package net.sf.saxon.dotnet;
import cli.System.Xml.*;
import net.sf.saxon.Configuration;
import net.sf.saxon.event.Receiver;
import net.sf.saxon.om.*;
import net.sf.saxon.pattern.NameTest;
import net.sf.saxon.pattern.NodeTest;
import net.sf.saxon.om.StandardNames;
import net.sf.saxon.trans.XPathException;
import net.sf.saxon.type.Type;
import net.sf.saxon.value.AtomicValue;
import net.sf.saxon.value.StringValue;
import net.sf.saxon.value.UntypedAtomicValue;
import net.sf.saxon.value.Value;
import java.util.ArrayList;
/**
* A node in the XML parse tree representing an XML element, character content, or attribute.<P>
* This is the implementation of the NodeInfo interface used as a wrapper for DOM nodes as
* provided in the .NET System.Xml implementation.
*/
public class NodeWrapper implements NodeInfo, VirtualNode, SiblingCountingNode {
protected XmlNode node;
private int namecode = -1;
protected short nodeKind;
protected NodeWrapper parent; // null means unknown
protected DocumentWrapper docWrapper;
protected int index; // -1 means unknown
protected int span = 1; // the number of adjacent text nodes wrapped by this NodeWrapper.
// If span>1, node will always be the first of a sequence of adjacent text nodes
/**
* This constructor is protected: nodes should be created using the makeWrapper
* factory method
* @param node The DOM node to be wrapped
* @param parent The NodeWrapper that wraps the parent of this node
* @param index Position of this node among its siblings
*/
protected NodeWrapper(XmlNode node, NodeWrapper parent, int index) {
//System.err.println("Creating NodeWrapper for " +node);
this.node = node;
this.parent = parent;
this.index = index;
}
NodeWrapper() {
}
/**
* Factory method to wrap a DOM node with a wrapper that implements the Saxon
* NodeInfo interface.
* @param node The DOM node
* @param docWrapper The wrapper for the containing Document node
* @return The new wrapper for the supplied node
* @throws NullPointerException if the node or the document wrapper are null
*/
protected NodeWrapper makeWrapper(XmlNode node, DocumentWrapper docWrapper) {
if (node == null) {
throw new NullPointerException("NodeWrapper#makeWrapper: Node must not be null");
}
if (docWrapper == null) {
throw new NullPointerException("NodeWrapper#makeWrapper: DocumentWrapper must not be null");
}
return makeWrapper(node, docWrapper, null, -1);
}
/**
* Factory method to wrap a DOM node with a wrapper that implements the Saxon
* NodeInfo interface.
* @param node The DOM node
* @param docWrapper The wrapper for the containing Document node *
* @param parent The wrapper for the parent of the JDOM node
* @param index The position of this node relative to its siblings
* @return The new wrapper for the supplied node
*/
protected NodeWrapper makeWrapper(XmlNode node, DocumentWrapper docWrapper,
NodeWrapper parent, int index) {
NodeWrapper wrapper;
switch (node.get_NodeType().Value) {
case XmlNodeType.Document:
//case Node.DOCUMENT_FRAGMENT_NODE:
return docWrapper;
case XmlNodeType.Element:
wrapper = new NodeWrapper(node, parent, index);
wrapper.nodeKind = Type.ELEMENT;
break;
case XmlNodeType.Attribute:
wrapper = new NodeWrapper(node, parent, index);
wrapper.nodeKind = Type.ATTRIBUTE;
break;
case XmlNodeType.Text:
case XmlNodeType.CDATA:
case XmlNodeType.Whitespace:
case XmlNodeType.SignificantWhitespace:
wrapper = new NodeWrapper(node, parent, index);
wrapper.nodeKind = Type.TEXT;
break;
case XmlNodeType.Comment:
wrapper = new NodeWrapper(node, parent, index);
wrapper.nodeKind = Type.COMMENT;
break;
case XmlNodeType.ProcessingInstruction:
wrapper = new NodeWrapper(node, parent, index);
wrapper.nodeKind = Type.PROCESSING_INSTRUCTION;
break;
default:
throw new IllegalArgumentException("Unsupported node type in DOM! " + node.get_NodeType() + " instance " + node.toString());
}
wrapper.docWrapper = docWrapper;
return wrapper;
}
/**
* Get the underlying DOM node, to implement the VirtualNode interface
*/
public Object getUnderlyingNode() {
return node;
}
/**
* Get the node underlying this virtual node. If this is a VirtualNode the method
* will automatically drill down through several layers of wrapping.
