Package org.apache.xalan.templates

Source Code of org.apache.xalan.templates.RedundentExprEliminator

/*
* Copyright 2002-2004 The Apache Software Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* $Id: RedundentExprEliminator.java,v 1.11 2005/01/23 00:27:29 mcnamara Exp $
*/
package org.apache.xalan.templates;

import java.util.Vector;

import org.apache.xalan.res.XSLMessages;
import org.apache.xalan.res.XSLTErrorResources;
import org.apache.xml.utils.QName;
import org.apache.xml.utils.WrappedRuntimeException;
import org.apache.xpath.Expression;
import org.apache.xpath.ExpressionNode;
import org.apache.xpath.ExpressionOwner;
import org.apache.xpath.XPath;
import org.apache.xpath.axes.AxesWalker;
import org.apache.xpath.axes.FilterExprIteratorSimple;
import org.apache.xpath.axes.FilterExprWalker;
import org.apache.xpath.axes.LocPathIterator;
import org.apache.xpath.axes.SelfIteratorNoPredicate;
import org.apache.xpath.axes.WalkerFactory;
import org.apache.xpath.axes.WalkingIterator;
import org.apache.xpath.operations.Variable;
import org.apache.xpath.operations.VariableSafeAbsRef;

/**
* This class eleminates redundent XPaths from a given subtree,
* and also collects all absolute paths within the subtree.  First
* it must be called as a visitor to the subtree, and then
* eleminateRedundent must be called.
*/
public class RedundentExprEliminator extends XSLTVisitor
{
  Vector m_paths;
  Vector m_absPaths;
  boolean m_isSameContext;
  AbsPathChecker m_absPathChecker = new AbsPathChecker();
 
  private static int m_uniquePseudoVarID = 1;
  static final String PSUEDOVARNAMESPACE = Constants.S_VENDORURL+"/xalan/psuedovar";
  public static final boolean DEBUG = false;
  public static final boolean DIAGNOSE_NUM_PATHS_REDUCED = false;
  public static final boolean DIAGNOSE_MULTISTEPLIST = false;

  /**
   * So we can reuse it over and over again.
   */
  VarNameCollector m_varNameCollector = new VarNameCollector();

  /**
   * Construct a RedundentExprEliminator.
   */
  public RedundentExprEliminator()
  {
    m_isSameContext = true;
    m_absPaths = new Vector();
    m_paths = null;
  }
 
 
  /**
   * Method to be called after the all expressions within an 
   * node context have been visited.  It eliminates redundent
   * expressions by creating a variable in the psuedoVarRecipient
   * for each redundent expression, and then rewriting the redundent
   * expression to be a variable reference.
   *
   * @param psuedoVarRecipient The recipient of the psuedo vars.  The
   * variables will be inserted as first children of the element, before
   * any existing variables.
   */
  public void eleminateRedundentLocals(ElemTemplateElement psuedoVarRecipient)
  {
    eleminateRedundent(psuedoVarRecipient, m_paths);
  }
 
  /**
   * Method to be called after the all global expressions within a stylesheet
   * have been collected.  It eliminates redundent
   * expressions by creating a variable in the psuedoVarRecipient
   * for each redundent expression, and then rewriting the redundent
   * expression to be a variable reference.
   *
   */
  public void eleminateRedundentGlobals(StylesheetRoot stylesheet)
  {
    eleminateRedundent(stylesheet, m_absPaths);
  }

 
  /**
   * Method to be called after the all expressions within an 
   * node context have been visited.  It eliminates redundent
   * expressions by creating a variable in the psuedoVarRecipient
   * for each redundent expression, and then rewriting the redundent
   * expression to be a variable reference.
   *
   * @param psuedoVarRecipient The owner of the subtree from where the
   *                           paths were collected.
   * @param paths A vector of paths that hold ExpressionOwner objects,
   *              which must yield LocationPathIterators.
   */
  protected void eleminateRedundent(ElemTemplateElement psuedoVarRecipient, Vector paths)
  {
    int n = paths.size();
    int numPathsEliminated = 0;
    int numUniquePathsEliminated = 0;
    for (int i = 0; i < n; i++)
    {
      ExpressionOwner owner = (ExpressionOwner) paths.elementAt(i);
      if (null != owner)
      {
        int found = findAndEliminateRedundant(i + 1, i, owner, psuedoVarRecipient, paths);
        if (found > 0)
                  numUniquePathsEliminated++;
        numPathsEliminated += found;
      }
    }
   
    eleminateSharedPartialPaths(psuedoVarRecipient, paths);
   
    if(DIAGNOSE_NUM_PATHS_REDUCED)
    diagnoseNumPaths(paths, numPathsEliminated, numUniquePathsEliminated);
  }
 
  /**
   * Eliminate the shared partial paths in the expression list.
   *
   * @param psuedoVarRecipient The recipient of the psuedo vars.
   *
   * @param paths A vector of paths that hold ExpressionOwner objects,
   *              which must yield LocationPathIterators.
   */
  protected void eleminateSharedPartialPaths(ElemTemplateElement psuedoVarRecipient, Vector paths)
  {
    MultistepExprHolder list = createMultistepExprList(paths);
    if(null != list)
    {
      if(DIAGNOSE_MULTISTEPLIST)
          list.diagnose();
         
        boolean isGlobal = (paths == m_absPaths);
         
        // Iterate over the list, starting with the most number of paths,
        // trying to find the longest matches first.
        int longestStepsCount = list.m_stepCount;
      for (int i = longestStepsCount-1; i >= 1; i--)
      {
        MultistepExprHolder next = list;
          while(null != next)
          {
            if(next.m_stepCount < i)
              break;
        list = matchAndEliminatePartialPaths(next, list, isGlobal, i, psuedoVarRecipient);
        next = next.m_next;
          }
      }
    }
  }

