Package org.infinispan.util.concurrent.jdk8backported

Source Code of org.infinispan.util.concurrent.jdk8backported.ForkJoinPool$DefaultForkJoinWorkerThreadFactory

// Revision 1.57

/*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/

package org.infinispan.util.concurrent.jdk8backported;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.AbstractExecutorService;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Future;
import java.util.concurrent.RejectedExecutionException;
import java.util.concurrent.RunnableFuture;
import java.util.concurrent.TimeUnit;

/**
* An {@link ExecutorService} for running {@link ForkJoinTask}s.
* A {@code ForkJoinPool} provides the entry point for submissions
* from non-{@code ForkJoinTask} clients, as well as management and
* monitoring operations.
*
* <p>A {@code ForkJoinPool} differs from other kinds of {@link
* ExecutorService} mainly by virtue of employing
* <em>work-stealing</em>: all threads in the pool attempt to find and
* execute tasks submitted to the pool and/or created by other active
* tasks (eventually blocking waiting for work if none exist). This
* enables efficient processing when most tasks spawn other subtasks
* (as do most {@code ForkJoinTask}s), as well as when many small
* tasks are submitted to the pool from external clients.  Especially
* when setting <em>asyncMode</em> to true in constructors, {@code
* ForkJoinPool}s may also be appropriate for use with event-style
* tasks that are never joined.
*
* <p>A static {@link #commonPool()} is available and appropriate for
* most applications. The common pool is used by any ForkJoinTask that
* is not explicitly submitted to a specified pool. Using the common
* pool normally reduces resource usage (its threads are slowly
* reclaimed during periods of non-use, and reinstated upon subsequent
* use).
*
* <p>For applications that require separate or custom pools, a {@code
* ForkJoinPool} may be constructed with a given target parallelism
* level; by default, equal to the number of available processors. The
* pool attempts to maintain enough active (or available) threads by
* dynamically adding, suspending, or resuming internal worker
* threads, even if some tasks are stalled waiting to join
* others. However, no such adjustments are guaranteed in the face of
* blocked I/O or other unmanaged synchronization. The nested {@link
* ManagedBlocker} interface enables extension of the kinds of
* synchronization accommodated.
*
* <p>In addition to execution and lifecycle control methods, this
* class provides status check methods (for example
* {@link #getStealCount}) that are intended to aid in developing,
* tuning, and monitoring fork/join applications. Also, method
* {@link #toString} returns indications of pool state in a
* convenient form for informal monitoring.
*
* <p>As is the case with other ExecutorServices, there are three
* main task execution methods summarized in the following table.
* These are designed to be used primarily by clients not already
* engaged in fork/join computations in the current pool.  The main
* forms of these methods accept instances of {@code ForkJoinTask},
* but overloaded forms also allow mixed execution of plain {@code
* Runnable}- or {@code Callable}- based activities as well.  However,
* tasks that are already executing in a pool should normally instead
* use the within-computation forms listed in the table unless using
* async event-style tasks that are not usually joined, in which case
* there is little difference among choice of methods.
*
* <table BORDER CELLPADDING=3 CELLSPACING=1>
<tr>
*    <td></td>
*    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
*    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
</tr>
<tr>
*    <td> <b>Arrange async execution</td>
*    <td> {@link #execute(ForkJoinTask)}</td>
*    <td> {@link ForkJoinTask#fork}</td>
</tr>
<tr>
*    <td> <b>Await and obtain result</td>
*    <td> {@link #invoke(ForkJoinTask)}</td>
*    <td> {@link ForkJoinTask#invoke}</td>
</tr>
<tr>
*    <td> <b>Arrange exec and obtain Future</td>
*    <td> {@link #submit(ForkJoinTask)}</td>
*    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
</tr>
* </table>
*
* <p>The common pool is by default constructed with default
* parameters, but these may be controlled by setting three {@link
* System#getProperty system properties} with prefix {@code
* java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
* an integer greater than zero, {@code threadFactory} -- the class
* name of a {@link ForkJoinWorkerThreadFactory}, and {@code
* exceptionHandler} -- the class name of a {@link
* java.lang.Thread.UncaughtExceptionHandler
* Thread.UncaughtExceptionHandler}. Upon any error in establishing
* these settings, default parameters are used.
*
* <p><b>Implementation notes</b>: This implementation restricts the
* maximum number of running threads to 32767. Attempts to create
* pools with greater than the maximum number result in
* {@code IllegalArgumentException}.
*
* <p>This implementation rejects submitted tasks (that is, by throwing
* {@link RejectedExecutionException}) only when the pool is shut down
* or internal resources have been exhausted.
*
* @since 1.7
* @author Doug Lea
*/
public class ForkJoinPool extends AbstractExecutorService {

    /*
     * Implementation Overview
     *
     * This class and its nested classes provide the main
     * functionality and control for a set of worker threads:
     * Submissions from non-FJ threads enter into submission queues.
     * Workers take these tasks and typically split them into subtasks
     * that may be stolen by other workers.  Preference rules give
     * first priority to processing tasks from their own queues (LIFO
     * or FIFO, depending on mode), then to randomized FIFO steals of
     * tasks in other queues.
     *
     * WorkQueues
     * ==========
     *
     * Most operations occur within work-stealing queues (in nested
     * class WorkQueue).  These are special forms of Deques that
     * support only three of the four possible end-operations -- push,
     * pop, and poll (aka steal), under the further constraints that
     * push and pop are called only from the owning thread (or, as
     * extended here, under a lock), while poll may be called from
     * other threads.  (If you are unfamiliar with them, you probably
     * want to read Herlihy and Shavit's book "The Art of
     * Multiprocessor programming", chapter 16 describing these in
     * more detail before proceeding.)  The main work-stealing queue
     * design is roughly similar to those in the papers "Dynamic
     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
     * (http://research.sun.com/scalable/pubs/index.html) and
     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
     * The main differences ultimately stem from GC requirements that
     * we null out taken slots as soon as we can, to maintain as small
     * a footprint as possible even in programs generating huge
     * numbers of tasks. To accomplish this, we shift the CAS
     * arbitrating pop vs poll (steal) from being on the indices
     * ("base" and "top") to the slots themselves.  So, both a
     * successful pop and poll mainly entail a CAS of a slot from
     * non-null to null.  Because we rely on CASes of references, we
     * do not need tag bits on base or top.  They are simple ints as
     * used in any circular array-based queue (see for example
     * ArrayDeque).  Updates to the indices must still be ordered in a
     * way that guarantees that top == base means the queue is empty,
     * but otherwise may err on the side of possibly making the queue
     * appear nonempty when a push, pop, or poll have not fully
     * committed. Note that this means that the poll operation,
     * considered individually, is not wait-free. One thief cannot
     * successfully continue until another in-progress one (or, if
     * previously empty, a push) completes.  However, in the
     * aggregate, we ensure at least probabilistic non-blockingness.
     * If an attempted steal fails, a thief always chooses a different
     * random victim target to try next. So, in order for one thief to
     * progress, it suffices for any in-progress poll or new push on
     * any empty queue to complete. (This is why we normally use
     * method pollAt and its variants that try once at the apparent
     * base index, else consider alternative actions, rather than
     * method poll.)
     *
     * This approach also enables support of a user mode in which local
     * task processing is in FIFO, not LIFO order, simply by using
     * poll rather than pop.  This can be useful in message-passing
     * frameworks in which tasks are never joined.  However neither
     * mode considers affinities, loads, cache localities, etc, so
     * rarely provide the best possible performance on a given
     * machine, but portably provide good throughput by averaging over
     * these factors.  (Further, even if we did try to use such
     * information, we do not usually have a basis for exploiting it.
     * For example, some sets of tasks profit from cache affinities,
     * but others are harmed by cache pollution effects.)
     *
     * WorkQueues are also used in a similar way for tasks submitted
     * to the pool. We cannot mix these tasks in the same queues used
     * for work-stealing (this would contaminate lifo/fifo
     * processing). Instead, we randomly associate submission queues
     * with submitting threads, using a form of hashing.  The
     * ThreadLocal Submitter class contains a value initially used as
     * a hash code for choosing existing queues, but may be randomly
     * repositioned upon contention with other submitters.  In
     * essence, submitters act like workers except that they are
     * restricted to executing local tasks that they submitted (or in
     * the case of CountedCompleters, others with the same root task).
     * However, because most shared/external queue operations are more
     * expensive than internal, and because, at steady state, external
     * submitters will compete for CPU with workers, ForkJoinTask.join
     * and related methods disable them from repeatedly helping to
     * process tasks if all workers are active.  Insertion of tasks in
     * shared mode requires a lock (mainly to protect in the case of
     * resizing) but we use only a simple spinlock (using bits in
     * field qlock), because submitters encountering a busy queue move
     * on to try or create other queues -- they block only when
     * creating and registering new queues.
     *
     * Management
     * ==========
     *
     * The main throughput advantages of work-stealing stem from
     * decentralized control -- workers mostly take tasks from
     * themselves or each other. We cannot negate this in the
     * implementation of other management responsibilities. The main
     * tactic for avoiding bottlenecks is packing nearly all
     * essentially atomic control state into two volatile variables
     * that are by far most often read (not written) as status and
     * consistency checks.
     *
     * Field "ctl" contains 64 bits holding all the information needed
     * to atomically decide to add, inactivate, enqueue (on an event
     * queue), dequeue, and/or re-activate workers.  To enable this
     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
     * far in excess of normal operating range) to allow ids, counts,
     * and their negations (used for thresholding) to fit into 16bit
     * fields.
     *
     * Field "plock" is a form of sequence lock with a saturating
     * shutdown bit (similarly for per-queue "qlocks"), mainly
     * protecting updates to the workQueues array, as well as to
     * enable shutdown.  When used as a lock, it is normally only very
     * briefly held, so is nearly always available after at most a
     * brief spin, but we use a monitor-based backup strategy to
     * block when needed.
     *
     * Recording WorkQueues.  WorkQueues are recorded in the
     * "workQueues" array that is created upon first use and expanded
     * if necessary.  Updates to the array while recording new workers
     * and unrecording terminated ones are protected from each other
     * by a lock but the array is otherwise concurrently readable, and
     * accessed directly.  To simplify index-based operations, the
     * array size is always a power of two, and all readers must
     * tolerate null slots. Worker queues are at odd indices. Shared
     * (submission) queues are at even indices, up to a maximum of 64
     * slots, to limit growth even if array needs to expand to add
     * more workers. Grouping them together in this way simplifies and
     * speeds up task scanning.
     *
     * All worker thread creation is on-demand, triggered by task
     * submissions, replacement of terminated workers, and/or
     * compensation for blocked workers. However, all other support
     * code is set up to work with other policies.  To ensure that we
     * do not hold on to worker references that would prevent GC, ALL
     * accesses to workQueues are via indices into the workQueues
     * array (which is one source of some of the messy code
     * constructions here). In essence, the workQueues array serves as
     * a weak reference mechanism. Thus for example the wait queue
     * field of ctl stores indices, not references.  Access to the
     * workQueues in associated methods (for example signalWork) must
     * both index-check and null-check the IDs. All such accesses
     * ignore bad IDs by returning out early from what they are doing,
     * since this can only be associated with termination, in which
     * case it is OK to give up.  All uses of the workQueues array
     * also check that it is non-null (even if previously
     * non-null). This allows nulling during termination, which is
     * currently not necessary, but remains an option for
     * resource-revocation-based shutdown schemes. It also helps
     * reduce JIT issuance of uncommon-trap code, which tends to
     * unnecessarily complicate control flow in some methods.
     *
     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
     * let workers spin indefinitely scanning for tasks when none can
     * be found immediately, and we cannot start/resume workers unless
     * there appear to be tasks available.  On the other hand, we must
     * quickly prod them into action when new tasks are submitted or
     * generated. In many usages, ramp-up time to activate workers is
     * the main limiting factor in overall performance (this is
     * compounded at program start-up by JIT compilation and
     * allocation). So we try to streamline this as much as possible.
     * We park/unpark workers after placing in an event wait queue
     * when they cannot find work. This "queue" is actually a simple
     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
     * counter value (that reflects the number of times a worker has
     * been inactivated) to avoid ABA effects (we need only as many
     * version numbers as worker threads). Successors are held in
     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
     * races, mainly that a task-producing thread can miss seeing (and
     * signalling) another thread that gave up looking for work but
     * has not yet entered the wait queue. We solve this by requiring
     * a full sweep of all workers (via repeated calls to method
     * scan()) both before and after a newly waiting worker is added
     * to the wait queue. During a rescan, the worker might release
     * some other queued worker rather than itself, which has the same
     * net effect. Because enqueued workers may actually be rescanning
     * rather than waiting, we set and clear the "parker" field of
     * WorkQueues to reduce unnecessary calls to unpark.  (This
     * requires a secondary recheck to avoid missed signals.)  Note
     * the unusual conventions about Thread.interrupts surrounding
     * parking and other blocking: Because interrupts are used solely
     * to alert threads to check termination, which is checked anyway
     * upon blocking, we clear status (using Thread.interrupted)
     * before any call to park, so that park does not immediately
     * return due to status being set via some other unrelated call to
     * interrupt in user code.
     *
     * Signalling.  We create or wake up workers only when there
     * appears to be at least one task they might be able to find and
     * execute. However, many other threads may notice the same task
     * and each signal to wake up a thread that might take it. So in
     * general, pools will be over-signalled.  When a submission is
     * added or another worker adds a task to a queue that has fewer
     * than two tasks, they signal waiting workers (or trigger
     * creation of new ones if fewer than the given parallelism level
     * -- signalWork), and may leave a hint to the unparked worker to
     * help signal others upon wakeup).  These primary signals are
     * buttressed by others (see method helpSignal) whenever other
     * threads scan for work or do not have a task to process.  On
     * most platforms, signalling (unpark) overhead time is noticeably
     * long, and the time between signalling a thread and it actually
     * making progress can be very noticeably long, so it is worth
     * offloading these delays from critical paths as much as
     * possible.
     *
     * Trimming workers. To release resources after periods of lack of
     * use, a worker starting to wait when the pool is quiescent will
     * time out and terminate if the pool has remained quiescent for a
     * given period -- a short period if there are more threads than
     * parallelism, longer as the number of threads decreases. This
     * will slowly propagate, eventually terminating all workers after
     * periods of non-use.
     *
     * Shutdown and Termination. A call to shutdownNow atomically sets
     * a plock bit and then (non-atomically) sets each worker's
     * qlock status, cancels all unprocessed tasks, and wakes up
     * all waiting workers.  Detecting whether termination should
     * commence after a non-abrupt shutdown() call requires more work
     * and bookkeeping. We need consensus about quiescence (i.e., that
     * there is no more work). The active count provides a primary
     * indication but non-abrupt shutdown still requires a rechecking
     * scan for any workers that are inactive but not queued.
     *
     * Joining Tasks
     * =============
     *
     * Any of several actions may be taken when one worker is waiting
     * to join a task stolen (or always held) by another.  Because we
     * are multiplexing many tasks on to a pool of workers, we can't
     * just let them block (as in Thread.join).  We also cannot just
     * reassign the joiner's run-time stack with another and replace
     * it later, which would be a form of "continuation", that even if
     * possible is not necessarily a good idea since we sometimes need
     * both an unblocked task and its continuation to progress.
     * Instead we combine two tactics:
     *
     *   Helping: Arranging for the joiner to execute some task that it
     *      would be running if the steal had not occurred.
     *
     *   Compensating: Unless there are already enough live threads,
     *      method tryCompensate() may create or re-activate a spare
     *      thread to compensate for blocked joiners until they unblock.
     *
     * A third form (implemented in tryRemoveAndExec) amounts to
     * helping a hypothetical compensator: If we can readily tell that
     * a possible action of a compensator is to steal and execute the
     * task being joined, the joining thread can do so directly,
     * without the need for a compensation thread (although at the
     * expense of larger run-time stacks, but the tradeoff is
     * typically worthwhile).
     *
     * The ManagedBlocker extension API can't use helping so relies
     * only on compensation in method awaitBlocker.
     *
     * The algorithm in tryHelpStealer entails a form of "linear"
     * helping: Each worker records (in field currentSteal) the most
     * recent task it stole from some other worker. Plus, it records
     * (in field currentJoin) the task it is currently actively
     * joining. Method tryHelpStealer uses these markers to try to
     * find a worker to help (i.e., steal back a task from and execute
     * it) that could hasten completion of the actively joined task.
     * In essence, the joiner executes a task that would be on its own
     * local deque had the to-be-joined task not been stolen. This may
     * be seen as a conservative variant of the approach in Wagner &
     * Calder "Leapfrogging: a portable technique for implementing
     * efficient futures" SIGPLAN Notices, 1993
     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
     * that: (1) We only maintain dependency links across workers upon
     * steals, rather than use per-task bookkeeping.  This sometimes
     * requires a linear scan of workQueues array to locate stealers,
     * but often doesn't because stealers leave hints (that may become
     * stale/wrong) of where to locate them.  It is only a hint
     * because a worker might have had multiple steals and the hint
     * records only one of them (usually the most current).  Hinting
     * isolates cost to when it is needed, rather than adding to
     * per-task overhead.  (2) It is "shallow", ignoring nesting and
     * potentially cyclic mutual steals.  (3) It is intentionally
     * racy: field currentJoin is updated only while actively joining,
     * which means that we miss links in the chain during long-lived
     * tasks, GC stalls etc (which is OK since blocking in such cases
     * is usually a good idea).  (4) We bound the number of attempts
     * to find work (see MAX_HELP) and fall back to suspending the
     * worker and if necessary replacing it with another.
     *
     * Helping actions for CountedCompleters are much simpler: Method
     * helpComplete can take and execute any task with the same root
     * as the task being waited on. However, this still entails some
     * traversal of completer chains, so is less efficient than using
     * CountedCompleters without explicit joins.
     *
     * It is impossible to keep exactly the target parallelism number
     * of threads running at any given time.  Determining the
     * existence of conservatively safe helping targets, the
     * availability of already-created spares, and the apparent need
     * to create new spares are all racy, so we rely on multiple
     * retries of each.  Compensation in the apparent absence of
     * helping opportunities is challenging to control on JVMs, where
     * GC and other activities can stall progress of tasks that in
     * turn stall out many other dependent tasks, without us being
     * able to determine whether they will ever require compensation.
     * Even though work-stealing otherwise encounters little
     * degradation in the presence of more threads than cores,
     * aggressively adding new threads in such cases entails risk of
     * unwanted positive feedback control loops in which more threads
     * cause more dependent stalls (as well as delayed progress of
     * unblocked threads to the point that we know they are available)
     * leading to more situations requiring more threads, and so
     * on. This aspect of control can be seen as an (analytically
     * intractable) game with an opponent that may choose the worst
     * (for us) active thread to stall at any time.  We take several
     * precautions to bound losses (and thus bound gains), mainly in
     * methods tryCompensate and awaitJoin.
     *
     * Common Pool
     * ===========
     *
     * The static common Pool always exists after static
     * initialization.  Since it (or any other created pool) need
     * never be used, we minimize initial construction overhead and
     * footprint to the setup of about a dozen fields, with no nested
     * allocation. Most bootstrapping occurs within method
     * fullExternalPush during the first submission to the pool.
     *
     * When external threads submit to the common pool, they can
     * perform some subtask processing (see externalHelpJoin and
     * related methods).  We do not need to record whether these
     * submissions are to the common pool -- if not, externalHelpJoin
     * returns quickly (at the most helping to signal some common pool
     * workers). These submitters would otherwise be blocked waiting
     * for completion, so the extra effort (with liberally sprinkled
     * task status checks) in inapplicable cases amounts to an odd
     * form of limited spin-wait before blocking in ForkJoinTask.join.
     *
     * Style notes
     * ===========
     *
     * There is a lot of representation-level coupling among classes
     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
     * fields of WorkQueue maintain data structures managed by
     * ForkJoinPool, so are directly accessed.  There is little point
     * trying to reduce this, since any associated future changes in
     * representations will need to be accompanied by algorithmic
     * changes anyway. Several methods intrinsically sprawl because
     * they must accumulate sets of consistent reads of volatiles held
     * in local variables.  Methods signalWork() and scan() are the
     * main bottlenecks, so are especially heavily
     * micro-optimized/mangled.  There are lots of inline assignments
     * (of form "while ((local = field) != 0)") which are usually the
     * simplest way to ensure the required read orderings (which are
     * sometimes critical). This leads to a "C"-like style of listing
     * declarations of these locals at the heads of methods or blocks.
     * There are several occurrences of the unusual "do {} while
     * (!cas...)"  which is the simplest way to force an update of a
     * CAS'ed variable. There are also other coding oddities (including
     * several unnecessary-looking hoisted null checks) that help
     * some methods perform reasonably even when interpreted (not
     * compiled).
     *
     * The order of declarations in this file is:
     * (1) Static utility functions
     * (2) Nested (static) classes
     * (3) Static fields
     * (4) Fields, along with constants used when unpacking some of them
     * (5) Internal control methods
     * (6) Callbacks and other support for ForkJoinTask methods
     * (7) Exported methods
     * (8) Static block initializing statics in minimally dependent order
     */

