Package net.phys2d.raw

Source Code of net.phys2d.raw.AngleJoint

/*
* Phys2D - a 2D physics engine based on the work of Erin Catto. The
* original source remains:
*
* Copyright (c) 2006 Erin Catto http://www.gphysics.com
*
* This source is provided under the terms of the BSD License.
*
* Copyright (c) 2006, Phys2D
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
*  * Redistributions of source code must retain the above
*    copyright notice, this list of conditions and the
*    following disclaimer.
*  * Redistributions in binary form must reproduce the above
*    copyright notice, this list of conditions and the following
*    disclaimer in the documentation and/or other materials provided
*    with the distribution.
*  * Neither the name of the Phys2D/New Dawn Software nor the names of
*    its contributors may be used to endorse or promote products
*    derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*/
package net.phys2d.raw;

import net.phys2d.math.MathUtil;
import net.phys2d.math.Matrix2f;
import net.phys2d.math.Vector2f;

/**
* A joint that constrains the angle two bodies can be at in relation to each other.
*
* @author guRuQu
*/
public class AngleJoint implements Joint {
  /**The higher angle bound in the angle constraint*/
  private float rotateA;
  /**The lower angle bound in the angle constraint*/
  private float rotateB;
  /**The first body in the constraint*/
  private Body body1;
  /**The second body in the constraint*/
  private Body body2;
  /** Anchor point for first body, on which impulse is going to apply*/
  private Vector2f anchor1;
  /** Anchor point for second body, on which impulse is going to apply*/
  private Vector2f anchor2;
  /** The cached impulse through the calculation to yield correct impulse faster */
  private float accumulateImpulse;
  /** The target angular velocity after bounce on either side*/
  private float restituteAngular;
  /** Indication on which side the constraint is violated*/
  private int bounceSide;
  /** The squared distance of two body*/
  private float dlength2;
  /** Used to calculate the relation ship between impulse and velocity change between body*/
  private float K;
  /** Normalised distance vector*/
  private Vector2f ndp;
  /** Distance Vector*/
  private Vector2f dp;
  /** The normal vector of the impulse direction*/
  private Vector2f n;
  /** for bounceSide to indicate bounce on lower side*/
  private final int BOUNCE_LOWER = -1;
  /** for bounceSide to indicate bounce on no side*/
  private final int BOUNCE_NONE = 0;
  /** for bounceSide to indicate bounce on higher side*/
  private final int BOUNCE_HIGHER = 1;
  /** The restitution constant when angle bounce on either side*/
  float restitution;
  /** R = r1 + d */
  private Vector2f R;

  /**
   * Create a new angle joint
   *
   * @param body1  The first body that is attached on the constraint
   * @param body2 The second body that is attached on the constraint
   * @param anchor1 The anchor point on first body
   * @param anchor2 The anchor point on second body
   * @param rotateA The higher angle bound for constraint
   * @param rotateB The lower angle bound for constraint
   */
  public AngleJoint(Body body1, Body body2, Vector2f anchor1,
      Vector2f anchor2, float rotateA, float rotateB) {
    this(body1, body2, anchor1, anchor2, rotateA, rotateB, 0);
  }

  /**
   * Create a new angle joint
   *
   * @param body1  The first body that is attached on the constraint
   * @param body2 The second body that is attached on the constraint
   * @param anchor1 The anchor point on first body
   * @param anchor2 The anchor point on second body
   * @param rotateA The higher angle bound for constraint
   * @param rotateB The lower angle bound for constraint
   * @param restitution The restitution when body bounce on either side
   */
  public AngleJoint(Body body1, Body body2, Vector2f anchor1,
      Vector2f anchor2, float rotateA, float rotateB, float restitution) {
    this.body1 = body1;
    this.body2 = body2;
    this.rotateA = rotateA;
    this.rotateB = rotateB;
    this.anchor1 = anchor1;
    this.anchor2 = anchor2;
    this.restitution = restitution;
  }

  /**
   * @see net.phys2d.raw.Joint#applyImpulse()
   */
  public void applyImpulse() {
    if (bounceSide == BOUNCE_NONE)
      return;
    Matrix2f rot1 = new Matrix2f(body1.getRotation());
    Matrix2f rot2 = new Matrix2f(body2.getRotation());
    Vector2f r1 = MathUtil.mul(rot1, anchor1);
    Vector2f r2 = MathUtil.mul(rot2, anchor2);