  /**
   * For a given path, see if there are any partitial matches in the list,
   * and, if there are, replace those partial paths with psuedo variable refs,
   * and create the psuedo variable decl.
   *
   * @return The head of the list, which may have changed.
   */
  protected MultistepExprHolder matchAndEliminatePartialPaths(MultistepExprHolder testee,
                                               MultistepExprHolder head,
                                               boolean isGlobal,
                                               int lengthToTest,
                                               ElemTemplateElement varScope)
  {   
    if(null == testee.m_exprOwner)
      return head;
     
    // Start with the longest possible match, and move down.
    WalkingIterator iter1 = (WalkingIterator) testee.m_exprOwner.getExpression();
    if(partialIsVariable(testee, lengthToTest))
      return head;
    MultistepExprHolder matchedPaths = null;
    MultistepExprHolder matchedPathsTail = null;
    MultistepExprHolder meh = head;
    while( null != meh)
    {
      if ((meh != testee) && (null != meh.m_exprOwner))
      {
        WalkingIterator iter2 = (WalkingIterator) meh.m_exprOwner.getExpression();
        if (stepsEqual(iter1, iter2, lengthToTest))
        {
          if (null == matchedPaths)
          {
            try
            {
              matchedPaths = (MultistepExprHolder)testee.clone();
              testee.m_exprOwner = null; // So it won't be processed again.
            }
            catch(CloneNotSupportedException cnse){}
            matchedPathsTail = matchedPaths;
            matchedPathsTail.m_next = null;
          }
        
          try
          {
            matchedPathsTail.m_next = (MultistepExprHolder)meh.clone();
            meh.m_exprOwner = null; // So it won't be processed again.
          }
          catch(CloneNotSupportedException cnse){}
          matchedPathsTail = matchedPathsTail.m_next;
          matchedPathsTail.m_next = null;
        }
      }
      meh = meh.m_next;
    }
     
  int matchCount = 0;
  if(null != matchedPaths)
  {
    ElemTemplateElement root = isGlobal ? varScope : findCommonAncestor(matchedPaths);
    WalkingIterator sharedIter = (WalkingIterator)matchedPaths.m_exprOwner.getExpression();
    WalkingIterator newIter = createIteratorFromSteps(sharedIter, lengthToTest);
    ElemVariable var = createPseudoVarDecl(root, newIter, isGlobal);
    if(DIAGNOSE_MULTISTEPLIST)
      System.err.println("Created var: "+var.getName()+(isGlobal ? "(Global)" : ""));
    while(null != matchedPaths)
    {
      ExpressionOwner owner = matchedPaths.m_exprOwner;
      WalkingIterator iter = (WalkingIterator)owner.getExpression();
     
      if(DIAGNOSE_MULTISTEPLIST)
        diagnoseLineNumber(iter);
     
      LocPathIterator newIter2 =
          changePartToRef(var.getName(), iter, lengthToTest, isGlobal);
      owner.setExpression(newIter2);
     
      matchedPaths = matchedPaths.m_next;
    }
  }
 
  if(DIAGNOSE_MULTISTEPLIST)
    diagnoseMultistepList(matchCount, lengthToTest, isGlobal);
    return head;
  }
 
  /**
   * Check if results of partial reduction will just be a variable, in
   * which case, skip it.
   */
  boolean partialIsVariable(MultistepExprHolder testee, int lengthToTest)
  {
    if(1 == lengthToTest)
    {
      WalkingIterator wi = (WalkingIterator)testee.m_exprOwner.getExpression();
      if(wi.getFirstWalker() instanceof FilterExprWalker)
        return true;
    }
    return false;
  }

  /**
   * Tell what line number belongs to a given expression.
   */
  protected void diagnoseLineNumber(Expression expr)
  {
    ElemTemplateElement e = getElemFromExpression(expr);
    System.err.println("   " + e.getSystemId() + " Line " + e.getLineNumber());
  }
     
  /**
   * Given a linked list of expressions, find the common ancestor that is
   * suitable for holding a psuedo variable for shared access.
   */
  protected ElemTemplateElement findCommonAncestor(MultistepExprHolder head)
  {
    // Not sure this algorithm is the best, but will do for the moment.
    int numExprs = head.getLength();
    // The following could be made cheaper by pre-allocating large arrays,
    // but then we would have to assume a max number of reductions,
    // which I am not inclined to do right now.
    ElemTemplateElement[] elems = new ElemTemplateElement[numExprs];
    int[] ancestorCounts = new int[numExprs];
   
    // Loop through, getting the parent elements, and counting the
    // ancestors.
    MultistepExprHolder next = head;
    int shortestAncestorCount = 10000;
    for(int i = 0; i < numExprs; i++)
    {
      ElemTemplateElement elem =
        getElemFromExpression(next.m_exprOwner.getExpression());
      elems[i] = elem;
      int numAncestors = countAncestors(elem);
      ancestorCounts[i] = numAncestors;
      if(numAncestors < shortestAncestorCount)
      {
        shortestAncestorCount = numAncestors;
      }
      next = next.m_next;
    }
   
    // Now loop through and "correct" the elements that have more ancestors.
    for(int i = 0; i < numExprs; i++)
    {
      if(ancestorCounts[i] > shortestAncestorCount)
      {
        int numStepCorrection = ancestorCounts[i] - shortestAncestorCount;
        for(int j = 0; j < numStepCorrection; j++)
        {
          elems[i] = elems[i].getParentElem();
        }
      }
    }
   
