Package net.phys2d.raw

Source Code of net.phys2d.raw.BasicJoint

/*
* Phys2D - a 2D physics engine based on the work of Erin Catto. The
* original source remains:
*
* Copyright (c) 2006 Erin Catto http://www.gphysics.com
*
* This source is provided under the terms of the BSD License.
*
* Copyright (c) 2006, Phys2D
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
*  * Redistributions of source code must retain the above
*    copyright notice, this list of conditions and the
*    following disclaimer.
*  * Redistributions in binary form must reproduce the above
*    copyright notice, this list of conditions and the following
*    disclaimer in the documentation and/or other materials provided
*    with the distribution.
*  * Neither the name of the Phys2D/New Dawn Software nor the names of
*    its contributors may be used to endorse or promote products
*    derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*/
package net.phys2d.raw;

import net.phys2d.math.MathUtil;
import net.phys2d.math.Matrix2f;
import net.phys2d.math.ROVector2f;
import net.phys2d.math.Vector2f;

/**
* A joint between two bodies. The joint affects the impulses applied to
* each body each step constraining the movement.
*
* @author Kevin Glass
*/
public strictfp class BasicJoint implements Joint {
  /** The next ID to be used */
  private static int NEXT_ID = 0;
 
  /** The first body attached to the joint */
  private Body body1;
  /** The second body attached to the joint */
  private Body body2;

  /** The matrix describing the connection between two bodies */
  private Matrix2f M = new Matrix2f();
  /** The local anchor for the first body */
  private Vector2f localAnchor1 = new Vector2f();
  /** The local anchor for the second body */
  private Vector2f localAnchor2 = new Vector2f();
  /** The rotation of the anchor of the first body */
  private Vector2f r1 = new Vector2f();
  /** The rotation of the anchor of the second body */
  private Vector2f r2 = new Vector2f();
  /** ? */
  private Vector2f bias = new Vector2f();
  /** The impulse to be applied throught the joint */
  private Vector2f accumulatedImpulse = new Vector2f();
  /** How much slip there is in the joint */
  private float relaxation;

  /** The ID of this joint */
  private int id;
 
  /**
   * Create a joint holding two bodies together
   *
   * @param b1 The first body attached to the joint
   * @param b2 The second body attached to the joint
   * @param anchor The anchor point which movement/rotation will occur
   * arround.
   */
  public BasicJoint(Body b1, Body b2, Vector2f anchor) {
    id = NEXT_ID++;
    accumulatedImpulse.set(0.0f, 0.0f);
    relaxation = 1.0f;
   
    set(b1,b2,anchor);
  }

  /**
   * Set the relaxtion value on this joint. This value determines
   * how loose the joint will be
   *
   * @param relaxation The relaxation value
   */
  public void setRelaxation(float relaxation) {
    this.relaxation = relaxation;
  }
 
  /**
   * Retrieve the anchor for the first body attached
   *
   * @return The anchor for the first body
   */
  public ROVector2f getLocalAnchor1() {
    return localAnchor1;
  }

  /**
   * Retrieve the anchor for the second body attached
   *
   * @return The anchor for the second body
   */
  public ROVector2f getLocalAnchor2() {
    return localAnchor2;
  }
 
  /**
   * Get the first body attached to this joint
   *
   * @return The first body attached to this joint
   */
  public Body getBody1() {
    return body1;
  }

  /**
   * Get the second body attached to this joint
   *
   * @return The second body attached to this joint
   */
  public Body getBody2() {
    return body2;
  }
 
  /**
   * Reconfigure this joint
   *
   * @param b1 The first body attached to this joint
   * @param b2 The second body attached to this joint
   * @param anchor The static anchor point between the joints
   */
  public void set(Body b1, Body b2, Vector2f anchor) {
    body1 = b1;
    body2 = b2;

    Matrix2f rot1 = new Matrix2f(body1.getRotation());
    Matrix2f rot2 = new Matrix2f(body2.getRotation());
    Matrix2f rot1T = rot1.transpose();
    Matrix2f rot2T = rot2.transpose();

    Vector2f a1 = new Vector2f(anchor);
    a1.sub(body1.getPosition());
    localAnchor1 = MathUtil.mul(rot1T,a1);
    Vector2f a2 = new Vector2f(anchor);
    a2.sub(body2.getPosition());
    localAnchor2 = MathUtil.mul(rot2T,a2);

    accumulatedImpulse.set(0.0f, 0.0f);
    relaxation = 1.0f;
  }

  /**
   * Precaculate everything and apply initial impulse before the
   * simulation step takes place
   *
   * @param invDT The amount of time the simulation is being stepped by
   */
  public void preStep(float invDT) {
    // Pre-compute anchors, mass matrix, and bias.
    Matrix2f rot1 = new Matrix2f(body1.getRotation());
    Matrix2f rot2 = new Matrix2f(body2.getRotation());

    r1 = MathUtil.mul(rot1,localAnchor1);
    r2 = MathUtil.mul(rot2,localAnchor2);