* @return The underlying node.
*/
public Object getRealNode() {
return getUnderlyingNode();
}
/**
* Get the configuration
*/
public Configuration getConfiguration() {
return docWrapper.getConfiguration();
}
/**
* Get the name pool for this node
* @return the NamePool
*/
public NamePool getNamePool() {
return docWrapper.getNamePool();
}
/**
* Return the type of node.
* @return one of the values Node.ELEMENT, Node.TEXT, Node.ATTRIBUTE, etc.
*/
public int getNodeKind() {
return nodeKind;
}
/**
* Get the typed value of the item
*/
public SequenceIterator getTypedValue() {
return SingletonIterator.makeIterator((AtomicValue)atomize());
}
/**
* Get the typed value. The result of this method will always be consistent with the method
* {@link net.sf.saxon.om.Item#getTypedValue()}. However, this method is often more convenient and may be
* more efficient, especially in the common case where the value is expected to be a singleton.
* @return the typed value. If requireSingleton is set to true, the result will always be an
* AtomicValue. In other cases it may be a Value representing a sequence whose items are atomic
* values.
* @since 8.5
*/
public Value atomize() {
switch (getNodeKind()) {
case Type.COMMENT:
case Type.PROCESSING_INSTRUCTION:
return new StringValue(getStringValueCS());
default:
return new UntypedAtomicValue(getStringValueCS());
}
}
/**
* Get the type annotation
*/
public int getTypeAnnotation() {
if (getNodeKind() == Type.ATTRIBUTE) {
return StandardNames.XS_UNTYPED_ATOMIC;
}
return StandardNames.XS_UNTYPED;
}
/**
* Determine whether this is the same node as another node. <br />
* Note: a.isSameNodeInfo(b) if and only if generateId(a)==generateId(b)
* @return true if this Node object and the supplied Node object represent the
* same node in the tree.
*/
public boolean isSameNodeInfo(NodeInfo other) {
// On .NET, the DOM appears to guarantee that the same node is always represented
// by the same object
return other instanceof NodeWrapper && node == ((NodeWrapper)other).node;
}
/**
* The equals() method compares nodes for identity. It is defined to give the same result
* as isSameNodeInfo().
* @param other the node to be compared with this node
* @return true if this NodeInfo object and the supplied NodeInfo object represent
* the same node in the tree.
* @since 8.7 Previously, the effect of the equals() method was not defined. Callers
* should therefore be aware that third party implementations of the NodeInfo interface may
* not implement the correct semantics. It is safer to use isSameNodeInfo() for this reason.
* The equals() method has been defined because it is useful in contexts such as a Java Set or HashMap.
*/
public boolean equals(Object other) {
return other instanceof NodeInfo && isSameNodeInfo((NodeInfo)other);
}
/**
* The hashCode() method obeys the contract for hashCode(): that is, if two objects are equal
* (represent the same node) then they must have the same hashCode()
* @since 8.7 Previously, the effect of the equals() and hashCode() methods was not defined. Callers
* should therefore be aware that third party implementations of the NodeInfo interface may
* not implement the correct semantics.
*/
public int hashCode() {
FastStringBuffer buffer = new FastStringBuffer(FastStringBuffer.SMALL);
generateId(buffer);
return buffer.toString().hashCode();
}
/**
* Get the System ID for the node.
* @return the System Identifier of the entity in the source document containing the node,
* or null if not known. Note this is not the same as the base URI: the base URI can be
* modified by xml:base, but the system ID cannot.
*/
public String getSystemId() {
return docWrapper.baseURI;
}
public void setSystemId(String uri) {
docWrapper.baseURI = uri;
}
/**
* Get the Base URI for the node, that is, the URI used for resolving a relative URI contained
* in the node. In the DOM model, base URIs are held only an the document level.