    // Now everyone has an equal number of ancestors.  Walk up from here
    // equally until all are equal.
    ElemTemplateElement first = null;
    while(shortestAncestorCount-- >= 0)
    {
      boolean areEqual = true;
      first = elems[0];
      for(int i = 1; i < numExprs; i++)
      {
        if(first != elems[i])
        {
          areEqual = false;
          break;
        }
      }
      // This second check is to make sure we have a common ancestor that is not the same
      // as the expression owner... i.e. the var decl has to go above the expression owner.
      if(areEqual && isNotSameAsOwner(head, first) && first.canAcceptVariables())
      {
        if(DIAGNOSE_MULTISTEPLIST)
        {
          System.err.print(first.getClass().getName());
          System.err.println(" at   " + first.getSystemId() + " Line " + first.getLineNumber());
        }
        return first;
      }
        
      for(int i = 0; i < numExprs; i++)
      {
        elems[i] = elems[i].getParentElem();
      }
    }
   
    assertion(false, "Could not find common ancestor!!!");
    return null;
  }
 
  /**
   * Find out if the given ElemTemplateElement is not the same as one of
   * the ElemTemplateElement owners of the expressions.
   *
   * @param head Head of linked list of expression owners.
   * @param ete The ElemTemplateElement that is a candidate for a psuedo
   * variable parent.
   * @return true if the given ElemTemplateElement is not the same as one of
   * the ElemTemplateElement owners of the expressions.  This is to make sure
   * we find an ElemTemplateElement that is in a viable position to hold
   * psuedo variables that are visible to the references.
   */
  protected boolean isNotSameAsOwner(MultistepExprHolder head, ElemTemplateElement ete)
  {
    MultistepExprHolder next = head;
    while(null != next)
    {
      ElemTemplateElement elemOwner = getElemFromExpression(next.m_exprOwner.getExpression());
      if(elemOwner == ete)
        return false;
      next = next.m_next;
    }
    return true;
  }
 
  /**
   * Count the number of ancestors that a ElemTemplateElement has.
   *
   * @param elem An representation of an element in an XSLT stylesheet.
   * @return The number of ancestors of elem (including the element itself).
   */
  protected int countAncestors(ElemTemplateElement elem)
  {
    int count = 0;
    while(null != elem)
    {
      count++;
      elem = elem.getParentElem();
    }
    return count;
  }

  /**
   * Print out diagnostics about partial multistep evaluation.
   */
  protected void diagnoseMultistepList(
      int matchCount,
      int lengthToTest,
      boolean isGlobal)
  {
      if (matchCount > 0)
        {
        System.err.print(
          "Found multistep matches: " + matchCount + ", " + lengthToTest + " length");
        if (isGlobal)
              System.err.println(" (global)");
        else
              System.err.println();
      }
  }
 
  /**
   * Change a given number of steps to a single variable reference.
   *
   * @param uniquePseudoVarName The name of the variable reference.
   * @param wi The walking iterator that is to be changed.
   * @param numSteps The number of steps to be changed.
   * @param isGlobal true if this will be a global reference.
   */
  protected LocPathIterator changePartToRef(final QName uniquePseudoVarName, WalkingIterator wi,
                                 final int numSteps, final boolean isGlobal)
  {
    Variable var = new Variable();
    var.setQName(uniquePseudoVarName);
    var.setIsGlobal(isGlobal);
    if(isGlobal)
    {  ElemTemplateElement elem = getElemFromExpression(wi);
      StylesheetRoot root = elem.getStylesheetRoot();
      Vector vars = root.getVariablesAndParamsComposed();
      var.setIndex(vars.size()-1);
    }
   
    // Walk to the first walker after the one's we are replacing.
    AxesWalker walker = wi.getFirstWalker();
    for(int i = 0; i < numSteps; i++)
    {
      assertion(null != walker, "Walker should not be null!");
      walker = walker.getNextWalker();
    }
   
    if(null != walker)
    {
   
      FilterExprWalker few = new FilterExprWalker(wi);
      few.setInnerExpression(var);
      few.exprSetParent(wi);
      few.setNextWalker(walker);
      walker.setPrevWalker(few);
      wi.setFirstWalker(few);
      return wi;
    }
    else
    {
      FilterExprIteratorSimple feis = new FilterExprIteratorSimple(var);
      feis.exprSetParent(wi.exprGetParent());
      return feis;
    }
  }
 
  /**
   * Create a new WalkingIterator from the steps in another WalkingIterator.
   *
   * @param wi The iterator from where the steps will be taken.
   * @param numSteps The number of steps from the first to copy into the new
   *                 iterator.
   * @return The new iterator.
   */
  protected WalkingIterator createIteratorFromSteps(final WalkingIterator wi, int numSteps)
  {
    WalkingIterator newIter = new WalkingIterator(wi.getPrefixResolver());
    try
    {
      AxesWalker walker = (AxesWalker)wi.getFirstWalker().clone();
      newIter.setFirstWalker(walker);
      walker.setLocPathIterator(newIter);
      for(int i = 1; i < numSteps; i++)
      {
        AxesWalker next = (AxesWalker)walker.getNextWalker().clone();
        walker.setNextWalker(next);
        next.setLocPathIterator(newIter);
        walker = next;
      }
      walker.setNextWalker(null);
    }
    catch(CloneNotSupportedException cnse)
    {
      throw new WrappedRuntimeException(cnse);
    }
    return newIter;
  }
   