   // Static utilities

   /**
    * If there is a security manager, makes sure caller has
    * permission to modify threads.
    */
   private static void checkPermission() {
      SecurityManager security = System.getSecurityManager();
      if (security != null)
         security.checkPermission(modifyThreadPermission);
   }

   // Nested classes

   /**
    * Factory for creating new {@link ForkJoinWorkerThread}s.
    * A {@code ForkJoinWorkerThreadFactory} must be defined and used
    * for {@code ForkJoinWorkerThread} subclasses that extend base
    * functionality or initialize threads with different contexts.
    */
   public static interface ForkJoinWorkerThreadFactory {
      /**
       * Returns a new worker thread operating in the given pool.
       *
       * @param pool the pool this thread works in
       * @throws NullPointerException if the pool is null
       */
      public ForkJoinWorkerThread newThread(ForkJoinPool pool);
   }

   /**
    * Default ForkJoinWorkerThreadFactory implementation; creates a
    * new ForkJoinWorkerThread.
    */
   static final class DefaultForkJoinWorkerThreadFactory
         implements ForkJoinWorkerThreadFactory {
      public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
         return new ForkJoinWorkerThread(pool);
      }
   }

   /**
    * Per-thread records for threads that submit to pools. Currently
    * holds only pseudo-random seed / index that is used to choose
    * submission queues in method externalPush. In the future, this may
    * also incorporate a means to implement different task rejection
    * and resubmission policies.
    *
    * Seeds for submitters and workers/workQueues work in basically
    * the same way but are initialized and updated using slightly
    * different mechanics. Both are initialized using the same
    * approach as in class ThreadLocal, where successive values are
    * unlikely to collide with previous values. Seeds are then
    * randomly modified upon collisions using xorshifts, which
    * requires a non-zero seed.
    */
   static final class Submitter {
      int seed;
      Submitter(int s) { seed = s; }
   }

   /**
    * Class for artificial tasks that are used to replace the target
    * of local joins if they are removed from an interior queue slot
    * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
    * actually do anything beyond having a unique identity.
    */
   static final class EmptyTask extends ForkJoinTask<Void> {
      private static final long serialVersionUID = -7721805057305804111L;
      EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
      public final Void getRawResult() { return null; }
      public final void setRawResult(Void x) {}
      public final boolean exec() { return true; }
   }

   /**
    * Queues supporting work-stealing as well as external task
    * submission. See above for main rationale and algorithms.
    * Implementation relies heavily on "Unsafe" intrinsics
    * and selective use of "volatile":
    *
    * Field "base" is the index (mod array.length) of the least valid
    * queue slot, which is always the next position to steal (poll)
    * from if nonempty. Reads and writes require volatile orderings
    * but not CAS, because updates are only performed after slot
    * CASes.
    *
    * Field "top" is the index (mod array.length) of the next queue
    * slot to push to or pop from. It is written only by owner thread
    * for push, or under lock for external/shared push, and accessed
    * by other threads only after reading (volatile) base.  Both top
    * and base are allowed to wrap around on overflow, but (top -
    * base) (or more commonly -(base - top) to force volatile read of
    * base before top) still estimates size. The lock ("qlock") is
    * forced to -1 on termination, causing all further lock attempts
    * to fail. (Note: we don't need CAS for termination state because
    * upon pool shutdown, all shared-queues will stop being used
    * anyway.)  Nearly all lock bodies are set up so that exceptions
    * within lock bodies are "impossible" (modulo JVM errors that
    * would cause failure anyway.)
    *
    * The array slots are read and written using the emulation of
    * volatiles/atomics provided by Unsafe. Insertions must in
    * general use putOrderedObject as a form of releasing store to
    * ensure that all writes to the task object are ordered before
    * its publication in the queue.  All removals entail a CAS to
    * null.  The array is always a power of two. To ensure safety of
    * Unsafe array operations, all accesses perform explicit null
    * checks and implicit bounds checks via power-of-two masking.
    *
    * In addition to basic queuing support, this class contains
    * fields described elsewhere to control execution. It turns out
    * to work better memory-layout-wise to include them in this class
    * rather than a separate class.
    *
    * Performance on most platforms is very sensitive to placement of
    * instances of both WorkQueues and their arrays -- we absolutely
    * do not want multiple WorkQueue instances or multiple queue
    * arrays sharing cache lines. (It would be best for queue objects
    * and their arrays to share, but there is nothing available to
    * help arrange that).  Unfortunately, because they are recorded
    * in a common array, WorkQueue instances are often moved to be
    * adjacent by garbage collectors. To reduce impact, we use field
    * padding that works OK on common platforms; this effectively
    * trades off slightly slower average field access for the sake of
    * avoiding really bad worst-case access. (Until better JVM
    * support is in place, this padding is dependent on transient
    * properties of JVM field layout rules.) We also take care in
    * allocating, sizing and resizing the array. Non-shared queue
    * arrays are initialized by workers before use. Others are
    * allocated on first use.
    */
   static final class WorkQueue {
      /**
       * Capacity of work-stealing queue array upon initialization.
       * Must be a power of two; at least 4, but should be larger to
       * reduce or eliminate cacheline sharing among queues.
       * Currently, it is much larger, as a partial workaround for
       * the fact that JVMs often place arrays in locations that
       * share GC bookkeeping (especially cardmarks) such that
       * per-write accesses encounter serious memory contention.
       */
      static final int INITIAL_QUEUE_CAPACITY = 1 << 13;

      /**
       * Maximum size for queue arrays. Must be a power of two less
       * than or equal to 1 << (31 - width of array entry) to ensure
       * lack of wraparound of index calculations, but defined to a
       * value a bit less than this to help users trap runaway
       * programs before saturating systems.
       */
      static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M

      // Heuristic padding to ameliorate unfortunate memory placements
      volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;

      int seed;                  // for random scanning; initialize nonzero
      volatile int eventCount;   // encoded inactivation count; < 0 if inactive
      int nextWait;              // encoded record of next event waiter
      int hint;                  // steal or signal hint (index)
      int poolIndex;             // index of this queue in pool (or 0)
      final int mode;            // 0: lifo, > 0: fifo, < 0: shared
      int nsteals;               // number of steals
      volatile int qlock;        // 1: locked, -1: terminate; else 0
      volatile int base;         // index of next slot for poll
      int top;                   // index of next slot for push
      ForkJoinTask<?>[] array;   // the elements (initially unallocated)
      final ForkJoinPool pool;   // the containing pool (may be null)
      final ForkJoinWorkerThread owner; // owning thread or null if shared
      volatile Thread parker;    // == owner during call to park; else null
      volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
      ForkJoinTask<?> currentSteal; // current non-local task being executed

      volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
      volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;

      WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
            int seed) {
         this.pool = pool;
         this.owner = owner;
         this.mode = mode;
         this.seed = seed;
         // Place indices in the center of array (that is not yet allocated)
         base = top = INITIAL_QUEUE_CAPACITY >>> 1;
      }

      /**
       * Returns the approximate number of tasks in the queue.
       */
      final int queueSize() {
         int n = base - top;       // non-owner callers must read base first
         return (n >= 0) ? 0 : -n; // ignore transient negative
      }

      /**
       * Provides a more accurate estimate of whether this queue has
       * any tasks than does queueSize, by checking whether a
       * near-empty queue has at least one unclaimed task.
       */
      final boolean isEmpty() {
         ForkJoinTask<?>[] a; int m, s;
         int n = base - (s = top);
         return (n >= 0 ||
                       (n == -1 &&
                              ((a = array) == null ||
                                     (m = a.length - 1) < 0 ||
                                     U.getObject
                                           (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
      }

      /**
       * Pushes a task. Call only by owner in unshared queues.  (The
       * shared-queue version is embedded in method externalPush.)
       *
       * @param task the task. Caller must ensure non-null.
       * @throws RejectedExecutionException if array cannot be resized
       */
      final void push(ForkJoinTask<?> task) {
         ForkJoinTask<?>[] a; ForkJoinPool p;
         int s = top, m, n;
         if ((a = array) != null) {    // ignore if queue removed
            int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
            U.putOrderedObject(a, j, task);
            if ((n = (top = s + 1) - base) <= 2) {
               if ((p = pool) != null)
                  p.signalWork(this);
            }
            else if (n >= m)
               growArray();
         }
      }

      /**
       * Initializes or doubles the capacity of array. Call either
       * by owner or with lock held -- it is OK for base, but not
       * top, to move while resizings are in progress.
       */
      final ForkJoinTask<?>[] growArray() {
         ForkJoinTask<?>[] oldA = array;
         int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
         if (size > MAXIMUM_QUEUE_CAPACITY)
            throw new RejectedExecutionException("Queue capacity exceeded");
         int oldMask, t, b;
         ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
         if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
               (t = top) - (b = base) > 0) {
            int mask = size - 1;
            do {
               ForkJoinTask<?> x;
               int oldj = ((b & oldMask) << ASHIFT) + ABASE;
               int j    = ((b &    mask) << ASHIFT) + ABASE;
               x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
               if (x != null &&
                     U.compareAndSwapObject(oldA, oldj, x, null))
                  U.putObjectVolatile(a, j, x);
            } while (++b != t);
         }
         return a;
      }

      /**
       * Takes next task, if one exists, in LIFO order.  Call only
       * by owner in unshared queues.
       */
      final ForkJoinTask<?> pop() {
         ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
         if ((a = array) != null && (m = a.length - 1) >= 0) {
            for (int s; (s = top - 1) - base >= 0;) {
               long j = ((m & s) << ASHIFT) + ABASE;
               if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
                  break;
               if (U.compareAndSwapObject(a, j, t, null)) {
                  top = s;
                  return t;
               }
            }
         }
         return null;
      }

      /**
       * Takes a task in FIFO order if b is base of queue and a task
       * can be claimed without contention. Specialized versions
       * appear in ForkJoinPool methods scan and tryHelpStealer.
       */
      final ForkJoinTask<?> pollAt(int b) {
         ForkJoinTask<?> t; ForkJoinTask<?>[] a;
         if ((a = array) != null) {
            int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
            if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
                  base == b &&
                  U.compareAndSwapObject(a, j, t, null)) {
               base = b + 1;
               return t;
            }
         }
         return null;
      }

      /**
       * Takes next task, if one exists, in FIFO order.
       */
      final ForkJoinTask<?> poll() {
         ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
         while ((b = base) - top < 0 && (a = array) != null) {
            int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
            t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
            if (t != null) {
               if (base == b &&
                     U.compareAndSwapObject(a, j, t, null)) {
                  base = b + 1;
                  return t;
               }
            }
            else if (base == b) {
               if (b + 1 == top)
                  break;
               Thread.yield(); // wait for lagging update (very rare)
            }
         }
         return null;
      }

      /**
       * Takes next task, if one exists, in order specified by mode.
       */
      final ForkJoinTask<?> nextLocalTask() {
         return mode == 0 ? pop() : poll();
      }

      /**
       * Returns next task, if one exists, in order specified by mode.
       */
      final ForkJoinTask<?> peek() {
         ForkJoinTask<?>[] a = array; int m;
         if (a == null || (m = a.length - 1) < 0)
            return null;
         int i = mode == 0 ? top - 1 : base;
         int j = ((i & m) << ASHIFT) + ABASE;
         return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
      }

      /**
       * Pops the given task only if it is at the current top.
       * (A shared version is available only via FJP.tryExternalUnpush)
       */
      final boolean tryUnpush(ForkJoinTask<?> t) {
         ForkJoinTask<?>[] a; int s;
         if ((a = array) != null && (s = top) != base &&
               U.compareAndSwapObject
                     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
            top = s;
            return true;
         }
         return false;
      }

      /**
       * Removes and cancels all known tasks, ignoring any exceptions.
       */
      final void cancelAll() {
         ForkJoinTask.cancelIgnoringExceptions(currentJoin);
         ForkJoinTask.cancelIgnoringExceptions(currentSteal);
         for (ForkJoinTask<?> t; (t = poll()) != null; )
            ForkJoinTask.cancelIgnoringExceptions(t);
      }

      /**
       * Computes next value for random probes.  Scans don't require
       * a very high quality generator, but also not a crummy one.
       * Marsaglia xor-shift is cheap and works well enough.  Note:
       * This is manually inlined in its usages in ForkJoinPool to
       * avoid writes inside busy scan loops.
       */
      final int nextSeed() {
         int r = seed;
         r ^= r << 13;
         r ^= r >>> 17;
         return seed = r ^= r << 5;
      }

      // Specialized execution methods

      /**
       * Pops and runs tasks until empty.
       */
      private void popAndExecAll() {
         // A bit faster than repeated pop calls
         ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
         while ((a = array) != null && (m = a.length - 1) >= 0 &&
               (s = top - 1) - base >= 0 &&
               (t = ((ForkJoinTask<?>)
                           U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
                     != null) {
            if (U.compareAndSwapObject(a, j, t, null)) {
               top = s;
               t.doExec();
            }
         }
      }

      /**
       * Polls and runs tasks until empty.
       */
      private void pollAndExecAll() {
         for (ForkJoinTask<?> t; (t = poll()) != null;)
            t.doExec();
      }

      /**
       * If present, removes from queue and executes the given task,
       * or any other cancelled task. Returns (true) on any CAS
       * or consistency check failure so caller can retry.
       *
       * @return false if no progress can be made, else true
       */
      final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
         boolean stat = true, removed = false, empty = true;
         ForkJoinTask<?>[] a; int m, s, b, n;
         if ((a = array) != null && (m = a.length - 1) >= 0 &&
               (n = (s = top) - (b = base)) > 0) {
            for (ForkJoinTask<?> t;;) {           // traverse from s to b
               int j = ((--s & m) << ASHIFT) + ABASE;
               t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
               if (t == null)                    // inconsistent length
                  break;
               else if (t == task) {
                  if (s + 1 == top) {           // pop
                     if (!U.compareAndSwapObject(a, j, task, null))
                        break;
                     top = s;
                     removed = true;
                  }
                  else if (base == b)           // replace with proxy
                     removed = U.compareAndSwapObject(a, j, task,
                           new EmptyTask());
                  break;
               }
               else if (t.status >= 0)
                  empty = false;
               else if (s + 1 == top) {          // pop and throw away
                  if (U.compareAndSwapObject(a, j, t, null))
                     top = s;
                  break;
               }
               if (--n == 0) {
                  if (!empty && base == b)
                     stat = false;
                  break;
               }
            }
         }
         if (removed)
            task.doExec();
         return stat;
      }

      /**
       * Polls for and executes the given task or any other task in
       * its CountedCompleter computation.
       */
      final boolean pollAndExecCC(ForkJoinTask<?> root) {
         ForkJoinTask<?>[] a; int b; Object o;
         outer: while ((b = base) - top < 0 && (a = array) != null) {
            long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
            if ((o = U.getObject(a, j)) == null ||
                  !(o instanceof CountedCompleter))
               break;
            for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
               if (r == root) {
                  if (base == b &&
                        U.compareAndSwapObject(a, j, t, null)) {
                     base = b + 1;
                     t.doExec();
                     return true;
                  }
                  else
                     break; // restart
               }
               if ((r = r.completer) == null)
                  break outer; // not part of root computation
            }
         }
         return false;
      }

      /**
       * Executes a top-level task and any local tasks remaining
       * after execution.
       */
      final void runTask(ForkJoinTask<?> t) {
         if (t != null) {
            (currentSteal = t).doExec();
            currentSteal = null;
            ++nsteals;
            if (base - top < 0) {       // process remaining local tasks
               if (mode == 0)
                  popAndExecAll();
               else
                  pollAndExecAll();
            }
         }
      }

      /**
       * Executes a non-top-level (stolen) task.
       */
      final void runSubtask(ForkJoinTask<?> t) {
         if (t != null) {
            ForkJoinTask<?> ps = currentSteal;
            (currentSteal = t).doExec();
            currentSteal = ps;
         }
      }

      /**
       * Returns true if owned and not known to be blocked.
       */
      final boolean isApparentlyUnblocked() {
         Thread wt; Thread.State s;
         return (eventCount >= 0 &&
                       (wt = owner) != null &&
                       (s = wt.getState()) != Thread.State.BLOCKED &&
                       s != Thread.State.WAITING &&
                       s != Thread.State.TIMED_WAITING);
      }

      // Unsafe mechanics
      private static final sun.misc.Unsafe U;
      private static final long QLOCK;
      private static final int ABASE;
      private static final int ASHIFT;
      static {
         try {
            U = getUnsafe();
            Class<?> k = WorkQueue.class;
            Class<?> ak = ForkJoinTask[].class;
            QLOCK = U.objectFieldOffset
                  (k.getDeclaredField("qlock"));
            ABASE = U.arrayBaseOffset(ak);
            int scale = U.arrayIndexScale(ak);
            if ((scale & (scale - 1)) != 0)
               throw new Error("data type scale not a power of two");
            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
         } catch (Exception e) {
            throw new Error(e);
         }
      }
   }

   // static fields (initialized in static initializer below)

   /**
    * Creates a new ForkJoinWorkerThread. This factory is used unless
    * overridden in ForkJoinPool constructors.
    */
   public static final ForkJoinWorkerThreadFactory
         defaultForkJoinWorkerThreadFactory;

   /**
    * Per-thread submission bookkeeping. Shared across all pools
    * to reduce ThreadLocal pollution and because random motion
    * to avoid contention in one pool is likely to hold for others.
    * Lazily initialized on first submission (but null-checked
    * in other contexts to avoid unnecessary initialization).
    */
   static final ThreadLocal<Submitter> submitters;

   /**
    * Permission required for callers of methods that may start or
    * kill threads.
    */
   private static final RuntimePermission modifyThreadPermission;

   /**
    * Common (static) pool. Non-null for public use unless a static
    * construction exception, but internal usages null-check on use
    * to paranoically avoid potential initialization circularities
    * as well as to simplify generated code.
    */
   static final ForkJoinPool common;

   /**
    * Common pool parallelism. Must equal common.parallelism.
    */
   static final int commonParallelism;

   /**
    * Sequence number for creating workerNamePrefix.
    */
   private static int poolNumberSequence;

   /**
    * Returns the next sequence number. We don't expect this to
    * ever contend, so use simple builtin sync.
    */
   private static final synchronized int nextPoolId() {
      return ++poolNumberSequence;
   }

   // static constants

   /**
    * Initial timeout value (in nanoseconds) for the thread
    * triggering quiescence to park waiting for new work. On timeout,
    * the thread will instead try to shrink the number of
    * workers. The value should be large enough to avoid overly
    * aggressive shrinkage during most transient stalls (long GCs
    * etc).
    */
   private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec

   /**
    * Timeout value when there are more threads than parallelism level
    */
   private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;

   /**
    * Tolerance for idle timeouts, to cope with timer undershoots
    */
   private static final long TIMEOUT_SLOP = 2000000L;

   /**
    * The maximum stolen->joining link depth allowed in method
    * tryHelpStealer.  Must be a power of two.  Depths for legitimate
    * chains are unbounded, but we use a fixed constant to avoid
    * (otherwise unchecked) cycles and to bound staleness of
    * traversal parameters at the expense of sometimes blocking when
    * we could be helping.
    */
   private static final int MAX_HELP = 64;

   /**
    * Increment for seed generators. See class ThreadLocal for
    * explanation.
    */
   private static final int SEED_INCREMENT = 0x61c88647;

    /*
     * Bits and masks for control variables
     *
     * Field ctl is a long packed with:
     * AC: Number of active running workers minus target parallelism (16 bits)
     * TC: Number of total workers minus target parallelism (16 bits)
     * ST: true if pool is terminating (1 bit)
     * EC: the wait count of top waiting thread (15 bits)
     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
     *
     * When convenient, we can extract the upper 32 bits of counts and
     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
     * (int)ctl.  The ec field is never accessed alone, but always
     * together with id and st. The offsets of counts by the target
     * parallelism and the positionings of fields makes it possible to
     * perform the most common checks via sign tests of fields: When
     * ac is negative, there are not enough active workers, when tc is
     * negative, there are not enough total workers, and when e is
     * negative, the pool is terminating.  To deal with these possibly
     * negative fields, we use casts in and out of "short" and/or
     * signed shifts to maintain signedness.
     *
     * When a thread is queued (inactivated), its eventCount field is
     * set negative, which is the only way to tell if a worker is
     * prevented from executing tasks, even though it must continue to
     * scan for them to avoid queuing races. Note however that
     * eventCount updates lag releases so usage requires care.
     *
     * Field plock is an int packed with:
     * SHUTDOWN: true if shutdown is enabled (1 bit)
     * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
     * SIGNAL: set when threads may be waiting on the lock (1 bit)
     *
     * The sequence number enables simple consistency checks:
     * Staleness of read-only operations on the workQueues array can
     * be checked by comparing plock before vs after the reads.
     */