*/
public String getBaseURI() {
NodeInfo n = this;
if (getNodeKind() != Type.ELEMENT) {
n = getParent();
}
return ((NodeWrapper)n).node.get_BaseURI();
}
/**
* Get line number
* @return the line number of the node in its original source document; or -1 if not available
*/
public int getLineNumber() {
return -1;
}
/**
* Get column number
* @return the column number of the node in its original source document; or -1 if not available
*/
public int getColumnNumber() {
return -1;
}
/**
* Determine the relative position of this node and another node, in document order.
* The other node will always be in the same document.
* @param other The other node, whose position is to be compared with this node
* @return -1 if this node precedes the other node, +1 if it follows the other
* node, or 0 if they are the same node. (In this case, isSameNode() will always
* return true, and the two nodes will produce the same result for generateId())
*/
public int compareOrder(NodeInfo other) {
if (other instanceof SiblingCountingNode) {
return Navigator.compareOrder(this, (SiblingCountingNode)other);
} else {
// it's presumably a Namespace Node
return -other.compareOrder(this);
}
}
/**
* Return the string value of the node. The interpretation of this depends on the type
* of node. For an element it is the accumulated character content of the element,
* including descendant elements.
* @return the string value of the node
*/
public String getStringValue() {
return getStringValueCS().toString();
}
/**
* Get the value of the item as a CharSequence. This is in some cases more efficient than
* the version of the method that returns a String.
*/
public CharSequence getStringValueCS() {
switch (nodeKind) {
case Type.DOCUMENT:
case Type.ELEMENT:
return node.get_InnerText();
case Type.ATTRIBUTE:
return node.get_Value();
case Type.TEXT:
if (span == 1) {
return node.get_InnerText();
} else {
FastStringBuffer fsb = new FastStringBuffer(FastStringBuffer.SMALL);
XmlNode textNode = node;
for (int i = 0; i < span; i++) {
fsb.append(textNode.get_InnerText());
textNode = textNode.get_NextSibling();
}
return fsb.condense();
}
case Type.COMMENT:
case Type.PROCESSING_INSTRUCTION:
return node.get_Value();
default:
return "";
}
}
/**
* Get name code. The name code is a coded form of the node name: two nodes
* with the same name code have the same namespace URI, the same local name,
* and the same prefix. By masking the name code with &0xfffff, you get a
* fingerprint: two nodes with the same fingerprint have the same local name
* and namespace URI.
* @see net.sf.saxon.om.NamePool#allocate allocate
*/
public int getNameCode() {
if (namecode != -1) {
// this is a memo function
return namecode;
}
int nodeKind = getNodeKind();
if (nodeKind == Type.ELEMENT || nodeKind == Type.ATTRIBUTE) {
String prefix = node.get_Prefix();
if (prefix == null) {
prefix = "";
}
namecode = docWrapper.getNamePool().allocate(prefix, getURI(), getLocalPart());
return namecode;
} else if (nodeKind == Type.PROCESSING_INSTRUCTION) {
namecode = docWrapper.getNamePool().allocate("", "", getLocalPart());
return namecode;
} else {
return -1;
}
}
/**
* Get fingerprint. The fingerprint is a coded form of the expanded name
* of the node: two nodes
* with the same name code have the same namespace URI and the same local name.
* A fingerprint of -1 should be returned for a node with no name.
*/
public int getFingerprint() {
int nc = getNameCode();
if (nc == -1) {
return -1;
}
return nc & NamePool.FP_MASK;
}
/**
* Get the local part of the name of this node. This is the name after the ":" if any.
* @return the local part of the name. For an unnamed node, returns null, except for
* un unnamed namespace node, which returns "".
*/
public String getLocalPart() {
return node.get_LocalName();
}
/**
* Get the URI part of the name of this node. This is the URI corresponding to the
* prefix, or the URI of the default namespace if appropriate.
* @return The URI of the namespace of this node. For an unnamed node,
* or for a node with an empty prefix, return an empty
* string.