  /**
   * Compare a given number of steps between two iterators, to see if they are equal.
   *
   * @param iter1 The first iterator to compare.
   * @param iter2 The second iterator to compare.
   * @param numSteps The number of steps to compare.
   * @return true If the given number of steps are equal.
   *
   */
  protected boolean stepsEqual(WalkingIterator iter1, WalkingIterator iter2,
                                         int numSteps)
  {
    AxesWalker aw1 = iter1.getFirstWalker();
    AxesWalker aw2 = iter2.getFirstWalker();
   
    for(int i = 0; (i < numSteps); i++)
    {
      if((null == aw1) || (null == aw2))
         return false;
        
      if(!aw1.deepEquals(aw2))
        return false;
     
      aw1 = aw1.getNextWalker();
      aw2 = aw2.getNextWalker();
    }
   
    assertion((null != aw1) || (null != aw2), "Total match is incorrect!");
   
    return true;
  }
 
  /**
   * For the reduction of location path parts, create a list of all
   * the multistep paths with more than one step, sorted by the
   * number of steps, with the most steps occuring earlier in the list.
   * If the list is only one member, don't bother returning it.
   *
   * @param paths Vector of ExpressionOwner objects, which may contain null entries.
   *              The ExpressionOwner objects must own LocPathIterator objects.
   * @return null if no multipart paths are found or the list is only of length 1,
   * otherwise the first MultistepExprHolder in a linked list of these objects.
   */
  protected MultistepExprHolder createMultistepExprList(Vector paths)
  {
    MultistepExprHolder first = null;
    int n = paths.size();
    for(int i = 0; i < n; i++)
    {
      ExpressionOwner eo = (ExpressionOwner)paths.elementAt(i);
      if(null == eo)
        continue;
       
      // Assuming location path iterators should be OK.
      LocPathIterator lpi = (LocPathIterator)eo.getExpression();
      int numPaths = countSteps(lpi);
      if(numPaths > 1)
      {
        if(null == first)
          first = new MultistepExprHolder(eo, numPaths, null);
        else
          first = first.addInSortedOrder(eo, numPaths);
      }
    }
   
    if((null == first) || (first.getLength() <= 1))
      return null;
    else
      return first;
  }
 
  /**
   * Look through the vector from start point, looking for redundant occurances.
   * When one or more are found, create a psuedo variable declaration, insert
   * it into the stylesheet, and replace the occurance with a reference to
   * the psuedo variable.  When a redundent variable is found, it's slot in
   * the vector will be replaced by null.
   *
   * @param start The position to start looking in the vector.
   * @param firstOccuranceIndex The position of firstOccuranceOwner.
   * @param firstOccuranceOwner The owner of the expression we are looking for.
   * @param psuedoVarRecipient Where to put the psuedo variables.
   *
   * @return The number of expression occurances that were modified.
   */
  protected int findAndEliminateRedundant(int start, int firstOccuranceIndex,
                         ExpressionOwner firstOccuranceOwner,
                         ElemTemplateElement psuedoVarRecipient,
                         Vector paths)
                 throws org.w3c.dom.DOMException
  {
  MultistepExprHolder head = null;
  MultistepExprHolder tail = null;
  int numPathsFound = 0;
  int n = paths.size();
 
  Expression expr1 = firstOccuranceOwner.getExpression();
  if(DEBUG)
    assertIsLocPathIterator(expr1, firstOccuranceOwner);
  boolean isGlobal = (paths == m_absPaths);
  LocPathIterator lpi = (LocPathIterator)expr1;
  int stepCount = countSteps(lpi);
  for(int j = start; j < n; j++)
  {
    ExpressionOwner owner2 = (ExpressionOwner)paths.elementAt(j);
    if(null != owner2)
    {
      Expression expr2 = owner2.getExpression();
      boolean isEqual = expr2.deepEquals(lpi);
      if(isEqual)
      {     
        LocPathIterator lpi2  = (LocPathIterator)expr2;       
        if(null == head)
        {
          head = new MultistepExprHolder(firstOccuranceOwner, stepCount, null);
          tail = head;
          numPathsFound++;
        }
        tail.m_next = new MultistepExprHolder(owner2, stepCount, null);
        tail = tail.m_next;
 
        // Null out the occurance, so we don't have to test it again.
        paths.setElementAt(null, j);
       
        // foundFirst = true;
        numPathsFound++;
      }
    }
  }
 
  // Change all globals in xsl:templates, etc, to global vars no matter what.
  if((0 == numPathsFound) && isGlobal)
  {
      head = new MultistepExprHolder(firstOccuranceOwner, stepCount, null);
      numPathsFound++;
  }
 
  if(null != head)
  {
    ElemTemplateElement root = isGlobal ? psuedoVarRecipient : findCommonAncestor(head);
    LocPathIterator sharedIter = (LocPathIterator)head.m_exprOwner.getExpression();
    ElemVariable var = createPseudoVarDecl(root, sharedIter, isGlobal);
    if(DIAGNOSE_MULTISTEPLIST)
      System.err.println("Created var: "+var.getName()+(isGlobal ? "(Global)" : ""));
    QName uniquePseudoVarName = var.getName();
    while(null != head)
    {
      ExpressionOwner owner = head.m_exprOwner; 
      if(DIAGNOSE_MULTISTEPLIST)
        diagnoseLineNumber(owner.getExpression());
      changeToVarRef(uniquePseudoVarName, owner, paths, root);
      head = head.m_next;
    }
    // Replace the first occurance with the variable's XPath, so 
    // that further reduction may take place if needed.
    paths.setElementAt(var.getSelect(), firstOccuranceIndex);
  }
 
  return numPathsFound;
  }
 
  /**
   * To be removed.
   */
  protected int oldFindAndEliminateRedundant(int start, int firstOccuranceIndex,
                         ExpressionOwner firstOccuranceOwner,
                         ElemTemplateElement psuedoVarRecipient,
                         Vector paths)
                 throws org.w3c.dom.DOMException
  {
  QName uniquePseudoVarName = null;
  boolean foundFirst = false;
  int numPathsFound = 0;
  int n = paths.size();
  Expression expr1 = firstOccuranceOwner.getExpression();
  if(DEBUG)
    assertIsLocPathIterator(expr1, firstOccuranceOwner);
  boolean isGlobal = (paths == m_absPaths);
  LocPathIterator lpi = (LocPathIterator)expr1;
  for(int j = start; j < n; j++)
  {
    ExpressionOwner owner2 = (ExpressionOwner)paths.elementAt(j);
    if(null != owner2)
    {
      Expression expr2 = owner2.getExpression();
      boolean isEqual = expr2.deepEquals(lpi);
      if(isEqual)
      {     
        LocPathIterator lpi2  = (LocPathIterator)expr2;       
        if(!foundFirst)
        {
          foundFirst = true;
          // Insert variable decl into psuedoVarRecipient
          // We want to insert this into the first legitimate
          // position for a variable.
            ElemVariable var = createPseudoVarDecl(psuedoVarRecipient, lpi, isGlobal);
            if(null == var)
              return 0;
            uniquePseudoVarName = var.getName();
 
          changeToVarRef(uniquePseudoVarName, firstOccuranceOwner,
                         paths, psuedoVarRecipient);
                        
