Package edu.emory.mathcs.csparsej.tfloat

Source Code of edu.emory.mathcs.csparsej.tfloat.Scs_dmperm$Cs_rprune


package edu.emory.mathcs.csparsej.tfloat;

import edu.emory.mathcs.csparsej.tfloat.Scs_common.Scs;
import edu.emory.mathcs.csparsej.tfloat.Scs_common.Scsd;

/**
* Sulmage-Mendelsohn decomposition.
*
* @author Piotr Wendykier (piotr.wendykier@gmail.com)
*
*/
public class Scs_dmperm {
    /* breadth-first search for coarse decomposition (C0,C1,R1 or R0,R3,C3) */
    private static boolean cs_bfs(Scs A, int n, int[] wi, int[] wj, int[] queue, int[] imatch, int imatch_offset,
            int[] jmatch, int jmatch_offset, int mark) {
        int Ap[], Ai[], head = 0, tail = 0, j, i, p, j2;
        Scs C;
        for (j = 0; j < n; j++) /* place all unmatched nodes in queue */
        {
            if (imatch[imatch_offset + j] >= 0)
                continue; /* skip j if matched */
            wj[j] = 0; /* j in set C0 (R0 if transpose) */
            queue[tail++] = j; /* place unmatched col j in queue */
        }
        if (tail == 0)
            return (true); /* quick return if no unmatched nodes */
        C = (mark == 1) ? A : Scs_transpose.cs_transpose(A, false);
        if (C == null)
            return (false); /* bfs of C=A' to find R3,C3 from R0 */
        Ap = C.p;
        Ai = C.i;
        while (head < tail) /* while queue is not empty */
        {
            j = queue[head++]; /* get the head of the queue */
            for (p = Ap[j]; p < Ap[j + 1]; p++) {
                i = Ai[p];
                if (wi[i] >= 0)
                    continue; /* skip if i is marked */
                wi[i] = mark; /* i in set R1 (C3 if transpose) */
                j2 = jmatch[jmatch_offset + i]; /* traverse alternating path to j2 */
                if (wj[j2] >= 0)
                    continue;/* skip j2 if it is marked */
                wj[j2] = mark; /* j2 in set C1 (R3 if transpose) */
                queue[tail++] = j2; /* add j2 to queue */
            }
        }
        if (mark != 1)
            C = null; /* free A' if it was created */
        return (true);
    }

    /* collect matched rows and columns into p and q */
    private static void cs_matched(int n, int[] wj, int[] imatch, int imatch_offset, int[] p, int[] q, int[] cc,
            int[] rr, int set, int mark) {
        int kc = cc[set], j;
        int kr = rr[set - 1];
        for (j = 0; j < n; j++) {
            if (wj[j] != mark)
                continue; /* skip if j is not in C set */
            p[kr++] = imatch[imatch_offset + j];
            q[kc++] = j;
        }
        cc[set + 1] = kc;
        rr[set] = kr;
    }

    /* collect unmatched rows into the permutation vector p */
    private static void cs_unmatched(int m, int[] wi, int[] p, int[] rr, int set) {
        int i, kr = rr[set];
        for (i = 0; i < m; i++)
            if (wi[i] == 0)
                p[kr++] = i;
        rr[set + 1] = kr;
    }

    /* return 1 if row i is in R2 */
    private static class Cs_rprune implements Scs_ifkeep {

        @Override
        public boolean fkeep(int i, int j, float aij, Object other) {
            int[] rr = (int[]) other;
            return (i >= rr[1] && i < rr[2]);
        }