   // bit positions/shifts for fields
   private static final int  AC_SHIFT   = 48;
   private static final int  TC_SHIFT   = 32;
   private static final int  ST_SHIFT   = 31;
   private static final int  EC_SHIFT   = 16;

   // bounds
   private static final int  SMASK      = 0xffff// short bits
   private static final int  MAX_CAP    = 0x7fff// max #workers - 1
   private static final int  EVENMASK   = 0xfffe// even short bits
   private static final int  SQMASK     = 0x007e// max 64 (even) slots
   private static final int  SHORT_SIGN = 1 << 15;
   private static final int  INT_SIGN   = 1 << 31;

   // masks
   private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
   private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
   private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;

   // units for incrementing and decrementing
   private static final long TC_UNIT    = 1L << TC_SHIFT;
   private static final long AC_UNIT    = 1L << AC_SHIFT;

   // masks and units for dealing with u = (int)(ctl >>> 32)
   private static final int  UAC_SHIFT  = AC_SHIFT - 32;
   private static final int  UTC_SHIFT  = TC_SHIFT - 32;
   private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
   private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
   private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
   private static final int  UTC_UNIT   = 1 << UTC_SHIFT;

   // masks and units for dealing with e = (int)ctl
   private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
   private static final int E_SEQ       = 1 << EC_SHIFT;

   // plock bits
   private static final int SHUTDOWN    = 1 << 31;
   private static final int PL_LOCK     = 2;
   private static final int PL_SIGNAL   = 1;
   private static final int PL_SPINS    = 1 << 8;

   // access mode for WorkQueue
   static final int LIFO_QUEUE          =  0;
   static final int FIFO_QUEUE          =  1;
   static final int SHARED_QUEUE        = -1;

   // bounds for #steps in scan loop -- must be power 2 minus 1
   private static final int MIN_SCAN    = 0x1ff;   // cover estimation slop
   private static final int MAX_SCAN    = 0x1ffff; // 4 * max workers

   // Instance fields

    /*
     * Field layout of this class tends to matter more than one would
     * like. Runtime layout order is only loosely related to
     * declaration order and may differ across JVMs, but the following
     * empirically works OK on current JVMs.
     */

   // Heuristic padding to ameliorate unfortunate memory placements
   volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;

   volatile long stealCount;                  // collects worker counts
   volatile long ctl;                         // main pool control
   volatile int plock;                        // shutdown status and seqLock
   volatile int indexSeed;                    // worker/submitter index seed
   final int config;                          // mode and parallelism level
   WorkQueue[] workQueues;                    // main registry
   final ForkJoinWorkerThreadFactory factory;
   final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
   final String workerNamePrefix;             // to create worker name string

   volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
   volatile Object pad18, pad19, pad1a, pad1b;

   /**
    * Acquires the plock lock to protect worker array and related
    * updates. This method is called only if an initial CAS on plock
    * fails. This acts as a spinlock for normal cases, but falls back
    * to builtin monitor to block when (rarely) needed. This would be
    * a terrible idea for a highly contended lock, but works fine as
    * a more conservative alternative to a pure spinlock.
    */
   private int acquirePlock() {
      int spins = PL_SPINS, r = 0, ps, nps;
      for (;;) {
         if (((ps = plock) & PL_LOCK) == 0 &&
               U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
            return nps;
         else if (r == 0) { // randomize spins if possible
            Thread t = Thread.currentThread(); WorkQueue w; Submitter z;
            if ((t instanceof ForkJoinWorkerThread) &&
                  (w = ((ForkJoinWorkerThread)t).workQueue) != null)
               r = w.seed;
            else if ((z = submitters.get()) != null)
               r = z.seed;
            else
               r = 1;
         }
         else if (spins >= 0) {
            r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
            if (r >= 0)
               --spins;
         }
         else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
            synchronized (this) {
               if ((plock & PL_SIGNAL) != 0) {
                  try {
                     wait();
                  } catch (InterruptedException ie) {
                     try {
                        Thread.currentThread().interrupt();
                     } catch (SecurityException ignore) {
                     }
                  }
               }
               else
                  notifyAll();
            }
         }
      }
   }

   /**
    * Unlocks and signals any thread waiting for plock. Called only
    * when CAS of seq value for unlock fails.
    */
   private void releasePlock(int ps) {
      plock = ps;
      synchronized (this) { notifyAll(); }
   }

   /**
    * Tries to create and start one worker if fewer than target
    * parallelism level exist. Adjusts counts etc on failure.
    */
   private void tryAddWorker() {
      long c; int u;
      while ((u = (int)((c = ctl) >>> 32)) < 0 &&
            (u & SHORT_SIGN) != 0 && (int)c == 0) {
         long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
                                ((u + UAC_UNIT) & UAC_MASK)) << 32;
         if (U.compareAndSwapLong(this, CTL, c, nc)) {
            ForkJoinWorkerThreadFactory fac;
            Throwable ex = null;
            ForkJoinWorkerThread wt = null;
            try {
               if ((fac = factory) != null &&
                     (wt = fac.newThread(this)) != null) {
                  wt.start();
                  break;
               }
            } catch (Throwable e) {
               ex = e;
            }
            deregisterWorker(wt, ex);
            break;
         }
      }
   }

   //  Registering and deregistering workers

   /**
    * Callback from ForkJoinWorkerThread to establish and record its
    * WorkQueue. To avoid scanning bias due to packing entries in
    * front of the workQueues array, we treat the array as a simple
    * power-of-two hash table using per-thread seed as hash,
    * expanding as needed.
    *
    * @param wt the worker thread
    * @return the worker's queue
    */
   final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
      Thread.UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
      wt.setDaemon(true);
      if ((handler = ueh) != null)
         wt.setUncaughtExceptionHandler(handler);
      do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
            s += SEED_INCREMENT) ||
            s == 0); // skip 0
      WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
      if (((ps = plock) & PL_LOCK) != 0 ||
            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
         ps = acquirePlock();
      int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
      try {
         if ((ws = workQueues) != null) {    // skip if shutting down
            int n = ws.length, m = n - 1;
            int r = (s << 1) | 1;           // use odd-numbered indices
            if (ws[r &= m] != null) {       // collision
               int probes = 0;             // step by approx half size
               int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
               while (ws[r = (r + step) & m] != null) {
                  if (++probes >= n) {
                     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
                     m = n - 1;
                     probes = 0;
                  }
               }
            }
            w.eventCount = w.poolIndex = r; // volatile write orders
            ws[r] = w;
         }
      } finally {
         if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
            releasePlock(nps);
      }
      wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
      return w;
   }

   /**
    * Final callback from terminating worker, as well as upon failure
    * to construct or start a worker.  Removes record of worker from
    * array, and adjusts counts. If pool is shutting down, tries to
    * complete termination.
    *
    * @param wt the worker thread or null if construction failed
    * @param ex the exception causing failure, or null if none
    */
   final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
      WorkQueue w = null;
      if (wt != null && (w = wt.workQueue) != null) {
         int ps;
         w.qlock = -1;                // ensure set
         long ns = w.nsteals, sc;     // collect steal count
         do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
               sc = stealCount, sc + ns));
         if (((ps = plock) & PL_LOCK) != 0 ||
               !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
            ps = acquirePlock();
         int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
         try {
            int idx = w.poolIndex;
            WorkQueue[] ws = workQueues;
            if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
               ws[idx] = null;
         } finally {
            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
               releasePlock(nps);
         }
      }

      long c;                          // adjust ctl counts
      do {} while (!U.compareAndSwapLong
            (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
                                        ((c - TC_UNIT) & TC_MASK) |
                                        (c & ~(AC_MASK|TC_MASK)))));

      if (!tryTerminate(false, false) && w != null && w.array != null) {
         w.cancelAll();               // cancel remaining tasks
         WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
         while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
            if (e > 0) {             // activate or create replacement
               if ((ws = workQueues) == null ||
                     (i = e & SMASK) >= ws.length ||
                     (v = ws[i]) == null)
                  break;
               long nc = (((long)(v.nextWait & E_MASK)) |
                                ((long)(u + UAC_UNIT) << 32));
               if (v.eventCount != (e | INT_SIGN))
                  break;
               if (U.compareAndSwapLong(this, CTL, c, nc)) {
                  v.eventCount = (e + E_SEQ) & E_MASK;
                  if ((p = v.parker) != null)
                     U.unpark(p);
                  break;
               }
            }
            else {
               if ((short)u < 0)
                  tryAddWorker();
               break;
            }
         }
      }
      if (ex == null)                     // help clean refs on way out
         ForkJoinTask.helpExpungeStaleExceptions();
      else                                // rethrow
         ForkJoinTask.rethrow(ex);
   }

   // Submissions

   /**
    * Unless shutting down, adds the given task to a submission queue
    * at submitter's current queue index (modulo submission
    * range). Only the most common path is directly handled in this
    * method. All others are relayed to fullExternalPush.
    *
    * @param task the task. Caller must ensure non-null.
    */
   final void externalPush(ForkJoinTask<?> task) {
      WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
      if ((z = submitters.get()) != null && plock > 0 &&
            (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
            (q = ws[m & z.seed & SQMASK]) != null &&
            U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
         int b = q.base, s = q.top, n, an;
         if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
            int j = (((an - 1) & s) << ASHIFT) + ABASE;
            U.putOrderedObject(a, j, task);
            q.top = s + 1;                     // push on to deque
            q.qlock = 0;
            if (n <= 2)
               signalWork(q);
            return;
         }
         q.qlock = 0;
      }
      fullExternalPush(task);
   }

   /**
    * Full version of externalPush. This method is called, among
    * other times, upon the first submission of the first task to the
    * pool, so must perform secondary initialization.  It also
    * detects first submission by an external thread by looking up
    * its ThreadLocal, and creates a new shared queue if the one at
    * index if empty or contended. The plock lock body must be
    * exception-free (so no try/finally) so we optimistically
    * allocate new queues outside the lock and throw them away if
    * (very rarely) not needed.
    *
    * Secondary initialization occurs when plock is zero, to create
    * workQueue array and set plock to a valid value.  This lock body
    * must also be exception-free. Because the plock seq value can
    * eventually wrap around zero, this method harmlessly fails to
    * reinitialize if workQueues exists, while still advancing plock.
    */
   private void fullExternalPush(ForkJoinTask<?> task) {
      int r = 0; // random index seed
      for (Submitter z = submitters.get();;) {
         WorkQueue[] ws; WorkQueue q; int ps, m, k;
         if (z == null) {
            if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
                  r += SEED_INCREMENT) && r != 0)
               submitters.set(z = new Submitter(r));
         }
         else if (r == 0) {                  // move to a different index
            r = z.seed;
            r ^= r << 13;                   // same xorshift as WorkQueues
            r ^= r >>> 17;
            z.seed = r ^ (r << 5);
         }
         else if ((ps = plock) < 0)
            throw new RejectedExecutionException();
         else if (ps == 0 || (ws = workQueues) == null ||
               (m = ws.length - 1) < 0) { // initialize workQueues
            int p = config & SMASK;         // find power of two table size
            int n = (p > 1) ? p - 1 : 1;    // ensure at least 2 slots
            n |= n >>> 1; n |= n >>> 2;  n |= n >>> 4;
            n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
            WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
                                     new WorkQueue[n] : null);
            if (((ps = plock) & PL_LOCK) != 0 ||
                  !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
               ps = acquirePlock();
            if (((ws = workQueues) == null || ws.length == 0) && nws != null)
               workQueues = nws;
            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
               releasePlock(nps);
         }
         else if ((q = ws[k = r & m & SQMASK]) != null) {
            if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
               ForkJoinTask<?>[] a = q.array;
               int s = q.top;
               boolean submitted = false;
               try {                      // locked version of push
                  if ((a != null && a.length > s + 1 - q.base) ||
                        (a = q.growArray()) != null) {   // must presize
                     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
                     U.putOrderedObject(a, j, task);
                     q.top = s + 1;
                     submitted = true;
                  }
               } finally {
                  q.qlock = 0// unlock
               }
               if (submitted) {
                  signalWork(q);
                  return;
               }
            }
            r = 0; // move on failure
         }
         else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
            q = new WorkQueue(this, null, SHARED_QUEUE, r);
            if (((ps = plock) & PL_LOCK) != 0 ||
                  !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
               ps = acquirePlock();
            if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
               ws[k] = q;
            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
               releasePlock(nps);
         }
         else
            r = 0; // try elsewhere while lock held
      }
   }

   // Maintaining ctl counts

   /**
    * Increments active count; mainly called upon return from blocking.
    */
   final void incrementActiveCount() {
      long c;
      do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
   }

   /**
    * Tries to create or activate a worker if too few are active.
    *
    * @param q the (non-null) queue holding tasks to be signalled
    */
   final void signalWork(WorkQueue q) {
      int hint = q.poolIndex;
      long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
      while ((u = (int)((c = ctl) >>> 32)) < 0) {
         if ((e = (int)c) > 0) {
            if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
                  (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
               long nc = (((long)(w.nextWait & E_MASK)) |
                                ((long)(u + UAC_UNIT) << 32));
               if (U.compareAndSwapLong(this, CTL, c, nc)) {
                  w.hint = hint;
                  w.eventCount = (e + E_SEQ) & E_MASK;
                  if ((p = w.parker) != null)
                     U.unpark(p);
                  break;
               }
               if (q.top - q.base <= 0)
                  break;
            }
            else
               break;
         }
         else {
            if ((short)u < 0)
               tryAddWorker();
            break;
         }
      }
   }

   // Scanning for tasks

   /**
    * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
    */
   final void runWorker(WorkQueue w) {
      w.growArray(); // allocate queue
      do { w.runTask(scan(w)); } while (w.qlock >= 0);
   }