          // Replace the first occurance with the variable's XPath, so 
          // that further reduction may take place if needed.
          paths.setElementAt(var.getSelect(), firstOccuranceIndex);
          numPathsFound++;
        }
 
        changeToVarRef(uniquePseudoVarName, owner2, paths, psuedoVarRecipient);
 
        // Null out the occurance, so we don't have to test it again.
        paths.setElementAt(null, j);
       
        // foundFirst = true;
        numPathsFound++;
      }
    }
  }
 
  // Change all globals in xsl:templates, etc, to global vars no matter what.
  if((0 == numPathsFound) && (paths == m_absPaths))
  {
      ElemVariable var = createPseudoVarDecl(psuedoVarRecipient, lpi, true);
      if(null == var)
        return 0;
    uniquePseudoVarName = var.getName();
      changeToVarRef(uniquePseudoVarName, firstOccuranceOwner, paths, psuedoVarRecipient);
      paths.setElementAt(var.getSelect(), firstOccuranceIndex);
      numPathsFound++;
  }
  return numPathsFound;
  }
 
  /**
   * Count the steps in a given location path.
   *
   * @param lpi The location path iterator that owns the steps.
   * @return The number of steps in the given location path.
   */
  protected int countSteps(LocPathIterator lpi)
  {
    if(lpi instanceof WalkingIterator)
    {
      WalkingIterator wi = (WalkingIterator)lpi;
      AxesWalker aw = wi.getFirstWalker();
      int count = 0;
      while(null != aw)
      {
        count++;
        aw = aw.getNextWalker();
      }
      return count;
    }
    else
      return 1;
  }
 
  /**
   * Change the expression owned by the owner argument to a variable reference
   * of the given name.
   *
   * Warning: For global vars, this function relies on the variable declaration
   * to which it refers having been added just prior to this function being called,
   * so that the reference index can be determined from the size of the global variables
   * list minus one.
   *
   * @param varName The name of the variable which will be referenced.
   * @param owner The owner of the expression which will be replaced by a variable ref.
   * @param paths The paths list that the iterator came from, mainly to determine
   *              if this is a local or global reduction.
   * @param psuedoVarRecipient The element within whose scope the variable is
   *                           being inserted, possibly a StylesheetRoot.
   */
  protected void changeToVarRef(QName varName, ExpressionOwner owner,
                                Vector paths, ElemTemplateElement psuedoVarRecipient)
  {
  Variable varRef = (paths == m_absPaths) ? new VariableSafeAbsRef() : new Variable();
  varRef.setQName(varName);
  if(paths == m_absPaths)
  {
    StylesheetRoot root = (StylesheetRoot)psuedoVarRecipient;
    Vector globalVars = root.getVariablesAndParamsComposed();
    // Assume this operation is occuring just after the decl has
    // been added.
    varRef.setIndex(globalVars.size()-1);
    varRef.setIsGlobal(true);
  }
  owner.setExpression(varRef);
  }
  
  private synchronized static int getPseudoVarID(){
      return m_uniquePseudoVarID++;
  }
 
  /**
   * Create a psuedo variable reference that will represent the
   * shared redundent XPath, and add it to the stylesheet.
   *
   * @param psuedoVarRecipient The broadest scope of where the variable
   * should be inserted, usually an xsl:template or xsl:for-each.
   * @param lpi The LocationPathIterator that the variable should represent.
   * @param isGlobal true if the paths are global.
   * @return The new psuedo var element.
   */
  protected ElemVariable createPseudoVarDecl(
      ElemTemplateElement psuedoVarRecipient,
      LocPathIterator lpi, boolean isGlobal)
      throws org.w3c.dom.DOMException
  {
    QName uniquePseudoVarName = new QName (PSUEDOVARNAMESPACE, "#"+getPseudoVarID());
     
    if(isGlobal)
    {
      return createGlobalPseudoVarDecl(uniquePseudoVarName,
                                      (StylesheetRoot)psuedoVarRecipient, lpi);
    }
    else           
      return createLocalPseudoVarDecl(uniquePseudoVarName, psuedoVarRecipient, lpi);
  }
 
  /**
   * Create a psuedo variable reference that will represent the
   * shared redundent XPath, for a local reduction.
   *
   * @param uniquePseudoVarName The name of the new variable.
   * @param stylesheetRoot The broadest scope of where the variable
   *        should be inserted, which must be a StylesheetRoot element in this case.
   * @param lpi The LocationPathIterator that the variable should represent.
   * @return null if the decl was not created, otherwise the new Pseudo var 
   *              element.
   */
  protected ElemVariable createGlobalPseudoVarDecl(QName uniquePseudoVarName,
                                           StylesheetRoot stylesheetRoot,
                                           LocPathIterator lpi)
        throws org.w3c.dom.DOMException
  {
    ElemVariable psuedoVar = new ElemVariable();
    psuedoVar.setIsTopLevel(true);
  XPath xpath = new XPath(lpi);
  psuedoVar.setSelect(xpath);
  psuedoVar.setName(uniquePseudoVarName);
 