*/
public String getURI() {
NodeInfo element;
if (nodeKind == Type.ELEMENT) {
element = this;
} else if (nodeKind == Type.ATTRIBUTE) {
element = parent;
} else {
return "";
}
// The DOM methods getPrefix() and getNamespaceURI() do not always
// return the prefix and the URI; they both return null, unless the
// prefix and URI have been explicitly set in the node by using DOM
// level 2 interfaces. There's no obvious way of deciding whether
// an element whose name has no prefix is in the default namespace,
// other than searching for a default namespace declaration. So we have to
// be prepared to search.
// If getPrefix() and getNamespaceURI() are non-null, however,
// we can use the values.
String uri = node.get_NamespaceURI();
if (uri != null) {
return uri;
}
// Otherwise we have to work it out the hard way...
if (node.get_Name().startsWith("xml:")) {
return NamespaceConstant.XML;
}
String[] parts;
try {
parts = Name11Checker.getInstance().getQNameParts(node.get_Name());
// use the XML 1.1 rules: these will do because it should already have been checked
} catch (QNameException e) {
throw new IllegalStateException("Invalid QName in DOM node. " + e);
}
if (nodeKind == Type.ATTRIBUTE && parts[0].length() == 0) {
// for an attribute, no prefix means no namespace
uri = "";
} else {
AxisIterator nsiter = element.iterateAxis(Axis.NAMESPACE);
while (true) {
NodeInfo ns = (NodeInfo)nsiter.next();
if (ns == null) {
break;
}
if (ns.getLocalPart().equals(parts[0])) {
uri = ns.getStringValue();
break;
}
}
if (uri == null) {
if (parts[0].length() == 0) {
uri = "";
} else {
throw new IllegalStateException("Undeclared namespace prefix in DOM input: " + parts[0]);
}
}
}
return uri;
}
/**
* Get the prefix of the name of the node. This is defined only for elements and attributes.
* If the node has no prefix, or for other kinds of node, return a zero-length string.
* This implementation simply returns the prefix defined in the DOM model; this is not strictly
* accurate in all cases, but is good enough for the purpose.
* @return The prefix of the name of the node.
*/
public String getPrefix() {
return node.get_Prefix();
}
/**
* Get the display name of this node. For elements and attributes this is [prefix:]localname.
* For unnamed nodes, it is an empty string.
* @return The display name of this node.
* For a node with no name, return an empty string.
*/
public String getDisplayName() {
switch (nodeKind) {
case Type.ELEMENT:
case Type.ATTRIBUTE:
case Type.PROCESSING_INSTRUCTION:
return node.get_Name();
default:
return "";
}
}
/**
* Get the NodeInfo object representing the parent of this node
*/
public NodeInfo getParent() {
if (parent == null) {
switch (getNodeKind()) {
case Type.ATTRIBUTE:
parent = makeWrapper(((XmlAttribute)node).get_OwnerElement(), docWrapper);
break;
default:
XmlNode p = node.get_ParentNode();
if (p == null) {
return null;
} else {
parent = makeWrapper(p, docWrapper);
}
}
}
return parent;
}
/**
* Get the index position of this node among its siblings (starting from 0).
* In the case of a text node that maps to several adjacent siblings in the DOM,
* the numbering actually refers to the position of the underlying DOM nodes;
* thus the sibling position for the text node is that of the first DOM node
* to which it relates, and the numbering of subsequent XPath nodes is not necessarily
* consecutive.
*/
public int getSiblingPosition() {
if (index == -1) {
switch (nodeKind) {
case Type.ELEMENT:
case Type.TEXT:
case Type.COMMENT:
case Type.PROCESSING_INSTRUCTION:
int ix = 0;
XmlNode start = node;
while (true) {
start = start.get_PreviousSibling();
if (start == null) {
index = ix;
return ix;
}
ix++;
}
case Type.ATTRIBUTE:
ix = 0;
int fp = getFingerprint();
AxisIterator iter = parent.iterateAxis(Axis.ATTRIBUTE);
while (true) {
NodeInfo n = (NodeInfo)iter.next();
if (n == null || n.getFingerprint() == fp) {
index = ix;
return ix;
}
ix++;
}
case Type.NAMESPACE:
ix = 0;
fp = getFingerprint();
iter = parent.iterateAxis(Axis.NAMESPACE);
while (true) {
NodeInfo n = (NodeInfo)iter.next();
if (n == null || n.getFingerprint() == fp) {
index = ix;
return ix;
}
ix++;
}
default:
index = 0;
return index;
}
}
return index;
}
/**
* Return an iteration over the nodes reached by the given axis from this node
* @param axisNumber the axis to be used
* @return a SequenceIterator that scans the nodes reached by the axis in turn.