   /**
    * Scans for and, if found, returns one task, else possibly
    * inactivates the worker. This method operates on single reads of
    * volatile state and is designed to be re-invoked continuously,
    * in part because it returns upon detecting inconsistencies,
    * contention, or state changes that indicate possible success on
    * re-invocation.
    *
    * The scan searches for tasks across queues (starting at a random
    * index, and relying on registerWorker to irregularly scatter
    * them within array to avoid bias), checking each at least twice.
    * The scan terminates upon either finding a non-empty queue, or
    * completing the sweep. If the worker is not inactivated, it
    * takes and returns a task from this queue. Otherwise, if not
    * activated, it signals workers (that may include itself) and
    * returns so caller can retry. Also returns for true if the
    * worker array may have changed during an empty scan.  On failure
    * to find a task, we take one of the following actions, after
    * which the caller will retry calling this method unless
    * terminated.
    *
    * * If pool is terminating, terminate the worker.
    *
    * * If not already enqueued, try to inactivate and enqueue the
    * worker on wait queue. Or, if inactivating has caused the pool
    * to be quiescent, relay to idleAwaitWork to possibly shrink
    * pool.
    *
    * * If already enqueued and none of the above apply, possibly
    * park awaiting signal, else lingering to help scan and signal.
    *
    * * If a non-empty queue discovered or left as a hint,
    * help wake up other workers before return.
    *
    * @param w the worker (via its WorkQueue)
    * @return a task or null if none found
    */
   private final ForkJoinTask<?> scan(WorkQueue w) {
      WorkQueue[] ws; int m;
      int ps = plock;                          // read plock before ws
      if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
         int ec = w.eventCount;               // ec is negative if inactive
         int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
         w.hint = -1;                         // update seed and clear hint
         int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
         do {
            WorkQueue q; ForkJoinTask<?>[] a; int b;
            if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
                  (a = q.array) != null) {     // probably nonempty
               int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
               ForkJoinTask<?> t = (ForkJoinTask<?>)
                     U.getObjectVolatile(a, i);
               if (q.base == b && ec >= 0 && t != null &&
                     U.compareAndSwapObject(a, i, t, null)) {
                  if ((q.base = b + 1) - q.top < 0)
                     signalWork(q);
                  return t;                // taken
               }
               else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
                  w.hint = (r + j) & m;    // help signal below
                  break;                   // cannot take
               }
            }
         } while (--j >= 0);

         int h, e, ns; long c, sc; WorkQueue q;
         if ((ns = w.nsteals) != 0) {
            if (U.compareAndSwapLong(this, STEALCOUNT,
                  sc = stealCount, sc + ns))
               w.nsteals = 0;               // collect steals and rescan
         }
         else if (plock != ps)                // consistency check
            ;                                // skip
         else if ((e = (int)(c = ctl)) < 0)
            w.qlock = -1;                    // pool is terminating
         else {
            if ((h = w.hint) < 0) {
               if (ec >= 0) {               // try to enqueue/inactivate
                  long nc = (((long)ec |
                                    ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
                  w.nextWait = e;          // link and mark inactive
                  w.eventCount = ec | INT_SIGN;
                  if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
                     w.eventCount = ec;   // unmark on CAS failure
                  else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
                     idleAwaitWork(w, nc, c);
               }
               else if (w.eventCount < 0 && ctl == c) {
                  Thread wt = Thread.currentThread();
                  Thread.interrupted();    // clear status
                  U.putObject(wt, PARKBLOCKER, this);
                  w.parker = wt;           // emulate LockSupport.park
                  if (w.eventCount < 0)    // recheck
                     U.park(false, 0L);   // block
                  w.parker = null;
                  U.putObject(wt, PARKBLOCKER, null);
               }
            }
            if ((h >= 0 || (h = w.hint) >= 0) &&
                  (ws = workQueues) != null && h < ws.length &&
                  (q = ws[h]) != null) {      // signal others before retry
               WorkQueue v; Thread p; int u, i, s;
               for (int n = (config & SMASK) - 1;;) {
                  int idleCount = (w.eventCount < 0) ? 0 : -1;
                  if (((s = idleCount - q.base + q.top) <= n &&
                             (n = s) <= 0) ||
                        (u = (int)((c = ctl) >>> 32)) >= 0 ||
                        (e = (int)c) <= 0 || m < (i = e & SMASK) ||
                        (v = ws[i]) == null)
                     break;
                  long nc = (((long)(v.nextWait & E_MASK)) |
                                   ((long)(u + UAC_UNIT) << 32));
                  if (v.eventCount != (e | INT_SIGN) ||
                        !U.compareAndSwapLong(this, CTL, c, nc))
                     break;
                  v.hint = h;
                  v.eventCount = (e + E_SEQ) & E_MASK;
                  if ((p = v.parker) != null)
                     U.unpark(p);
                  if (--n <= 0)
                     break;
               }
            }
         }
      }
      return null;
   }

   /**
    * If inactivating worker w has caused the pool to become
    * quiescent, checks for pool termination, and, so long as this is
    * not the only worker, waits for event for up to a given
    * duration.  On timeout, if ctl has not changed, terminates the
    * worker, which will in turn wake up another worker to possibly
    * repeat this process.
    *
    * @param w the calling worker
    * @param currentCtl the ctl value triggering possible quiescence
    * @param prevCtl the ctl value to restore if thread is terminated
    */
   private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
      if (w != null && w.eventCount < 0 &&
            !tryTerminate(false, false) && (int)prevCtl != 0 &&
            ctl == currentCtl) {
         int dc = -(short)(currentCtl >>> TC_SHIFT);
         long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
         long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
         Thread wt = Thread.currentThread();
         while (ctl == currentCtl) {
            Thread.interrupted()// timed variant of version in scan()
            U.putObject(wt, PARKBLOCKER, this);
            w.parker = wt;
            if (ctl == currentCtl)
               U.park(false, parkTime);
            w.parker = null;
            U.putObject(wt, PARKBLOCKER, null);
            if (ctl != currentCtl)
               break;
            if (deadline - System.nanoTime() <= 0L &&
                  U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
               w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
               w.hint = -1;
               w.qlock = -1;   // shrink
               break;
            }
         }
      }
   }

   /**
    * Scans through queues looking for work while joining a task; if
    * any present, signals. May return early if more signalling is
    * detectably unneeded.
    *
    * @param task return early if done
    * @param origin an index to start scan
    */
   private void helpSignal(ForkJoinTask<?> task, int origin) {
      WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
      if (task != null && task.status >= 0 &&
            (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
            (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
         outer: for (int k = origin, j = m; j >= 0; --j) {
            WorkQueue q = ws[k++ & m];
            for (int n = m;;) { // limit to at most m signals
               if (task.status < 0)
                  break outer;
               if (q == null ||
                     ((s = -q.base + q.top) <= n && (n = s) <= 0))
                  break;
               if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
                     (e = (int)c) <= 0 || m < (i = e & SMASK) ||
                     (w = ws[i]) == null)
                  break outer;
               long nc = (((long)(w.nextWait & E_MASK)) |
                                ((long)(u + UAC_UNIT) << 32));
               if (w.eventCount != (e | INT_SIGN))
                  break outer;
               if (U.compareAndSwapLong(this, CTL, c, nc)) {
                  w.eventCount = (e + E_SEQ) & E_MASK;
                  if ((p = w.parker) != null)
                     U.unpark(p);
                  if (--n <= 0)
                     break;
               }
            }
         }
      }
   }

   /**
    * Tries to locate and execute tasks for a stealer of the given
    * task, or in turn one of its stealers, Traces currentSteal ->
    * currentJoin links looking for a thread working on a descendant
    * of the given task and with a non-empty queue to steal back and
    * execute tasks from. The first call to this method upon a
    * waiting join will often entail scanning/search, (which is OK
    * because the joiner has nothing better to do), but this method
    * leaves hints in workers to speed up subsequent calls. The
    * implementation is very branchy to cope with potential
    * inconsistencies or loops encountering chains that are stale,
    * unknown, or so long that they are likely cyclic.
    *
    * @param joiner the joining worker
    * @param task the task to join
    * @return 0 if no progress can be made, negative if task
    * known complete, else positive
    */
   private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
      int stat = 0, steps = 0;                    // bound to avoid cycles
      if (joiner != null && task != null) {       // hoist null checks
         restart: for (;;) {
            ForkJoinTask<?> subtask = task;     // current target
            for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
               WorkQueue[] ws; int m, s, h;
               if ((s = task.status) < 0) {
                  stat = s;
                  break restart;
               }
               if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
                  break restart;              // shutting down
               if ((v = ws[h = (j.hint | 1) & m]) == null ||
                     v.currentSteal != subtask) {
                  for (int origin = h;;) {    // find stealer
                     if (((h = (h + 2) & m) & 15) == 1 &&
                           (subtask.status < 0 || j.currentJoin != subtask))
                        continue restart;   // occasional staleness check
                     if ((v = ws[h]) != null &&
                           v.currentSteal == subtask) {
                        j.hint = h;        // save hint
                        break;
                     }
                     if (h == origin)
                        break restart;      // cannot find stealer
                  }
               }
               for (;;) { // help stealer or descend to its stealer
                  ForkJoinTask[] a;  int b;
                  if (subtask.status < 0)     // surround probes with
                     continue restart;       //   consistency checks
                  if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
                     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
                     ForkJoinTask<?> t =
                           (ForkJoinTask<?>)U.getObjectVolatile(a, i);
                     if (subtask.status < 0 || j.currentJoin != subtask ||
                           v.currentSteal != subtask)
                        continue restart;   // stale
                     stat = 1;               // apparent progress
                     if (t != null && v.base == b &&
                           U.compareAndSwapObject(a, i, t, null)) {
                        v.base = b + 1;     // help stealer
                        joiner.runSubtask(t);
                     }
                     else if (v.base == b && ++steps == MAX_HELP)
                        break restart;      // v apparently stalled
                  }
                  else {                      // empty -- try to descend
                     ForkJoinTask<?> next = v.currentJoin;
                     if (subtask.status < 0 || j.currentJoin != subtask ||
                           v.currentSteal != subtask)
                        continue restart;   // stale
                     else if (next == null || ++steps == MAX_HELP)
                        break restart;      // dead-end or maybe cyclic
                     else {
                        subtask = next;
                        j = v;
                        break;
                     }
                  }
               }
            }
         }
      }
      return stat;
   }

   /**
    * Analog of tryHelpStealer for CountedCompleters. Tries to steal
    * and run tasks within the target's computation.
    *
    * @param task the task to join
    * @param mode if shared, exit upon completing any task
    * if all workers are active
    */
   private int helpComplete(ForkJoinTask<?> task, int mode) {
      WorkQueue[] ws; WorkQueue q; int m, n, s, u;
      if (task != null && (ws = workQueues) != null &&
            (m = ws.length - 1) >= 0) {
         for (int j = 1, origin = j;;) {
            if ((s = task.status) < 0)
               return s;
            if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
               origin = j;
               if (mode == SHARED_QUEUE &&
                     ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
                  break;
            }
            else if ((j = (j + 2) & m) == origin)
               break;
         }
      }
      return 0;
   }

   /**
    * Tries to decrement active count (sometimes implicitly) and
    * possibly release or create a compensating worker in preparation
    * for blocking. Fails on contention or termination. Otherwise,
    * adds a new thread if no idle workers are available and pool
    * may become starved.
    */
   final boolean tryCompensate() {
      int pc = config & SMASK, e, i, tc; long c;
      WorkQueue[] ws; WorkQueue w; Thread p;
      if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
         if (e != 0 && (i = e & SMASK) < ws.length &&
               (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
            long nc = ((long)(w.nextWait & E_MASK) |
                             (c & (AC_MASK|TC_MASK)));
            if (U.compareAndSwapLong(this, CTL, c, nc)) {
               w.eventCount = (e + E_SEQ) & E_MASK;
               if ((p = w.parker) != null)
                  U.unpark(p);
               return true;   // replace with idle worker
            }
         }
         else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
               (int)(c >> AC_SHIFT) + pc > 1) {
            long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
            if (U.compareAndSwapLong(this, CTL, c, nc))
               return true;   // no compensation
         }
         else if (tc + pc < MAX_CAP) {
            long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
            if (U.compareAndSwapLong(this, CTL, c, nc)) {
               ForkJoinWorkerThreadFactory fac;
               Throwable ex = null;
               ForkJoinWorkerThread wt = null;
               try {
                  if ((fac = factory) != null &&
                        (wt = fac.newThread(this)) != null) {
                     wt.start();
                     return true;
                  }
               } catch (Throwable rex) {
                  ex = rex;
               }
               deregisterWorker(wt, ex); // clean up and return false
            }
         }
      }
      return false;
   }

   /**
    * Helps and/or blocks until the given task is done.
    *
    * @param joiner the joining worker
    * @param task the task
    * @return task status on exit
    */
   final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
      int s = 0;
      if (joiner != null && task != null && (s = task.status) >= 0) {
         ForkJoinTask<?> prevJoin = joiner.currentJoin;
         joiner.currentJoin = task;
         do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
               joiner.tryRemoveAndExec(task)); // process local tasks
         if (s >= 0 && (s = task.status) >= 0) {
            helpSignal(task, joiner.poolIndex);
            if ((s = task.status) >= 0 &&
                  (task instanceof CountedCompleter))
               s = helpComplete(task, LIFO_QUEUE);
         }
         while (s >= 0 && (s = task.status) >= 0) {
            if ((!joiner.isEmpty() ||           // try helping
                       (s = tryHelpStealer(joiner, task)) == 0) &&
                  (s = task.status) >= 0) {
               helpSignal(task, joiner.poolIndex);
               if ((s = task.status) >= 0 && tryCompensate()) {
                  if (task.trySetSignal() && (s = task.status) >= 0) {
                     synchronized (task) {
                        if (task.status >= 0) {
                           try {                // see ForkJoinTask
                              task.wait();     //  for explanation
                           } catch (InterruptedException ie) {
                           }
                        }
                        else
                           task.notifyAll();
                     }
                  }
                  long c;                          // re-activate
                  do {} while (!U.compareAndSwapLong
                        (this, CTL, c = ctl, c + AC_UNIT));
               }
            }
         }
         joiner.currentJoin = prevJoin;
      }
      return s;
   }