    }

    /**
     * Compute coarse and then fine Sulmage-Mendelsohn decompositionm. seed
     * optionally selects a randomized algorithm.
     *
     * @param A
     *            column-compressed matrix
     * @param seed
     *            0: natural, -1: reverse, random order oterwise
     * @return Sulmage-Mendelsohn analysis, null on error
     */
    public static Scsd cs_dmperm(Scs A, int seed) {
        int m, n, i, j, k, cnz, nc, jmatch[], imatch[], wi[], wj[], pinv[], Cp[], Ci[], ps[], rs[], nb1, nb2, p[], q[], cc[], rr[], r[], s[];
        boolean ok;
        Scs C;
        Scsd S, scc;
        /* --- Maximum matching ------------------------------------------------- */
        if (!Scs_util.CS_CSC(A))
            return (null); /* check inputs */
        m = A.m;
        n = A.n;
        S = Scs_util.cs_dalloc(m, n); /* allocate result */
        if (S == null)
            return (null);
        p = S.p;
        q = S.q;
        r = S.r;
        s = S.s;
        cc = S.cc;
        rr = S.rr;
        jmatch = Scs_maxtrans.cs_maxtrans(A, seed); /* max transversal */
        imatch = jmatch; /* imatch = inverse of jmatch */
        int imatch_offset = m;
        if (jmatch == null)
            return (null);
        /* --- Coarse decomposition --------------------------------------------- */
        wi = r;
        wj = s; /* use r and s as workspace */
        for (j = 0; j < n; j++)
            wj[j] = -1; /* unmark all cols for bfs */
        for (i = 0; i < m; i++)
            wi[i] = -1; /* unmark all rows for bfs */
        cs_bfs(A, n, wi, wj, q, imatch, imatch_offset, jmatch, 0, 1); /* find C1, R1 from C0*/
        ok = cs_bfs(A, m, wj, wi, p, jmatch, 0, imatch, imatch_offset, 3); /* find R3, C3 from R0*/
        if (!ok)
            return (null);
        cs_unmatched(n, wj, q, cc, 0); /* unmatched set C0 */
        cs_matched(n, wj, imatch, imatch_offset, p, q, cc, rr, 1, 1); /* set R1 and C1 */
        cs_matched(n, wj, imatch, imatch_offset, p, q, cc, rr, 2, -1); /* set R2 and C2 */
        cs_matched(n, wj, imatch, imatch_offset, p, q, cc, rr, 3, 3); /* set R3 and C3 */
        cs_unmatched(m, wi, p, rr, 3); /* unmatched set R0 */
        jmatch = null;
        /* --- Fine decomposition ----------------------------------------------- */
        pinv = Scs_pinv.cs_pinv(p, m); /* pinv=p' */
        if (pinv == null)
            return (null);
        C = Scs_permute.cs_permute(A, pinv, q, false);/* C=A(p,q) (it will hold A(R2,C2)) */
        pinv = null;
        if (C == null)
            return (null);
        Cp = C.p;
        nc = cc[3] - cc[2]; /* delete cols C0, C1, and C3 from C */
        if (cc[2] > 0)
            for (j = cc[2]; j <= cc[3]; j++)
                Cp[j - cc[2]] = Cp[j];
        C.n = nc;
        if (rr[2] - rr[1] < m) /* delete rows R0, R1, and R3 from C */
        {
            Scs_fkeep.cs_fkeep(C, new Cs_rprune(), rr);
            cnz = Cp[nc];
            Ci = C.i;
            if (rr[1] > 0)
                for (k = 0; k < cnz; k++)
                    Ci[k] -= rr[1];
        }
        C.m = nc;
        scc = Scs_scc.cs_scc(C); /* find strongly connected components of C*/
        if (scc == null)
            return (null);
        /* --- Combine coarse and fine decompositions --------------------------- */
        ps = scc.p; /* C(ps,ps) is the permuted matrix */
        rs = scc.r; /* kth block is rs[k]..rs[k+1]-1 */
        nb1 = scc.nb; /* # of blocks of A(R2,C2) */
        for (k = 0; k < nc; k++)
            wj[k] = q[ps[k] + cc[2]];
        for (k = 0; k < nc; k++)
            q[k + cc[2]] = wj[k];
        for (k = 0; k < nc; k++)
            wi[k] = p[ps[k] + rr[1]];
        for (k = 0; k < nc; k++)
            p[k + rr[1]] = wi[k];
        nb2 = 0; /* create the fine block partitions */
        r[0] = s[0] = 0;
        if (cc[2] > 0)
            nb2++; /* leading coarse block A (R1, [C0 C1]) */
        for (k = 0; k < nb1; k++) /* coarse block A (R2,C2) */
        {
            r[nb2] = rs[k] + rr[1]; /* A (R2,C2) splits into nb1 fine blocks */
            s[nb2] = rs[k] + cc[2];
            nb2++;
        }
        if (rr[2] < m) {
            r[nb2] = rr[2]; /* trailing coarse block A ([R3 R0], C3) */
            s[nb2] = cc[3];
            nb2++;
        }
        r[nb2] = m;
        s[nb2] = n;
        S.nb = nb2;
        return S;
    }

}
TOP

Related Classes of edu.emory.mathcs.csparsej.tfloat.Scs_dmperm$Cs_rprune

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.