*/
public AxisIterator iterateAxis(byte axisNumber) {
switch (axisNumber) {
case Axis.ANCESTOR:
if (nodeKind == Type.DOCUMENT) {
return EmptyIterator.getInstance();
}
return new Navigator.AncestorEnumeration(this, false);
case Axis.ANCESTOR_OR_SELF:
if (nodeKind == Type.DOCUMENT) {
return SingleNodeIterator.makeIterator(this);
}
return new Navigator.AncestorEnumeration(this, true);
case Axis.ATTRIBUTE:
if (nodeKind != Type.ELEMENT) {
return EmptyIterator.getInstance();
}
return new AttributeEnumeration(this);
case Axis.CHILD:
if (hasChildNodes()) {
return new ChildEnumeration(this, true, true);
} else {
return EmptyIterator.getInstance();
}
case Axis.DESCENDANT:
if (hasChildNodes()) {
return new Navigator.DescendantEnumeration(this, false, true);
} else {
return EmptyIterator.getInstance();
}
case Axis.DESCENDANT_OR_SELF:
return new Navigator.DescendantEnumeration(this, true, true);
case Axis.FOLLOWING:
return new Navigator.FollowingEnumeration(this);
case Axis.FOLLOWING_SIBLING:
switch (nodeKind) {
case Type.DOCUMENT:
case Type.ATTRIBUTE:
case Type.NAMESPACE:
return EmptyIterator.getInstance();
default:
return new ChildEnumeration(this, false, true);
}
case Axis.NAMESPACE:
if (nodeKind != Type.ELEMENT) {
return EmptyIterator.getInstance();
}
return NamespaceIterator.makeIterator(this, null);
case Axis.PARENT:
getParent();
return SingleNodeIterator.makeIterator(parent);
case Axis.PRECEDING:
return new Navigator.PrecedingEnumeration(this, false);
case Axis.PRECEDING_SIBLING:
switch (nodeKind) {
case Type.DOCUMENT:
case Type.ATTRIBUTE:
case Type.NAMESPACE:
return EmptyIterator.getInstance();
default:
return new ChildEnumeration(this, false, false);
}
case Axis.SELF:
return SingleNodeIterator.makeIterator(this);
case Axis.PRECEDING_OR_ANCESTOR:
return new Navigator.PrecedingEnumeration(this, true);
default:
throw new IllegalArgumentException("Unknown axis number " + axisNumber);
}
}
/**
* Return an iteration over the nodes reached by the given axis from this node
* @param axisNumber the axis to be used
* @param nodeTest A pattern to be matched by the returned nodes
* @return a SequenceIterator that scans the nodes reached by the axis in turn.
*/
public AxisIterator iterateAxis(byte axisNumber, NodeTest nodeTest) {
return new Navigator.AxisFilter(iterateAxis(axisNumber), nodeTest);
}
/**
* Get the value of a given attribute of this node
* @param fingerprint The fingerprint of the attribute name
* @return the attribute value if it exists or null if not
*/
public String getAttributeValue(int fingerprint) {
NameTest test = new NameTest(Type.ATTRIBUTE, fingerprint, getNamePool());
AxisIterator iterator = iterateAxis(Axis.ATTRIBUTE, test);
NodeInfo attribute = (NodeInfo)iterator.next();
if (attribute == null) {
return null;
} else {
return attribute.getStringValue();
}
}
/**
* Get the root node - always a document node with this tree implementation
* @return the NodeInfo representing the containing document
*/
public NodeInfo getRoot() {
return docWrapper;
}
/**
* Get the root (document) node
* @return the DocumentInfo representing the containing document
*/
public DocumentInfo getDocumentRoot() {
return docWrapper;
}
/**
* Determine whether the node has any children. <br />
* Note: the result is equivalent to <br />
* getEnumeration(Axis.CHILD, AnyNodeTest.getInstance()).hasNext()
*/
public boolean hasChildNodes() {
return node.get_NodeType().Value != XmlNodeType.Attribute &&
node.get_HasChildNodes();
}
/**
* Get a character string that uniquely identifies this node.