   /**
    * Stripped-down variant of awaitJoin used by timed joins. Tries
    * to help join only while there is continuous progress. (Caller
    * will then enter a timed wait.)
    *
    * @param joiner the joining worker
    * @param task the task
    */
   final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
      int s;
      if (joiner != null && task != null && (s = task.status) >= 0) {
         ForkJoinTask<?> prevJoin = joiner.currentJoin;
         joiner.currentJoin = task;
         do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
               joiner.tryRemoveAndExec(task));
         if (s >= 0 && (s = task.status) >= 0) {
            helpSignal(task, joiner.poolIndex);
            if ((s = task.status) >= 0 &&
                  (task instanceof CountedCompleter))
               s = helpComplete(task, LIFO_QUEUE);
         }
         if (s >= 0 && joiner.isEmpty()) {
            do {} while (task.status >= 0 &&
                  tryHelpStealer(joiner, task) > 0);
         }
         joiner.currentJoin = prevJoin;
      }
   }

   /**
    * Returns a (probably) non-empty steal queue, if one is found
    * during a scan, else null.  This method must be retried by
    * caller if, by the time it tries to use the queue, it is empty.
    * @param r a (random) seed for scanning
    */
   private WorkQueue findNonEmptyStealQueue(int r) {
      for (;;) {
         int ps = plock, m; WorkQueue[] ws; WorkQueue q;
         if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
            for (int j = (m + 1) << 2; j >= 0; --j) {
               if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
                     q.base - q.top < 0)
                  return q;
            }
         }
         if (plock == ps)
            return null;
      }
   }

   /**
    * Runs tasks until {@code isQuiescent()}. We piggyback on
    * active count ctl maintenance, but rather than blocking
    * when tasks cannot be found, we rescan until all others cannot
    * find tasks either.
    */
   final void helpQuiescePool(WorkQueue w) {
      for (boolean active = true;;) {
         long c; WorkQueue q; ForkJoinTask<?> t; int b;
         while ((t = w.nextLocalTask()) != null) {
            if (w.base - w.top < 0)
               signalWork(w);
            t.doExec();
         }
         if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
            if (!active) {      // re-establish active count
               active = true;
               do {} while (!U.compareAndSwapLong
                     (this, CTL, c = ctl, c + AC_UNIT));
            }
            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
               if (q.base - q.top < 0)
                  signalWork(q);
               w.runSubtask(t);
            }
         }
         else if (active) {       // decrement active count without queuing
            long nc = (c = ctl) - AC_UNIT;
            if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
               return;          // bypass decrement-then-increment
            if (U.compareAndSwapLong(this, CTL, c, nc))
               active = false;
         }
         else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
               U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
            return;
      }
   }

   /**
    * Gets and removes a local or stolen task for the given worker.
    *
    * @return a task, if available
    */
   final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
      for (ForkJoinTask<?> t;;) {
         WorkQueue q; int b;
         if ((t = w.nextLocalTask()) != null)
            return t;
         if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
            return null;
         if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
            if (q.base - q.top < 0)
               signalWork(q);
            return t;
         }
      }
   }

   /**
    * Returns a cheap heuristic guide for task partitioning when
    * programmers, frameworks, tools, or languages have little or no
    * idea about task granularity.  In essence by offering this
    * method, we ask users only about tradeoffs in overhead vs
    * expected throughput and its variance, rather than how finely to
    * partition tasks.
    *
    * In a steady state strict (tree-structured) computation, each
    * thread makes available for stealing enough tasks for other
    * threads to remain active. Inductively, if all threads play by
    * the same rules, each thread should make available only a
    * constant number of tasks.
    *
    * The minimum useful constant is just 1. But using a value of 1
    * would require immediate replenishment upon each steal to
    * maintain enough tasks, which is infeasible.  Further,
    * partitionings/granularities of offered tasks should minimize
    * steal rates, which in general means that threads nearer the top
    * of computation tree should generate more than those nearer the
    * bottom. In perfect steady state, each thread is at
    * approximately the same level of computation tree. However,
    * producing extra tasks amortizes the uncertainty of progress and
    * diffusion assumptions.
    *
    * So, users will want to use values larger (but not much larger)
    * than 1 to both smooth over transient shortages and hedge
    * against uneven progress; as traded off against the cost of
    * extra task overhead. We leave the user to pick a threshold
    * value to compare with the results of this call to guide
    * decisions, but recommend values such as 3.
    *
    * When all threads are active, it is on average OK to estimate
    * surplus strictly locally. In steady-state, if one thread is
    * maintaining say 2 surplus tasks, then so are others. So we can
    * just use estimated queue length.  However, this strategy alone
    * leads to serious mis-estimates in some non-steady-state
    * conditions (ramp-up, ramp-down, other stalls). We can detect
    * many of these by further considering the number of "idle"
    * threads, that are known to have zero queued tasks, so
    * compensate by a factor of (#idle/#active) threads.
    *
    * Note: The approximation of #busy workers as #active workers is
    * not very good under current signalling scheme, and should be
    * improved.
    */
   static int getSurplusQueuedTaskCount() {
      Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
      if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
         int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
         int n = (q = wt.workQueue).top - q.base;
         int a = (int)(pool.ctl >> AC_SHIFT) + p;
         return n - (a > (p >>>= 1) ? 0 :
                           a > (p >>>= 1) ? 1 :
                                 a > (p >>>= 1) ? 2 :
                                       a > (p >>>= 1) ? 4 :
                                             8);
      }
      return 0;
   }

   //  Termination

   /**
    * Possibly initiates and/or completes termination.  The caller
    * triggering termination runs three passes through workQueues:
    * (0) Setting termination status, followed by wakeups of queued
    * workers; (1) cancelling all tasks; (2) interrupting lagging
    * threads (likely in external tasks, but possibly also blocked in
    * joins).  Each pass repeats previous steps because of potential
    * lagging thread creation.
    *
    * @param now if true, unconditionally terminate, else only
    * if no work and no active workers
    * @param enable if true, enable shutdown when next possible
    * @return true if now terminating or terminated
    */
   private boolean tryTerminate(boolean now, boolean enable) {
      int ps;
      if (this == common)                    // cannot shut down
         return false;
      if ((ps = plock) >= 0) {                   // enable by setting plock
         if (!enable)
            return false;
         if ((ps & PL_LOCK) != 0 ||
               !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
            ps = acquirePlock();
         int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
         if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
            releasePlock(nps);
      }
      for (long c;;) {
         if (((c = ctl) & STOP_BIT) != 0) {     // already terminating
            if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
               synchronized (this) {
                  notifyAll();               // signal when 0 workers
               }
            }
            return true;
         }
         if (!now) {                            // check if idle & no tasks
            WorkQueue[] ws; WorkQueue w;
            if ((int)(c >> AC_SHIFT) != -(config & SMASK))
               return false;
            if ((ws = workQueues) != null) {
               for (int i = 0; i < ws.length; ++i) {
                  if ((w = ws[i]) != null) {
                     if (!w.isEmpty()) {    // signal unprocessed tasks
                        signalWork(w);
                        return false;
                     }
                     if ((i & 1) != 0 && w.eventCount >= 0)
                        return false;      // unqueued inactive worker
                  }
               }
            }
         }
         if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
            for (int pass = 0; pass < 3; ++pass) {
               WorkQueue[] ws; WorkQueue w; Thread wt;
               if ((ws = workQueues) != null) {
                  int n = ws.length;
                  for (int i = 0; i < n; ++i) {
                     if ((w = ws[i]) != null) {
                        w.qlock = -1;
                        if (pass > 0) {
                           w.cancelAll();
                           if (pass > 1 && (wt = w.owner) != null) {
                              if (!wt.isInterrupted()) {
                                 try {
                                    wt.interrupt();
                                 } catch (Throwable ignore) {
                                 }
                              }
                              U.unpark(wt);
                           }
                        }
                     }
                  }
                  // Wake up workers parked on event queue
                  int i, e; long cc; Thread p;
                  while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
                        (i = e & SMASK) < n && i >= 0 &&
                        (w = ws[i]) != null) {
                     long nc = ((long)(w.nextWait & E_MASK) |
                                      ((cc + AC_UNIT) & AC_MASK) |
                                      (cc & (TC_MASK|STOP_BIT)));
                     if (w.eventCount == (e | INT_SIGN) &&
                           U.compareAndSwapLong(this, CTL, cc, nc)) {
                        w.eventCount = (e + E_SEQ) & E_MASK;
                        w.qlock = -1;
                        if ((p = w.parker) != null)
                           U.unpark(p);
                     }
                  }
               }
            }
         }
      }
   }

   // external operations on common pool

   /**
    * Returns common pool queue for a thread that has submitted at
    * least one task.
    */
   static WorkQueue commonSubmitterQueue() {
      ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
      return ((z = submitters.get()) != null &&
                    (p = common) != null &&
                    (ws = p.workQueues) != null &&
                    (m = ws.length - 1) >= 0) ?
            ws[m & z.seed & SQMASK] : null;
   }

   /**
    * Tries to pop the given task from submitter's queue in common pool.
    */
   static boolean tryExternalUnpush(ForkJoinTask<?> t) {
      ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
      ForkJoinTask<?>[] a;  int m, s;
      if (t != null &&
            (z = submitters.get()) != null &&
            (p = common) != null &&
            (ws = p.workQueues) != null &&
            (m = ws.length - 1) >= 0 &&
            (q = ws[m & z.seed & SQMASK]) != null &&
            (s = q.top) != q.base &&
            (a = q.array) != null) {
         long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
         if (U.getObject(a, j) == t &&
               U.compareAndSwapInt(q, QLOCK, 0, 1)) {
            if (q.array == a && q.top == s && // recheck
                  U.compareAndSwapObject(a, j, t, null)) {
               q.top = s - 1;
               q.qlock = 0;
               return true;
            }
            q.qlock = 0;
         }
      }
      return false;
   }

   /**
    * Tries to pop and run local tasks within the same computation
    * as the given root. On failure, tries to help complete from
    * other queues via helpComplete.
    */
   private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
      ForkJoinTask<?>[] a; int m;
      if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
            root != null && root.status >= 0) {
         for (;;) {
            int s, u; Object o; CountedCompleter<?> task = null;
            if ((s = q.top) - q.base > 0) {
               long j = ((m & (s - 1)) << ASHIFT) + ABASE;
               if ((o = U.getObject(a, j)) != null &&
                     (o instanceof CountedCompleter)) {
                  CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
                  do {
                     if (r == root) {
                        if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
                           if (q.array == a && q.top == s &&
                                 U.compareAndSwapObject(a, j, t, null)) {
                              q.top = s - 1;
                              task = t;
                           }
                           q.qlock = 0;
                        }
                        break;
                     }
                  } while ((r = r.completer) != null);
               }
            }
            if (task != null)
               task.doExec();
            if (root.status < 0 ||
                  (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
               break;
            if (task == null) {
               helpSignal(root, q.poolIndex);
               if (root.status >= 0)
                  helpComplete(root, SHARED_QUEUE);
               break;
            }
         }
      }
   }

   /**
    * Tries to help execute or signal availability of the given task
    * from submitter's queue in common pool.
    */
   static void externalHelpJoin(ForkJoinTask<?> t) {
      // Some hard-to-avoid overlap with tryExternalUnpush
      ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
      ForkJoinTask<?>[] a;  int m, s, n;
      if (t != null &&
            (z = submitters.get()) != null &&
            (p = common) != null &&
            (ws = p.workQueues) != null &&
            (m = ws.length - 1) >= 0 &&
            (q = ws[m & z.seed & SQMASK]) != null &&
            (a = q.array) != null) {
         int am = a.length - 1;
         if ((s = q.top) != q.base) {
            long j = ((am & (s - 1)) << ASHIFT) + ABASE;
            if (U.getObject(a, j) == t &&
                  U.compareAndSwapInt(q, QLOCK, 0, 1)) {
               if (q.array == a && q.top == s &&
                     U.compareAndSwapObject(a, j, t, null)) {
                  q.top = s - 1;
                  q.qlock = 0;
                  t.doExec();
               }
               else
                  q.qlock = 0;
            }
         }
         if (t.status >= 0) {
            if (t instanceof CountedCompleter)
               p.externalHelpComplete(q, t);
            else
               p.helpSignal(t, q.poolIndex);
         }
      }
   }

   // Exported methods

   // Constructors

   /**
    * Creates a {@code ForkJoinPool} with parallelism equal to {@link
    * java.lang.Runtime#availableProcessors}, using the {@linkplain
    * #defaultForkJoinWorkerThreadFactory default thread factory},
    * no UncaughtExceptionHandler, and non-async LIFO processing mode.
    *
    * @throws SecurityException if a security manager exists and
    *         the caller is not permitted to modify threads
    *         because it does not hold {@link
    *         java.lang.RuntimePermission}{@code ("modifyThread")}
    */
   public ForkJoinPool() {
      this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
            defaultForkJoinWorkerThreadFactory, null, false);
   }

   /**
    * Creates a {@code ForkJoinPool} with the indicated parallelism
    * level, the {@linkplain
    * #defaultForkJoinWorkerThreadFactory default thread factory},
    * no UncaughtExceptionHandler, and non-async LIFO processing mode.
    *
    * @param parallelism the parallelism level
    * @throws IllegalArgumentException if parallelism less than or
    *         equal to zero, or greater than implementation limit
    * @throws SecurityException if a security manager exists and
    *         the caller is not permitted to modify threads
    *         because it does not hold {@link
    *         java.lang.RuntimePermission}{@code ("modifyThread")}
    */
   public ForkJoinPool(int parallelism) {
      this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
   }