  Vector globalVars = stylesheetRoot.getVariablesAndParamsComposed();
  psuedoVar.setIndex(globalVars.size());
  globalVars.addElement(psuedoVar);
  return psuedoVar;
  }

 
 

  /**
   * Create a psuedo variable reference that will represent the
   * shared redundent XPath, for a local reduction.
   *
   * @param uniquePseudoVarName The name of the new variable.
   * @param psuedoVarRecipient The broadest scope of where the variable
   * should be inserted, usually an xsl:template or xsl:for-each.
   * @param lpi The LocationPathIterator that the variable should represent.
   * @return null if the decl was not created, otherwise the new Pseudo var 
   *              element.
   */
  protected ElemVariable createLocalPseudoVarDecl(QName uniquePseudoVarName,
                                           ElemTemplateElement psuedoVarRecipient,
                                           LocPathIterator lpi)
        throws org.w3c.dom.DOMException
  {
    ElemVariable psuedoVar = new ElemVariablePsuedo();
   
    XPath xpath = new XPath(lpi);
    psuedoVar.setSelect(xpath);
    psuedoVar.setName(uniquePseudoVarName);

    ElemVariable var = addVarDeclToElem(psuedoVarRecipient, lpi, psuedoVar);
   
    lpi.exprSetParent(var);
   
    return var;
  }

  /**
   * Add the given variable to the psuedoVarRecipient.
   */
  protected ElemVariable addVarDeclToElem(
    ElemTemplateElement psuedoVarRecipient,
    LocPathIterator lpi,
    ElemVariable psuedoVar)
    throws org.w3c.dom.DOMException
  {
    // Create psuedo variable element
    ElemTemplateElement ete = psuedoVarRecipient.getFirstChildElem();

    lpi.callVisitors(null, m_varNameCollector);

    // If the location path contains variables, we have to insert the
    // psuedo variable after the reference. (Otherwise, we want to
    // insert it as close as possible to the top, so we'll be sure
    // it is in scope for any other vars.
    if (m_varNameCollector.getVarCount() > 0)
    {
      ElemTemplateElement baseElem = getElemFromExpression(lpi);
      ElemVariable varElem = getPrevVariableElem(baseElem);
      while (null != varElem)
      {
        if (m_varNameCollector.doesOccur(varElem.getName()))
          {
          psuedoVarRecipient = varElem.getParentElem();
          ete = varElem.getNextSiblingElem();
          break;
        }
        varElem = getPrevVariableElem(varElem);
      }
    }

    if ((null != ete) && (Constants.ELEMNAME_PARAMVARIABLE == ete.getXSLToken()))
    {
      // Can't stick something in front of a param, so abandon! (see variable13.xsl)
      if(isParam(lpi))
        return null;

      while (null != ete)
      {
        ete = ete.getNextSiblingElem();
        if ((null != ete) && Constants.ELEMNAME_PARAMVARIABLE != ete.getXSLToken())
            break;
      }
    }
    psuedoVarRecipient.insertBefore(psuedoVar, ete);
    m_varNameCollector.reset();
    return psuedoVar;
  }
   
  /**
   * Tell if the expr param is contained within an xsl:param.
   */
  protected boolean isParam(ExpressionNode expr)
  {
    while(null != expr)
    {
      if(expr instanceof ElemTemplateElement)
        break;
      expr = expr.exprGetParent();
    }
    if(null != expr)
    {
      ElemTemplateElement ete = (ElemTemplateElement)expr;
      while(null != ete)
      {
        int type = ete.getXSLToken();
        switch(type)
        {
          case Constants.ELEMNAME_PARAMVARIABLE:
            return true;
          case Constants.ELEMNAME_TEMPLATE:
          case Constants.ELEMNAME_STYLESHEET:
            return false;
        }
        ete = ete.getParentElem();
      }
    }
    return false;
   
  }
 
  /**
   * Find the previous occurance of a xsl:variable.  Stop
   * the search when a xsl:for-each, xsl:template, or xsl:stylesheet is
   * encountered.
   *
   * @param elem Should be non-null template element.
   * @return The first previous occurance of an xsl:variable or xsl:param,
   * or null if none is found.
   */
  protected ElemVariable getPrevVariableElem(ElemTemplateElement elem)
  {
    // This could be somewhat optimized.  since getPreviousSiblingElem is a 
    // fairly expensive operation.
    while(null != (elem = getPrevElementWithinContext(elem)))
    {
      int type = elem.getXSLToken();
       
      if((Constants.ELEMNAME_VARIABLE == type) ||
         (Constants.ELEMNAME_PARAMVARIABLE == type))
      {
        return (ElemVariable)elem;
      }
    }
    return null;
  }
 
  /**
   * Get the previous sibling or parent of the given template, stopping at
   * xsl:for-each, xsl:template, or xsl:stylesheet.
   *
   * @param elem Should be non-null template element.
   * @return previous sibling or parent, or null if previous is xsl:for-each,
   * xsl:template, or xsl:stylesheet.
   */
  protected ElemTemplateElement getPrevElementWithinContext(ElemTemplateElement elem)
  {
    ElemTemplateElement prev = elem.getPreviousSiblingElem();
    if(null == prev)
      prev = elem.getParentElem();
    if(null != prev)
    {
      int type = prev.getXSLToken();
      if((Constants.ELEMNAME_FOREACH == type) ||
         (Constants.ELEMNAME_TEMPLATE == type) ||
         (Constants.ELEMNAME_STYLESHEET == type))
      {
        prev = null;
      }
    }
    return prev;
  }
 
