            C ^= u;
            C = rotateLeft(C,t);
            C += _S[2*i+1];
           
            int temp = A;
            A = B;
            B = C;
            C = D;
            D = temp;           
        }
        // do pseudo-round #(ROUNDS+1) : post-whitening of A and C
        A += _S[2*_noRounds+2];
        C += _S[2*_noRounds+3];
           
        // store A, B, C and D registers to out       
        wordToBytes(A, out, outOff);
        wordToBytes(B, out, outOff + bytesPerWord);
        wordToBytes(C, out, outOff + bytesPerWord*2);
        wordToBytes(D, out, outOff + bytesPerWord*3);
       
        return 4 * bytesPerWord;
    }

    private int decryptBlock(
        byte[]  in,
        int     inOff,
        byte[]  out,
        int     outOff)
    {
        // load A,B,C and D registers from out.
        int A = bytesToWord(in, inOff);
        int B = bytesToWord(in, inOff + bytesPerWord);
        int C = bytesToWord(in, inOff + bytesPerWord*2);
        int D = bytesToWord(in, inOff + bytesPerWord*3);

        // Undo pseudo-round #(ROUNDS+1) : post whitening of A and C
        C -= _S[2*_noRounds+3];
        A -= _S[2*_noRounds+2];
       
        // Undo round #ROUNDS, .., #2,#1 of encryption
        for (int i = _noRounds; i >= 1; i--)
        {
            int t=0,u = 0;
           
            int temp = D;
            D = C;
            C = B;
            B = A;
            A = temp;
           
            t = B*(2*B+1);
            t = rotateLeft(t, LGW);
           
            u = D*(2*D+1);
            u = rotateLeft(u, LGW);
           
            C -= _S[2*i+1];
            C = rotateRight(C,t);
            C ^= u;
           
            A -= _S[2*i];
            A = rotateRight(A,u);
            A ^= t;
           
        }
        // Undo pseudo-round #0: pre-whitening of B and D
        D -= _S[1];
        B -= _S[0];
       
        wordToBytes(A, out, outOff);
        wordToBytes(B, out, outOff + bytesPerWord);
        wordToBytes(C, out, outOff + bytesPerWord*2);
        wordToBytes(D, out, outOff + bytesPerWord*3);
       
        return 4 * bytesPerWord;
    }

   
    //////////////////////////////////////////////////////////////
    //
    // PRIVATE Helper Methods
    //
    //////////////////////////////////////////////////////////////

    /**
     * Perform a left "spin" of the word. The rotation of the given
     * word <em>x</em> is rotated left by <em>y</em> bits.
     * Only the <em>lg(wordSize)</em> low-order bits of <em>y</em>
     * are used to determine the rotation amount. Here it is
     * assumed that the wordsize used is 32.
     * <p>
     * @param  x  word to rotate
     * @param  y    number of bits to rotate % wordSize
     */
    private int rotateLeft(int x, int y)
    {
        return (x << y) | (x >>> -y);
    }

    /**
     * Perform a right "spin" of the word. The rotation of the given
     * word <em>x</em> is rotated left by <em>y</em> bits.
     * Only the <em>lg(wordSize)</em> low-order bits of <em>y</em>
     * are used to determine the rotation amount. Here it is
     * assumed that the wordsize used is a power of 2.
     * <p>
     * @param  x  word to rotate
     * @param  y    number of bits to rotate % wordSize
     */
    private int rotateRight(int x, int y)
    {
        return (x >>> y) | (x << -y);
    }

    private int bytesToWord(
        byte[]  src,
        int     srcOff)
    {
        int    word = 0;

        for (int i = bytesPerWord - 1; i >= 0; i--)
        {
            word = (word << 8) + (src[i + srcOff] & 0xff);
        }

        return word;
    }

    private void wordToBytes(
        int    word,
        byte[]  dst,
        int     dstOff)
    {
        for (int i = 0; i < bytesPerWord; i++)
        {
            dst[i + dstOff] = (byte)word;
            word >>>= 8;
        }
    }
}
TOP

Related Classes of org.bouncycastle.crypto.engines.RC6Engine

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.