   /**
    * Creates a {@code ForkJoinPool} with the given parameters.
    *
    * @param parallelism the parallelism level. For default value,
    * use {@link java.lang.Runtime#availableProcessors}.
    * @param factory the factory for creating new threads. For default value,
    * use {@link #defaultForkJoinWorkerThreadFactory}.
    * @param handler the handler for internal worker threads that
    * terminate due to unrecoverable errors encountered while executing
    * tasks. For default value, use {@code null}.
    * @param asyncMode if true,
    * establishes local first-in-first-out scheduling mode for forked
    * tasks that are never joined. This mode may be more appropriate
    * than default locally stack-based mode in applications in which
    * worker threads only process event-style asynchronous tasks.
    * For default value, use {@code false}.
    * @throws IllegalArgumentException if parallelism less than or
    *         equal to zero, or greater than implementation limit
    * @throws NullPointerException if the factory is null
    * @throws SecurityException if a security manager exists and
    *         the caller is not permitted to modify threads
    *         because it does not hold {@link
    *         java.lang.RuntimePermission}{@code ("modifyThread")}
    */
   public ForkJoinPool(int parallelism,
         ForkJoinWorkerThreadFactory factory,
         Thread.UncaughtExceptionHandler handler,
         boolean asyncMode) {
      checkPermission();
      if (factory == null)
         throw new NullPointerException();
      if (parallelism <= 0 || parallelism > MAX_CAP)
         throw new IllegalArgumentException();
      this.factory = factory;
      this.ueh = handler;
      this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
      long np = (long)(-parallelism); // offset ctl counts
      this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
      int pn = nextPoolId();
      StringBuilder sb = new StringBuilder("ForkJoinPool-");
      sb.append(Integer.toString(pn));
      sb.append("-worker-");
      this.workerNamePrefix = sb.toString();
   }

   /**
    * Constructor for common pool, suitable only for static initialization.
    * Basically the same as above, but uses smallest possible initial footprint.
    */
   ForkJoinPool(int parallelism, long ctl,
         ForkJoinWorkerThreadFactory factory,
         Thread.UncaughtExceptionHandler handler) {
      this.config = parallelism;
      this.ctl = ctl;
      this.factory = factory;
      this.ueh = handler;
      this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
   }

   /**
    * Returns the common pool instance. This pool is statically
    * constructed; its run state is unaffected by attempts to {@link
    * #shutdown} or {@link #shutdownNow}. However this pool and any
    * ongoing processing are automatically terminated upon program
    * {@link System#exit}.  Any program that relies on asynchronous
    * task processing to complete before program termination should
    * invoke {@code commonPool().}{@link #awaitQuiescence}, before
    * exit.
    *
    * @return the common pool instance
    * @since 1.8
    */
   public static ForkJoinPool commonPool() {
      // assert common != null : "static init error";
      return common;
   }

   // Execution methods

   /**
    * Performs the given task, returning its result upon completion.
    * If the computation encounters an unchecked Exception or Error,
    * it is rethrown as the outcome of this invocation.  Rethrown
    * exceptions behave in the same way as regular exceptions, but,
    * when possible, contain stack traces (as displayed for example
    * using {@code ex.printStackTrace()}) of both the current thread
    * as well as the thread actually encountering the exception;
    * minimally only the latter.
    *
    * @param task the task
    * @return the task's result
    * @throws NullPointerException if the task is null
    * @throws RejectedExecutionException if the task cannot be
    *         scheduled for execution
    */
   public <T> T invoke(ForkJoinTask<T> task) {
      if (task == null)
         throw new NullPointerException();
      externalPush(task);
      return task.join();
   }

   /**
    * Arranges for (asynchronous) execution of the given task.
    *
    * @param task the task
    * @throws NullPointerException if the task is null
    * @throws RejectedExecutionException if the task cannot be
    *         scheduled for execution
    */
   public void execute(ForkJoinTask<?> task) {
      if (task == null)
         throw new NullPointerException();
      externalPush(task);
   }

   // AbstractExecutorService methods

   /**
    * @throws NullPointerException if the task is null
    * @throws RejectedExecutionException if the task cannot be
    *         scheduled for execution
    */
   public void execute(Runnable task) {
      if (task == null)
         throw new NullPointerException();
      ForkJoinTask<?> job;
      if (task instanceof ForkJoinTask<?>) // avoid re-wrap
         job = (ForkJoinTask<?>) task;
      else
         job = new ForkJoinTask.AdaptedRunnableAction(task);
      externalPush(job);
   }

   /**
    * Submits a ForkJoinTask for execution.
    *
    * @param task the task to submit
    * @return the task
    * @throws NullPointerException if the task is null
    * @throws RejectedExecutionException if the task cannot be
    *         scheduled for execution
    */
   public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
      if (task == null)
         throw new NullPointerException();
      externalPush(task);
      return task;
   }

   /**
    * @throws NullPointerException if the task is null
    * @throws RejectedExecutionException if the task cannot be
    *         scheduled for execution
    */
   public <T> ForkJoinTask<T> submit(Callable<T> task) {
      ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
      externalPush(job);
      return job;
   }

   /**
    * @throws NullPointerException if the task is null
    * @throws RejectedExecutionException if the task cannot be
    *         scheduled for execution
    */
   public <T> ForkJoinTask<T> submit(Runnable task, T result) {
      ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
      externalPush(job);
      return job;
   }

   /**
    * @throws NullPointerException if the task is null
    * @throws RejectedExecutionException if the task cannot be
    *         scheduled for execution
    */
   public ForkJoinTask<?> submit(Runnable task) {
      if (task == null)
         throw new NullPointerException();
      ForkJoinTask<?> job;
      if (task instanceof ForkJoinTask<?>) // avoid re-wrap
         job = (ForkJoinTask<?>) task;
      else
         job = new ForkJoinTask.AdaptedRunnableAction(task);
      externalPush(job);
      return job;
   }

   /**
    * @throws NullPointerException       {@inheritDoc}
    * @throws RejectedExecutionException {@inheritDoc}
    */
   public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
      // In previous versions of this class, this method constructed
      // a task to run ForkJoinTask.invokeAll, but now external
      // invocation of multiple tasks is at least as efficient.
      ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());

      boolean done = false;
      try {
         for (Callable<T> t : tasks) {
            ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
            futures.add(f);
            externalPush(f);
         }
         for (int i = 0, size = futures.size(); i < size; i++)
            ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
         done = true;
         return futures;
      } finally {
         if (!done)
            for (int i = 0, size = futures.size(); i < size; i++)
               futures.get(i).cancel(false);
      }
   }

   /**
    * Returns the factory used for constructing new workers.
    *
    * @return the factory used for constructing new workers
    */
   public ForkJoinWorkerThreadFactory getFactory() {
      return factory;
   }

   /**
    * Returns the handler for internal worker threads that terminate
    * due to unrecoverable errors encountered while executing tasks.
    *
    * @return the handler, or {@code null} if none
    */
   public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
      return ueh;
   }

   /**
    * Returns the targeted parallelism level of this pool.
    *
    * @return the targeted parallelism level of this pool
    */
   public int getParallelism() {
      return config & SMASK;
   }

   /**
    * Returns the targeted parallelism level of the common pool.
    *
    * @return the targeted parallelism level of the common pool
    * @since 1.8
    */
   public static int getCommonPoolParallelism() {
      return commonParallelism;
   }

   /**
    * Returns the number of worker threads that have started but not
    * yet terminated.  The result returned by this method may differ
    * from {@link #getParallelism} when threads are created to
    * maintain parallelism when others are cooperatively blocked.
    *
    * @return the number of worker threads
    */
   public int getPoolSize() {
      return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
   }

   /**
    * Returns {@code true} if this pool uses local first-in-first-out
    * scheduling mode for forked tasks that are never joined.
    *
    * @return {@code true} if this pool uses async mode
    */
   public boolean getAsyncMode() {
      return (config >>> 16) == FIFO_QUEUE;
   }

   /**
    * Returns an estimate of the number of worker threads that are
    * not blocked waiting to join tasks or for other managed
    * synchronization. This method may overestimate the
    * number of running threads.
    *
    * @return the number of worker threads
    */
   public int getRunningThreadCount() {
      int rc = 0;
      WorkQueue[] ws; WorkQueue w;
      if ((ws = workQueues) != null) {
         for (int i = 1; i < ws.length; i += 2) {
            if ((w = ws[i]) != null && w.isApparentlyUnblocked())
               ++rc;
         }
      }
      return rc;
   }

   /**
    * Returns an estimate of the number of threads that are currently
    * stealing or executing tasks. This method may overestimate the
    * number of active threads.
    *
    * @return the number of active threads
    */
   public int getActiveThreadCount() {
      int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
      return (r <= 0) ? 0 : r; // suppress momentarily negative values
   }

   /**
    * Returns {@code true} if all worker threads are currently idle.
    * An idle worker is one that cannot obtain a task to execute
    * because none are available to steal from other threads, and
    * there are no pending submissions to the pool. This method is
    * conservative; it might not return {@code true} immediately upon
    * idleness of all threads, but will eventually become true if
    * threads remain inactive.
    *
    * @return {@code true} if all threads are currently idle
    */
   public boolean isQuiescent() {
      return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
   }

   /**
    * Returns an estimate of the total number of tasks stolen from
    * one thread's work queue by another. The reported value
    * underestimates the actual total number of steals when the pool
    * is not quiescent. This value may be useful for monitoring and
    * tuning fork/join programs: in general, steal counts should be
    * high enough to keep threads busy, but low enough to avoid
    * overhead and contention across threads.
    *
    * @return the number of steals
    */
   public long getStealCount() {
      long count = stealCount;
      WorkQueue[] ws; WorkQueue w;
      if ((ws = workQueues) != null) {
         for (int i = 1; i < ws.length; i += 2) {
            if ((w = ws[i]) != null)
               count += w.nsteals;
         }
      }
      return count;
   }

   /**
    * Returns an estimate of the total number of tasks currently held
    * in queues by worker threads (but not including tasks submitted
    * to the pool that have not begun executing). This value is only
    * an approximation, obtained by iterating across all threads in
    * the pool. This method may be useful for tuning task
    * granularities.
    *
    * @return the number of queued tasks
    */
   public long getQueuedTaskCount() {
      long count = 0;
      WorkQueue[] ws; WorkQueue w;
      if ((ws = workQueues) != null) {
         for (int i = 1; i < ws.length; i += 2) {
            if ((w = ws[i]) != null)
               count += w.queueSize();
         }
      }
      return count;
   }

   /**
    * Returns an estimate of the number of tasks submitted to this
    * pool that have not yet begun executing.  This method may take
    * time proportional to the number of submissions.
    *
    * @return the number of queued submissions
    */
   public int getQueuedSubmissionCount() {
      int count = 0;
      WorkQueue[] ws; WorkQueue w;
      if ((ws = workQueues) != null) {
         for (int i = 0; i < ws.length; i += 2) {
            if ((w = ws[i]) != null)
               count += w.queueSize();
         }
      }
      return count;
   }

   /**
    * Returns {@code true} if there are any tasks submitted to this
    * pool that have not yet begun executing.
    *
    * @return {@code true} if there are any queued submissions
    */
   public boolean hasQueuedSubmissions() {
      WorkQueue[] ws; WorkQueue w;
      if ((ws = workQueues) != null) {
         for (int i = 0; i < ws.length; i += 2) {
            if ((w = ws[i]) != null && !w.isEmpty())
               return true;
         }
      }
      return false;
   }

   /**
    * Removes and returns the next unexecuted submission if one is
    * available.  This method may be useful in extensions to this
    * class that re-assign work in systems with multiple pools.
    *
    * @return the next submission, or {@code null} if none
    */
   protected ForkJoinTask<?> pollSubmission() {
      WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
      if ((ws = workQueues) != null) {
         for (int i = 0; i < ws.length; i += 2) {
            if ((w = ws[i]) != null && (t = w.poll()) != null)
               return t;
         }
      }
      return null;
   }

   /**
    * Removes all available unexecuted submitted and forked tasks
    * from scheduling queues and adds them to the given collection,
    * without altering their execution status. These may include
    * artificially generated or wrapped tasks. This method is
    * designed to be invoked only when the pool is known to be
    * quiescent. Invocations at other times may not remove all
    * tasks. A failure encountered while attempting to add elements
    * to collection {@code c} may result in elements being in
    * neither, either or both collections when the associated
    * exception is thrown.  The behavior of this operation is
    * undefined if the specified collection is modified while the
    * operation is in progress.
    *
    * @param c the collection to transfer elements into
    * @return the number of elements transferred
    */
   protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
      int count = 0;
      WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
      if ((ws = workQueues) != null) {
         for (int i = 0; i < ws.length; ++i) {
            if ((w = ws[i]) != null) {
               while ((t = w.poll()) != null) {
                  c.add(t);
                  ++count;
               }
            }
         }
      }
      return count;
   }

   /**
    * Returns a string identifying this pool, as well as its state,
    * including indications of run state, parallelism level, and
    * worker and task counts.
    *
    * @return a string identifying this pool, as well as its state
    */
   public String toString() {
      // Use a single pass through workQueues to collect counts
      long qt = 0L, qs = 0L; int rc = 0;
      long st = stealCount;
      long c = ctl;
      WorkQueue[] ws; WorkQueue w;
      if ((ws = workQueues) != null) {
         for (int i = 0; i < ws.length; ++i) {
            if ((w = ws[i]) != null) {
               int size = w.queueSize();
               if ((i & 1) == 0)
                  qs += size;
               else {
                  qt += size;
                  st += w.nsteals;
                  if (w.isApparentlyUnblocked())
                     ++rc;
               }
            }
         }
      }
      int pc = (config & SMASK);
      int tc = pc + (short)(c >>> TC_SHIFT);
      int ac = pc + (int)(c >> AC_SHIFT);
      if (ac < 0) // ignore transient negative
         ac = 0;
      String level;
      if ((c & STOP_BIT) != 0)
         level = (tc == 0) ? "Terminated" : "Terminating";
      else
         level = plock < 0 ? "Shutting down" : "Running";
      return super.toString() +
            "[" + level +
            ", parallelism = " + pc +
            ", size = " + tc +
            ", active = " + ac +
            ", running = " + rc +
            ", steals = " + st +
            ", tasks = " + qt +
            ", submissions = " + qs +
            "]";
   }