* Note: a.isSameNode(b) if and only if generateId(a)==generateId(b)
* @param buffer a buffer to contain a string that uniquely identifies this node, across all
* documents
*/
public void generateId(FastStringBuffer buffer) {
Navigator.appendSequentialKey(this, buffer, true);
//buffer.append(Navigator.getSequentialKey(this));
}
/**
* Get the document number of the document containing this node. For a free-standing
* orphan node, just return the hashcode.
*/
public long getDocumentNumber() {
return getDocumentRoot().getDocumentNumber();
}
/**
* Copy this node to a given outputter (deep copy)
*/
public void copy(Receiver out, int whichNamespaces, boolean copyAnnotations, int locationId) throws XPathException {
Navigator.copy(this, out, docWrapper.getNamePool(), whichNamespaces, copyAnnotations, locationId);
}
/**
* Get all namespace undeclarations and undeclarations defined on this element.
* @param buffer If this is non-null, and the result array fits in this buffer, then the result
* may overwrite the contents of this array, to avoid the cost of allocating a new array on the heap.
* @return An array of integers representing the namespace declarations and undeclarations present on
* this element. For a node other than an element, return null. Otherwise, the returned array is a
* sequence of namespace codes, whose meaning may be interpreted by reference to the name pool. The
* top half word of each namespace code represents the prefix, the bottom half represents the URI.
* If the bottom half is zero, then this is a namespace undeclaration rather than a declaration.
* The XML namespace is never included in the list. If the supplied array is larger than required,
* then the first unused entry will be set to -1.
* <p/>
* <p>For a node other than an element, the method returns null.</p>
*/
public int[] getDeclaredNamespaces(int[] buffer) {
if (node.get_NodeType().Value == XmlNodeType.Element) {
XmlElement elem = (XmlElement)node;
XmlNamedNodeMap atts = elem.get_Attributes();
if (atts == null) {
return EMPTY_NAMESPACE_LIST;
}
int count = 0;
for (int i = 0; i < atts.get_Count(); i++) {
XmlAttribute att = (XmlAttribute)atts.Item(i);
String attName = att.get_Name();
if (attName.equals("xmlns")) {
count++;
} else if (attName.startsWith("xmlns:")) {
count++;
}
}
if (count == 0) {
return EMPTY_NAMESPACE_LIST;
} else {
int[] result = (buffer == null || count > buffer.length ? new int[count] : buffer);
NamePool pool = getNamePool();
int n = 0;
for (int i = 0; i < atts.get_Count(); i++) {
XmlAttribute att = (XmlAttribute)atts.Item(i);
String attName = att.get_Name();
if (attName.equals("xmlns")) {
String prefix = "";
String uri = att.get_Value();
result[n++] = pool.allocateNamespaceCode(prefix, uri);
} else if (attName.startsWith("xmlns:")) {
String prefix = attName.substring(6);
String uri = att.get_Value();
result[n++] = pool.allocateNamespaceCode(prefix, uri);
}
}
if (count < result.length) {
result[count] = -1;
}
return result;
}
} else {
return null;
}
}
/**
* Determine whether this node has the is-id property
* @return true if the node is an ID
*/
public boolean isId() {
return false;
}
/**
* Determine whether this node has the is-idref property
* @return true if the node is an IDREF or IDREFS element or attribute
*/
public boolean isIdref() {
return false;
}
/**
* Determine whether the node has the is-nilled property
* @return true if the node has the is-nilled property
*/
public boolean isNilled() {
return false;
}
private final class AttributeEnumeration implements AxisIterator, LookaheadIterator {
private ArrayList attList = new ArrayList(10);
private int ix = 0;
private NodeWrapper start;
private NodeWrapper current;
public AttributeEnumeration(NodeWrapper start) {
this.start = start;
XmlNamedNodeMap atts = start.node.get_Attributes();
if (atts != null) {
for (int i = 0; i < atts.get_Count(); i++) {
String name = atts.Item(i).get_Name();
if (!(name.startsWith("xmlns") &&
(name.length() == 5 || name.charAt(5) == ':'))) {
attList.add(atts.Item(i));
}
}
}
ix = 0;
}
public boolean hasNext() {
return ix < attList.size();
}
public boolean moveNext() {
return (next() != null);
}
public Item next() {
if (ix >= attList.size()) {
return null;
}
current = start.makeWrapper(
(XmlAttribute)attList.get(ix), docWrapper, start, ix);
ix++;
return current;
}
public Item current() {
return current;
}
public int position() {
return ix + 1;
}
public void close() {
}
/**
* Return an iterator over an axis, starting at the current node.