  /**
   * From an XPath expression component, get the ElemTemplateElement
   * owner.
   *
   * @param expr Should be static expression with proper parentage.
   * @return Valid ElemTemplateElement, or throw a runtime exception
   * if it is not found.
   */
  protected ElemTemplateElement getElemFromExpression(Expression expr)
  {
    ExpressionNode parent = expr.exprGetParent();
    while(null != parent)
    {
      if(parent instanceof ElemTemplateElement)
        return (ElemTemplateElement)parent;
      parent = parent.exprGetParent();
    }
    throw new RuntimeException(XSLMessages.createMessage(XSLTErrorResources.ER_ASSERT_NO_TEMPLATE_PARENT, null));
    // "Programmer's error! expr has no ElemTemplateElement parent!");
  }
     
  /**
   * Tell if the given LocPathIterator is relative to an absolute path, i.e.
   * in not dependent on the context.
   *
   * @return true if the LocPathIterator is not dependent on the context node.
   */
  public boolean isAbsolute(LocPathIterator path)
  {
    int analysis = path.getAnalysisBits();
    boolean isAbs = (WalkerFactory.isSet(analysis, WalkerFactory.BIT_ROOT) ||
           WalkerFactory.isSet(analysis, WalkerFactory.BIT_ANY_DESCENDANT_FROM_ROOT));
    if(isAbs)
    {
      isAbs = m_absPathChecker.checkAbsolute(path);
    }
    return isAbs;
  }


  /**
   * Visit a LocationPath.
   * @param owner The owner of the expression, to which the expression can
   *              be reset if rewriting takes place.
   * @param path The LocationPath object.
   * @return true if the sub expressions should be traversed.
   */
  public boolean visitLocationPath(ExpressionOwner owner, LocPathIterator path)
  {
    // Don't optimize "." or single step variable paths.
    // Both of these cases could use some further optimization by themselves.
    if(path instanceof SelfIteratorNoPredicate)
    {
      return true;
    }
    else if(path instanceof WalkingIterator)
    {
      WalkingIterator wi = (WalkingIterator)path;
      AxesWalker aw = wi.getFirstWalker();
      if((aw instanceof FilterExprWalker) && (null == aw.getNextWalker()))
      {
        FilterExprWalker few = (FilterExprWalker)aw;
        Expression exp = few.getInnerExpression();
        if(exp instanceof Variable)
          return true;
      }
    }

    if (isAbsolute(path) && (null != m_absPaths))
    {
      if(DEBUG)
        validateNewAddition(m_absPaths, owner, path);
      m_absPaths.addElement(owner);
    }
    else if (m_isSameContext && (null != m_paths))
    {
      if(DEBUG)
        validateNewAddition(m_paths, owner, path);
      m_paths.addElement(owner);
    }

    return true;
  }

  /**
   * Visit a predicate within a location path.  Note that there isn't a
   * proper unique component for predicates, and that the expression will
   * be called also for whatever type Expression is.
   *
   * @param owner The owner of the expression, to which the expression can
   *              be reset if rewriting takes place.
   * @param pred The predicate object.
   * @return true if the sub expressions should be traversed.
   */
  public boolean visitPredicate(ExpressionOwner owner, Expression pred)
  {
    boolean savedIsSame = m_isSameContext;
    m_isSameContext = false;

    // Any further down, just collect the absolute paths.
    pred.callVisitors(owner, this);

    m_isSameContext = savedIsSame;

    // We've already gone down the subtree, so don't go have the caller
    // go any further.
    return false;
  }
 
  /**
   * Visit an XSLT top-level instruction.
   *
   * @param elem The xsl instruction element object.
   * @return true if the sub expressions should be traversed.
   */
   public boolean visitTopLevelInstruction(ElemTemplateElement elem)
   {
     int type = elem.getXSLToken();
     switch(type)
     {
       case Constants.ELEMNAME_TEMPLATE :
         return visitInstruction(elem);
       default:
         return true;
     }
   }


  /**
   * Visit an XSLT instruction.  Any element that isn't called by one
   * of the other visit methods, will be called by this method.
   *
   * @param elem The xsl instruction element object.
   * @return true if the sub expressions should be traversed.
   */
  public boolean visitInstruction(ElemTemplateElement elem)
  {
    int type = elem.getXSLToken();
    switch (type)
    {
      case Constants.ELEMNAME_CALLTEMPLATE :
      case Constants.ELEMNAME_TEMPLATE :
      case Constants.ELEMNAME_FOREACH :
        {
         
          // Just get the select value.
          if(type == Constants.ELEMNAME_FOREACH)
          {
            ElemForEach efe = (ElemForEach) elem;
          
          Expression select = efe.getSelect();
          select.callVisitors(efe, this);
          }
        
        Vector savedPaths = m_paths;
        m_paths = new Vector();
         
        // Visit children.  Call the superclass callChildVisitors, because
        // we don't want to visit the xsl:for-each select attribute, or, for
        // that matter, the xsl:template's match attribute.
        elem.callChildVisitors(this, false);     
        eleminateRedundentLocals(elem);
         
        m_paths = savedPaths;
          // select.callVisitors(efe, this);
          return false;
        }
      case Constants.ELEMNAME_NUMBER :
      case Constants.ELEMNAME_SORT :
        // Just collect absolute paths until and unless we can fully
        // analyze these cases.
        boolean savedIsSame = m_isSameContext;
        m_isSameContext = false;
        elem.callChildVisitors(this);
        m_isSameContext = savedIsSame;
        return false;
       
      default :
        return true;
    }
  }
 
  // ==== DIAGNOSTIC AND DEBUG FUNCTIONS ====
 
  /**
   * Print out to std err the number of paths reduced.
   */
  protected void diagnoseNumPaths(Vector paths, int numPathsEliminated, 
                                  int numUniquePathsEliminated)
  {
    if (numPathsEliminated > 0)
    {
      if(paths == m_paths)
      {
        System.err.println("Eliminated " + numPathsEliminated + " total paths!");
        System.err.println(
          "Consolodated " + numUniquePathsEliminated + " redundent paths!");
      }
      else
      {
        System.err.println("Eliminated " + numPathsEliminated + " total global paths!");
        System.err.println(
          "Consolodated " + numUniquePathsEliminated + " redundent global paths!");
      }
    } 
  }