   /**
    * Possibly initiates an orderly shutdown in which previously
    * submitted tasks are executed, but no new tasks will be
    * accepted. Invocation has no effect on execution state if this
    * is the {@link #commonPool()}, and no additional effect if
    * already shut down.  Tasks that are in the process of being
    * submitted concurrently during the course of this method may or
    * may not be rejected.
    *
    * @throws SecurityException if a security manager exists and
    *         the caller is not permitted to modify threads
    *         because it does not hold {@link
    *         java.lang.RuntimePermission}{@code ("modifyThread")}
    */
   public void shutdown() {
      checkPermission();
      tryTerminate(false, true);
   }

   /**
    * Possibly attempts to cancel and/or stop all tasks, and reject
    * all subsequently submitted tasks.  Invocation has no effect on
    * execution state if this is the {@link #commonPool()}, and no
    * additional effect if already shut down. Otherwise, tasks that
    * are in the process of being submitted or executed concurrently
    * during the course of this method may or may not be
    * rejected. This method cancels both existing and unexecuted
    * tasks, in order to permit termination in the presence of task
    * dependencies. So the method always returns an empty list
    * (unlike the case for some other Executors).
    *
    * @return an empty list
    * @throws SecurityException if a security manager exists and
    *         the caller is not permitted to modify threads
    *         because it does not hold {@link
    *         java.lang.RuntimePermission}{@code ("modifyThread")}
    */
   public List<Runnable> shutdownNow() {
      checkPermission();
      tryTerminate(true, true);
      return Collections.emptyList();
   }

   /**
    * Returns {@code true} if all tasks have completed following shut down.
    *
    * @return {@code true} if all tasks have completed following shut down
    */
   public boolean isTerminated() {
      long c = ctl;
      return ((c & STOP_BIT) != 0L &&
                    (short)(c >>> TC_SHIFT) == -(config & SMASK));
   }

   /**
    * Returns {@code true} if the process of termination has
    * commenced but not yet completed.  This method may be useful for
    * debugging. A return of {@code true} reported a sufficient
    * period after shutdown may indicate that submitted tasks have
    * ignored or suppressed interruption, or are waiting for I/O,
    * causing this executor not to properly terminate. (See the
    * advisory notes for class {@link ForkJoinTask} stating that
    * tasks should not normally entail blocking operations.  But if
    * they do, they must abort them on interrupt.)
    *
    * @return {@code true} if terminating but not yet terminated
    */
   public boolean isTerminating() {
      long c = ctl;
      return ((c & STOP_BIT) != 0L &&
                    (short)(c >>> TC_SHIFT) != -(config & SMASK));
   }

   /**
    * Returns {@code true} if this pool has been shut down.
    *
    * @return {@code true} if this pool has been shut down
    */
   public boolean isShutdown() {
      return plock < 0;
   }

   /**
    * Blocks until all tasks have completed execution after a
    * shutdown request, or the timeout occurs, or the current thread
    * is interrupted, whichever happens first. Because the {@link
    * #commonPool()} never terminates until program shutdown, when
    * applied to the common pool, this method is equivalent to {@link
    * #awaitQuiescence} but always returns {@code false}.
    *
    * @param timeout the maximum time to wait
    * @param unit the time unit of the timeout argument
    * @return {@code true} if this executor terminated and
    *         {@code false} if the timeout elapsed before termination
    * @throws InterruptedException if interrupted while waiting
    */
   public boolean awaitTermination(long timeout, TimeUnit unit)
         throws InterruptedException {
      if (Thread.interrupted())
         throw new InterruptedException();
      if (this == common) {
         awaitQuiescence(timeout, unit);
         return false;
      }
      long nanos = unit.toNanos(timeout);
      if (isTerminated())
         return true;
      long startTime = System.nanoTime();
      boolean terminated = false;
      synchronized (this) {
         for (long waitTime = nanos, millis = 0L;;) {
            if (terminated = isTerminated() ||
                  waitTime <= 0L ||
                  (millis = unit.toMillis(waitTime)) <= 0L)
               break;
            wait(millis);
            waitTime = nanos - (System.nanoTime() - startTime);
         }
      }
      return terminated;
   }

   /**
    * If called by a ForkJoinTask operating in this pool, equivalent
    * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
    * waits and/or attempts to assist performing tasks until this
    * pool {@link #isQuiescent} or the indicated timeout elapses.
    *
    * @param timeout the maximum time to wait
    * @param unit the time unit of the timeout argument
    * @return {@code true} if quiescent; {@code false} if the
    * timeout elapsed.
    */
   public boolean awaitQuiescence(long timeout, TimeUnit unit) {
      long nanos = unit.toNanos(timeout);
      ForkJoinWorkerThread wt;
      Thread thread = Thread.currentThread();
      if ((thread instanceof ForkJoinWorkerThread) &&
            (wt = (ForkJoinWorkerThread)thread).pool == this) {
         helpQuiescePool(wt.workQueue);
         return true;
      }
      long startTime = System.nanoTime();
      WorkQueue[] ws;
      int r = 0, m;
      boolean found = true;
      while (!isQuiescent() && (ws = workQueues) != null &&
            (m = ws.length - 1) >= 0) {
         if (!found) {
            if ((System.nanoTime() - startTime) > nanos)
               return false;
            Thread.yield(); // cannot block
         }
         found = false;
         for (int j = (m + 1) << 2; j >= 0; --j) {
            ForkJoinTask<?> t; WorkQueue q; int b;
            if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
               found = true;
               if ((t = q.pollAt(b)) != null) {
                  if (q.base - q.top < 0)
                     signalWork(q);
                  t.doExec();
               }
               break;
            }
         }
      }
      return true;
   }

   /**
    * Waits and/or attempts to assist performing tasks indefinitely
    * until the {@link #commonPool()} {@link #isQuiescent}.
    */
   static void quiesceCommonPool() {
      common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
   }

   /**
    * Interface for extending managed parallelism for tasks running
    * in {@link ForkJoinPool}s.
    *
    * <p>A {@code ManagedBlocker} provides two methods.  Method
    * {@code isReleasable} must return {@code true} if blocking is
    * not necessary. Method {@code block} blocks the current thread
    * if necessary (perhaps internally invoking {@code isReleasable}
    * before actually blocking). These actions are performed by any
    * thread invoking {@link ForkJoinPool#managedBlock}.  The
    * unusual methods in this API accommodate synchronizers that may,
    * but don't usually, block for long periods. Similarly, they
    * allow more efficient internal handling of cases in which
    * additional workers may be, but usually are not, needed to
    * ensure sufficient parallelism.  Toward this end,
    * implementations of method {@code isReleasable} must be amenable
    * to repeated invocation.
    *
    * <p>For example, here is a ManagedBlocker based on a
    * ReentrantLock:
    *  <pre> {@code
    * class ManagedLocker implements ManagedBlocker {
    *   final ReentrantLock lock;
    *   boolean hasLock = false;
    *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
    *   public boolean block() {
    *     if (!hasLock)
    *       lock.lock();
    *     return true;
    *   }
    *   public boolean isReleasable() {
    *     return hasLock || (hasLock = lock.tryLock());
    *   }
    * }}</pre>
    *
    * <p>Here is a class that possibly blocks waiting for an
    * item on a given queue:
    *  <pre> {@code
    * class QueueTaker<E> implements ManagedBlocker {
    *   final BlockingQueue<E> queue;
    *   volatile E item = null;
    *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
    *   public boolean block() throws InterruptedException {
    *     if (item == null)
    *       item = queue.take();
    *     return true;
    *   }
    *   public boolean isReleasable() {
    *     return item != null || (item = queue.poll()) != null;
    *   }
    *   public E getItem() { // call after pool.managedBlock completes
    *     return item;
    *   }
    * }}</pre>
    */
   public static interface ManagedBlocker {
      /**
       * Possibly blocks the current thread, for example waiting for
       * a lock or condition.
       *
       * @return {@code true} if no additional blocking is necessary
       * (i.e., if isReleasable would return true)
       * @throws InterruptedException if interrupted while waiting
       * (the method is not required to do so, but is allowed to)
       */
      boolean block() throws InterruptedException;

      /**
       * Returns {@code true} if blocking is unnecessary.
       */
      boolean isReleasable();
   }

   /**
    * Blocks in accord with the given blocker.  If the current thread
    * is a {@link ForkJoinWorkerThread}, this method possibly
    * arranges for a spare thread to be activated if necessary to
    * ensure sufficient parallelism while the current thread is blocked.
    *
    * <p>If the caller is not a {@link ForkJoinTask}, this method is
    * behaviorally equivalent to
    *  <pre> {@code
    * while (!blocker.isReleasable())
    *   if (blocker.block())
    *     return;
    * }</pre>
    *
    * If the caller is a {@code ForkJoinTask}, then the pool may
    * first be expanded to ensure parallelism, and later adjusted.
    *
    * @param blocker the blocker
    * @throws InterruptedException if blocker.block did so
    */
   public static void managedBlock(ManagedBlocker blocker)
         throws InterruptedException {
      Thread t = Thread.currentThread();
      if (t instanceof ForkJoinWorkerThread) {
         ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
         while (!blocker.isReleasable()) { // variant of helpSignal
            WorkQueue[] ws; WorkQueue q; int m, u;
            if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
               for (int i = 0; i <= m; ++i) {
                  if (blocker.isReleasable())
                     return;
                  if ((q = ws[i]) != null && q.base - q.top < 0) {
                     p.signalWork(q);
                     if ((u = (int)(p.ctl >>> 32)) >= 0 ||
                           (u >> UAC_SHIFT) >= 0)
                        break;
                  }
               }
            }
            if (p.tryCompensate()) {
               try {
                  do {} while (!blocker.isReleasable() &&
                        !blocker.block());
               } finally {
                  p.incrementActiveCount();
               }
               break;
            }
         }
      }
      else {
         do {} while (!blocker.isReleasable() &&
               !blocker.block());
      }
   }

   // AbstractExecutorService overrides.  These rely on undocumented
   // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
   // implement RunnableFuture.

   protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
      return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
   }

   protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
      return new ForkJoinTask.AdaptedCallable<T>(callable);
   }

   // Unsafe mechanics
   private static final sun.misc.Unsafe U;
   private static final long CTL;
   private static final long PARKBLOCKER;
   private static final int ABASE;
   private static final int ASHIFT;
   private static final long STEALCOUNT;
   private static final long PLOCK;
   private static final long INDEXSEED;
   private static final long QLOCK;

   static {
      // initialize field offsets for CAS etc
      try {
         U = getUnsafe();
         Class<?> k = ForkJoinPool.class;
         CTL = U.objectFieldOffset
               (k.getDeclaredField("ctl"));
         STEALCOUNT = U.objectFieldOffset
               (k.getDeclaredField("stealCount"));
         PLOCK = U.objectFieldOffset
               (k.getDeclaredField("plock"));
         INDEXSEED = U.objectFieldOffset
               (k.getDeclaredField("indexSeed"));
         Class<?> tk = Thread.class;
         PARKBLOCKER = U.objectFieldOffset
               (tk.getDeclaredField("parkBlocker"));
         Class<?> wk = WorkQueue.class;
         QLOCK = U.objectFieldOffset
               (wk.getDeclaredField("qlock"));
         Class<?> ak = ForkJoinTask[].class;
         ABASE = U.arrayBaseOffset(ak);
         int scale = U.arrayIndexScale(ak);
         if ((scale & (scale - 1)) != 0)
            throw new Error("data type scale not a power of two");
         ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
      } catch (Exception e) {
         throw new Error(e);
      }

      submitters = new ThreadLocal<Submitter>();
      ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
            new DefaultForkJoinWorkerThreadFactory();
      modifyThreadPermission = new RuntimePermission("modifyThread");

        /*
         * Establish common pool parameters.  For extra caution,
         * computations to set up common pool state are here; the
         * constructor just assigns these values to fields.
         */

      int par = 0;
      Thread.UncaughtExceptionHandler handler = null;
      try // TBD: limit or report ignored exceptions?
         String pp = System.getProperty
               ("java.util.concurrent.ForkJoinPool.common.parallelism");
         String hp = System.getProperty
               ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
         String fp = System.getProperty
               ("java.util.concurrent.ForkJoinPool.common.threadFactory");
         if (fp != null)
            fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
                  getSystemClassLoader().loadClass(fp).newInstance());
         if (hp != null)
            handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
                  getSystemClassLoader().loadClass(hp).newInstance());
         if (pp != null)
            par = Integer.parseInt(pp);
      } catch (Exception ignore) {
      }

      if (par <= 0)
         par = Runtime.getRuntime().availableProcessors();
      if (par > MAX_CAP)
         par = MAX_CAP;
      commonParallelism = par;
      long np = (long)(-par); // precompute initial ctl value
      long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);

      common = new ForkJoinPool(par, ct, fac, handler);
   }

   /**
    * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
    * Replace with a simple call to Unsafe.getUnsafe when integrating
    * into a jdk.
    *
    * @return a sun.misc.Unsafe
    */
   private static sun.misc.Unsafe getUnsafe() {
      try {
         return sun.misc.Unsafe.getUnsafe();
      } catch (SecurityException tryReflectionInstead) {}
      try {
         return java.security.AccessController.doPrivileged
               (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
                  public sun.misc.Unsafe run() throws Exception {
                     Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
                     for (java.lang.reflect.Field f : k.getDeclaredFields()) {
                        f.setAccessible(true);
                        Object x = f.get(null);
                        if (k.isInstance(x))
                           return k.cast(x);
                     }
                     throw new NoSuchFieldError("the Unsafe");
                  }});
      } catch (java.security.PrivilegedActionException e) {
         throw new RuntimeException("Could not initialize intrinsics",
               e.getCause());
      }
   }
}
TOP

Related Classes of org.infinispan.util.concurrent.jdk8backported.ForkJoinPool$DefaultForkJoinWorkerThreadFactory

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.