* @param axis the axis to iterate over, using a constant such as
* {@link Axis#CHILD}
* @param test a predicate to apply to the nodes before returning them.
*/
public AxisIterator iterateAxis(byte axis, NodeTest test) {
return current.iterateAxis(axis, test);
}
/**
* Return the atomized value of the current node.
* @return the atomized value.
* @throws NullPointerException if there is no current node
*/
public Value atomize() throws XPathException {
return current.atomize();
}
/**
* Return the string value of the current node.
* @return the string value, as an instance of CharSequence.
* @throws NullPointerException if there is no current node
*/
public CharSequence getStringValue() {
return current.getStringValueCS();
}
public SequenceIterator getAnother() {
return new AttributeEnumeration(start);
}
/**
* Get properties of this iterator, as a bit-significant integer.
* @return the properties of this iterator. This will be some combination of
* properties such as {@link #GROUNDED}, {@link #LAST_POSITION_FINDER},
* and {@link #LOOKAHEAD}. It is always
* acceptable to return the value zero, indicating that there are no known special properties.
* It is acceptable for the properties of the iterator to change depending on its state.
*/
public int getProperties() {
return LOOKAHEAD;
}
}
/**
* The class ChildEnumeration handles not only the child axis, but also the
* following-sibling and preceding-sibling axes. It can also iterate the children
* of the start node in reverse order, something that is needed to support the
* preceding and preceding-or-ancestor axes (the latter being used by xsl:number)
*/
private final class ChildEnumeration extends AxisIteratorImpl implements LookaheadIterator {
private NodeWrapper start;
private ArrayList items = new ArrayList(20);
private int ix = 0;
private boolean downwards; // iterate children of start node (not siblings)
private boolean forwards; // iterate in document order (not reverse order)
public ChildEnumeration(NodeWrapper start,
boolean downwards, boolean forwards) {
this.start = start;
this.downwards = downwards;
this.forwards = forwards;
position = 0;
NodeWrapper commonParent;
if (downwards) {
commonParent = start;
} else {
commonParent = (NodeWrapper)start.getParent();
}
XmlNodeList childNodes = commonParent.node.get_ChildNodes();
if (downwards) {
if (!forwards) {
// backwards enumeration: go to the end
ix = childNodes.get_Count() - 1;
}
} else {
ix = start.getSiblingPosition() + (forwards ? span : -1);
}
if (forwards) {
boolean previousText = false;
for (int i = ix; i < childNodes.get_Count(); i++) {
boolean thisText = false;
XmlNode node = childNodes.Item(i);
switch (node.get_NodeType().Value) {
case XmlNodeType.DocumentType:
case XmlNodeType.XmlDeclaration:
break;
case XmlNodeType.EntityReference:
// System.err.println("Found an entity reference node:");
// System.err.println("Name: " + node.get_Name());
// System.err.println("InnerText: " + node.get_InnerText());
// System.err.println("Previous: " + node.get_PreviousSibling());
// System.err.println("Previous.InnerText: " + (node.get_PreviousSibling()==null ? "null" : node.get_PreviousSibling().get_InnerText()));
// System.err.println("Next: " + node.get_NextSibling());
// System.err.println("Next.InnerText: " + (node.get_NextSibling()==null ? "null" : node.get_NextSibling().get_InnerText()));
// break;
case XmlNodeType.Text:
case XmlNodeType.CDATA:
case XmlNodeType.Whitespace:
case XmlNodeType.SignificantWhitespace:
thisText = true;
if (previousText) {
// if (isAtomizing()) {
// UntypedAtomicValue old = (UntypedAtomicValue)(items.get(items.size()-1));
// String newval = old.getStringValue() + getStringValue(node, node.get_NodeType().Value);