    // deltaV = deltaV0 + K * impulse
    // invM = [(1/m1 + 1/m2) * eye(2) - skew(r1) * invI1 * skew(r1) - skew(r2) * invI2 * skew(r2)]
    //      = [1/m1+1/m2     0    ] + invI1 * [r1.y*r1.y -r1.x*r1.y] + invI2 * [r1.y*r1.y -r1.x*r1.y]
    //        [    0     1/m1+1/m2]           [-r1.x*r1.y r1.x*r1.x]           [-r1.x*r1.y r1.x*r1.x]
    Matrix2f K1 = new Matrix2f();
    K1.col1.x = body1.getInvMass() + body2.getInvMass();  K1.col2.x = 0.0f;
    K1.col1.y = 0.0f;                K1.col2.y = body1.getInvMass() + body2.getInvMass();

    Matrix2f K2 = new Matrix2f();
    K2.col1.x =  body1.getInvI() * r1.y * r1.y;    K2.col2.x = -body1.getInvI() * r1.x * r1.y;
    K2.col1.y = -body1.getInvI() * r1.x * r1.y;    K2.col2.y =  body1.getInvI() * r1.x * r1.x;

    Matrix2f K3 = new Matrix2f();
    K3.col1.x =  body2.getInvI() * r2.y * r2.y;    K3.col2.x = -body2.getInvI() * r2.x * r2.y;
    K3.col1.y = -body2.getInvI() * r2.x * r2.y;    K3.col2.y =  body2.getInvI() * r2.x * r2.x;

    Matrix2f K = MathUtil.add(MathUtil.add(K1,K2),K3);
    M = K.invert();

    Vector2f p1 = new Vector2f(body1.getPosition());
    p1.add(r1);
    Vector2f p2 = new Vector2f(body2.getPosition());
    p2.add(r2);
    Vector2f dp = new Vector2f(p2);
    dp.sub(p1);
   
    bias = new Vector2f(dp);
    bias.scale(-0.1f);
    bias.scale(invDT);

    // Apply accumulated impulse.
    accumulatedImpulse.scale(relaxation);
   
    if (!body1.isStatic()) {
      Vector2f accum1 = new Vector2f(accumulatedImpulse);
      accum1.scale(-body1.getInvMass());
      body1.adjustVelocity(accum1);
      body1.adjustAngularVelocity(-(body1.getInvI() * MathUtil.cross(r1, accumulatedImpulse)));
    }

    if (!body2.isStatic()) {
      Vector2f accum2 = new Vector2f(accumulatedImpulse);
      accum2.scale(body2.getInvMass());
      body2.adjustVelocity(accum2);
      body2.adjustAngularVelocity(body2.getInvI() * MathUtil.cross(r2, accumulatedImpulse));
    }
  }
 
  /**
   * Apply the impulse caused by the joint to the bodies attached.
   */
  public void applyImpulse() {
    Vector2f dv = new Vector2f(body2.getVelocity());
    dv.add(MathUtil.cross(body2.getAngularVelocity(),r2));
    dv.sub(body1.getVelocity());
    dv.sub(MathUtil.cross(body1.getAngularVelocity(),r1));
      dv.scale(-1);
      dv.add(bias); // TODO: is this baumgarte stabilization?
     
      if (dv.lengthSquared() == 0) {
        return;
      }
     
    Vector2f impulse = MathUtil.mul(M, dv);

    if (!body1.isStatic()) {
      Vector2f delta1 = new Vector2f(impulse);
      delta1.scale(-body1.getInvMass());
      body1.adjustVelocity(delta1);
      body1.adjustAngularVelocity(-body1.getInvI() * MathUtil.cross(r1,impulse));
    }

    if (!body2.isStatic()) {
      Vector2f delta2 = new Vector2f(impulse);
      delta2.scale(body2.getInvMass());
      body2.adjustVelocity(delta2);
      body2.adjustAngularVelocity(body2.getInvI() * MathUtil.cross(r2,impulse));
    }
   
    accumulatedImpulse.add(impulse);
  }
 
  /**
   * @see java.lang.Object#hashCode()
   */
  public int hashCode() {
    return id;
  }
 
  /**
   * @see java.lang.Object#equals(java.lang.Object)
   */
  public boolean equals(Object other) {
    if (other.getClass() == getClass()) {
      return ((BasicJoint) other).id == id;
    }
   
    return false;
  }
}
TOP

Related Classes of net.phys2d.raw.BasicJoint

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.