  /**
   * Assert that the expression is a LocPathIterator, and, if
   * not, try to give some diagnostic info.
   */
  private final void assertIsLocPathIterator(Expression expr1, ExpressionOwner eo)
    throws RuntimeException
  {
    if(!(expr1 instanceof LocPathIterator))
    {
      String errMsg;
      if(expr1 instanceof Variable)
      {
        errMsg = "Programmer's assertion: expr1 not an iterator: "+
                  ((Variable)expr1).getQName();
      }
      else
      {
        errMsg = "Programmer's assertion: expr1 not an iterator: "+
                  expr1.getClass().getName();
      }
      throw new RuntimeException(errMsg + ", "+
                  eo.getClass().getName()+" "+
                  expr1.exprGetParent());
    }
  }


  /**
   * Validate some assumptions about the new LocPathIterator and it's
   * owner and the state of the list.
   */
  private static void validateNewAddition(Vector paths, ExpressionOwner owner,
                                          LocPathIterator path)
    throws RuntimeException
  {
    assertion(owner.getExpression() == path, "owner.getExpression() != path!!!");
  int n = paths.size();
  // There should never be any duplicates in the list!
  for(int i = 0; i < n; i++)
  {
    ExpressionOwner ew = (ExpressionOwner)paths.elementAt(i);
    assertion(ew != owner, "duplicate owner on the list!!!");
    assertion(ew.getExpression() != path, "duplicate expression on the list!!!");
  }
  }
 
  /**
   * Simple assertion.
   */
  protected static void assertion(boolean b, String msg)
  {
    if(!b)
    {
      throw new RuntimeException(XSLMessages.createMessage(XSLTErrorResources.ER_ASSERT_REDUNDENT_EXPR_ELIMINATOR, new Object[]{msg}));
      // "Programmer's assertion in RundundentExprEliminator: "+msg);
    }
  }
 
  /**
   * Since we want to sort multistep expressions by length, use
   * a linked list with elements of type MultistepExprHolder.
   */
  class MultistepExprHolder implements Cloneable
  {
  ExpressionOwner m_exprOwner; // Will change to null once we have processed this item.
  final int m_stepCount;
  MultistepExprHolder m_next;
 
  /**
   * Clone this object.
   */
  public Object clone()
    throws CloneNotSupportedException
  {
    return super.clone();
  }
 
  /**
   * Create a MultistepExprHolder.
   *
   * @param exprOwner the owner of the expression we are holding.
   *                  It must hold a LocationPathIterator.
   * @param stepCount The number of steps in the location path.
   */
    MultistepExprHolder(ExpressionOwner exprOwner, int stepCount, MultistepExprHolder next)
    {
      m_exprOwner = exprOwner;
      assertion(null != m_exprOwner, "exprOwner can not be null!");
      m_stepCount = stepCount;
      m_next = next;
    }
 
  /**
   * Add a new MultistepExprHolder in sorted order in the list.
   *
   * @param exprOwner the owner of the expression we are holding.
   *                  It must hold a LocationPathIterator.
   * @param stepCount The number of steps in the location path.
   * @return The new head of the linked list.
   */
  MultistepExprHolder addInSortedOrder(ExpressionOwner exprOwner, int stepCount)
  {
    MultistepExprHolder first = this;
    MultistepExprHolder next = this;
    MultistepExprHolder prev = null;
    while(null != next)
    {
      if(stepCount >= next.m_stepCount)
      {
        MultistepExprHolder newholder = new MultistepExprHolder(exprOwner, stepCount, next);
        if(null == prev)
          first = newholder;
        else
          prev.m_next = newholder;
         
        return first;
      }
      prev = next;
      next = next.m_next;
    }
   
    prev.m_next = new MultistepExprHolder(exprOwner, stepCount, null);
    return first;
  }
 
  /**
   * Remove the given element from the list.  'this' should
   * be the head of the list.  If the item to be removed is not
   * found, an assertion will be made.
   *
   * @param itemToRemove The item to remove from the list.
   * @return The head of the list, which may have changed if itemToRemove
   * is the same as this element.  Null if the item to remove is the
   * only item in the list.
   */
  MultistepExprHolder unlink(MultistepExprHolder itemToRemove)
  {
    MultistepExprHolder first = this;
    MultistepExprHolder next = this;
    MultistepExprHolder prev = null;
    while(null != next)
    {
      if(next == itemToRemove)
      {
        if(null == prev)
          first = next.m_next;
        else
          prev.m_next = next.m_next;
       
        next.m_next = null;
         
        return first;
      }
      prev = next;
      next = next.m_next;
    }
   
    assertion(false, "unlink failed!!!");
    return null;
  }
   
  /**
   * Get the number of linked list items.
   */
  int getLength()
  {
    int count = 0;
    MultistepExprHolder next = this;
    while(null != next)
    {
      count++;
      next = next.m_next;
    }
    return count;
  }
 
    /**
     * Print diagnostics out for the multistep list.
     */
    protected void diagnose()
    {
      System.err.print("Found multistep iterators: " + this.getLength() + "  ");
      MultistepExprHolder next = this;
      while (null != next)
      {
        System.err.print("" + next.m_stepCount);
        next = next.m_next;
        if (null != next)
              System.err.print(", ");
      }
      System.err.println();
    }
 
  }

}
TOP

Related Classes of org.apache.xalan.templates.RedundentExprEliminator

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.