// items.set(items.size()-1, new UntypedAtomicValue(newval));
// } else {
NodeWrapper old = ((NodeWrapper)items.get(items.size() - 1));
old.span++;
// }
break;
}
// otherwise fall through to default case
default:
previousText = thisText;
// if (isAtomizing()) {
// items.add(new UntypedAtomicValue(
// getStringValue(node, node.get_NodeType().Value)));
// } else {
items.add(makeWrapper(node, docWrapper, commonParent, i));
// }
}
}
} else {
boolean previousText = false;
for (int i = ix; i >= 0; i--) {
boolean thisText = false;
XmlNode node = childNodes.Item(i);
switch (node.get_NodeType().Value) {
case XmlNodeType.DocumentType:
case XmlNodeType.XmlDeclaration:
break;
case XmlNodeType.EntityReference:
// System.err.println("Found an entity reference node:");
// System.err.println("Name: " + node.get_Name());
// System.err.println("InnerText: " + node.get_InnerText());
// System.err.println("Previous: " + node.get_PreviousSibling());
// System.err.println("Previous.InnerText: " + (node.get_PreviousSibling()==null ? "null" : node.get_PreviousSibling().get_InnerText()));
// System.err.println("Next: " + node.get_NextSibling());
// System.err.println("Next.InnerText: " + (node.get_NextSibling()==null ? "null" : node.get_NextSibling().get_InnerText()));
// break;
case XmlNodeType.Text:
case XmlNodeType.CDATA:
case XmlNodeType.Whitespace:
case XmlNodeType.SignificantWhitespace:
thisText = true;
if (previousText) {
// if (isAtomizing()) {
// UntypedAtomicValue old = (UntypedAtomicValue)(items.get(items.size()-1));
// String newval = old.getStringValue() + getStringValue(node, node.get_NodeType().Value);
// items.set(items.size()-1, new UntypedAtomicValue(newval));
// } else {
NodeWrapper old = ((NodeWrapper)items.get(items.size() - 1));
old.node = node;
old.span++;
// }
break;
}
// otherwise fall through to default case
default:
previousText = thisText;
// if (isAtomizing()) {
// items.add(new UntypedAtomicValue(
// getStringValue(node, node.get_NodeType().Value)));
// } else {
items.add(makeWrapper(node, docWrapper, commonParent, i));
// }
}
}
}
}
public boolean hasNext() {
return position < items.size();
}
public Item next() {
if (position < items.size()) {
current = (NodeInfo)items.get(position++);
return current;
} else {
position = -1;
return null;
}
}
public SequenceIterator getAnother() {
return new ChildEnumeration(start, downwards, forwards);
}
/**
* Get properties of this iterator, as a bit-significant integer.
* @return the properties of this iterator. This will be some combination of
* properties such as {@link #GROUNDED}, {@link #LAST_POSITION_FINDER},
* and {@link #LOOKAHEAD}. It is always
* acceptable to return the value zero, indicating that there are no known special properties.
* It is acceptable for the properties of the iterator to change depending on its state.
*/
public int getProperties() {
return LOOKAHEAD;
}
} // end of class ChildEnumeration
}
//
// The contents of this file are subject to the Mozilla Public License Version 1.0 (the "License");
// you may not use this file except in compliance with the License. You may obtain a copy of the
// License at http://www.mozilla.org/MPL/
//
// Software distributed under the License is distributed on an "AS IS" basis,
// WITHOUT WARRANTY OF ANY KIND, either express or implied.
// See the License for the specific language governing rights and limitations under the License.
//
// The Original Code is: all this file.
//
// The Initial Developer of the Original Code is Michael Kay
//
// Portions created by (your name) are Copyright (C) (your legal entity). All Rights Reserved.
//
// Contributor(s): none.
//