    Vector2f relativeVelocity = new Vector2f(body2.getVelocity());
    relativeVelocity.add(MathUtil.cross(r2, body2.getAngularVelocity()));
    relativeVelocity.sub(body1.getVelocity());
    relativeVelocity.sub(MathUtil.cross(r1, body1.getAngularVelocity()));

    /*
     * Matrix2f tr1 = new Matrix2f(-body1.getRotation()); relativeVelocity =
     * MathUtil.mul(tr1, relativeVelocity);
     * relativeVelocity.add(MathUtil.mul(tr1, dp));
     */

    float rv = MathUtil.cross(dp, relativeVelocity) / dlength2
        - body1.getAngularVelocity();
    rv = restituteAngular - rv;

    float p = rv / K;
    float oldImpulse = accumulateImpulse;
    float newImpulse;

    if (bounceSide == BOUNCE_HIGHER) {
      newImpulse = accumulateImpulse + p > 0.0f ? accumulateImpulse + p
          : 0.0f;
      p = newImpulse - oldImpulse;
    } else {
      newImpulse = accumulateImpulse + p < 0.0f ? accumulateImpulse + p
          : 0.0f;
      p = newImpulse - oldImpulse;
    }
    accumulateImpulse = newImpulse;

    Vector2f impulse = new Vector2f(n);
    impulse.scale(p);
    if (!body1.isStatic()) {
      Vector2f accum1 = new Vector2f(impulse);
      accum1.scale(body1.getInvMass());
      body1.adjustVelocity(accum1);
      body1.adjustAngularVelocity((body1.getInvI() * MathUtil.cross(R,
          impulse)));
    }
    if (!body2.isStatic()) {
      Vector2f accum2 = new Vector2f(impulse);
      accum2.scale(-body2.getInvMass());
      body2.adjustVelocity(accum2);
      body2.adjustAngularVelocity(-(body2.getInvI() * MathUtil.cross(r2,
          impulse)));
    }
  }

  /**
   * @see net.phys2d.raw.Joint#getBody1()
   */
  public Body getBody1() {
    return body1;
  }

  /**
   * @see net.phys2d.raw.Joint#getBody2()
   */
  public Body getBody2() {
    return body2;
  }

  /**
   * @see net.phys2d.raw.Joint#preStep(float)
   */
  public void preStep(float invDT) {
    float biasFactor = 0.005f;
    float biasImpulse = 0.0f;
    float RA = body1.getRotation() + rotateA;
    float RB = body1.getRotation() + rotateB;

    Vector2f VA = new Vector2f((float) Math.cos(RA), (float) Math.sin(RA));
    Vector2f VB = new Vector2f((float) Math.cos(RB), (float) Math.sin(RB));

    Matrix2f rot1 = new Matrix2f(body1.getRotation());
    Matrix2f rot2 = new Matrix2f(body2.getRotation());
    Vector2f r1 = MathUtil.mul(rot1, anchor1);
    Vector2f r2 = MathUtil.mul(rot2, anchor2);

    Vector2f p1 = new Vector2f(body1.getPosition());
    p1.add(r1);
    Vector2f p2 = new Vector2f(body2.getPosition());
    p2.add(r2);
    dp = new Vector2f(p2);
    dp.sub(p1);
    dlength2 = dp.lengthSquared();
    ndp = new Vector2f(dp);
    ndp.normalise();

    R = new Vector2f(r1);
    R.add(dp);
    // System.out.println(accumulateImpulse);
    Vector2f relativeVelocity = new Vector2f(body2.getVelocity());
    relativeVelocity.add(MathUtil.cross(r2, body2.getAngularVelocity()));
    relativeVelocity.sub(body1.getVelocity());
    relativeVelocity.sub(MathUtil.cross(r1, body1.getAngularVelocity()));

    /*
     * Matrix2f tr1 = new Matrix2f(-body1.getRotation()); relativeVelocity =
     * MathUtil.mul(tr1, relativeVelocity);
     * relativeVelocity.add(MathUtil.mul(tr1, dp));
     */
    // relativeVelocity.add(MathUtil.cross(dp,body1.getAngularVelocity()));
    n = new Vector2f(-ndp.y, ndp.x);
    Vector2f v1 = new Vector2f(n);
    v1.scale(-body2.getInvMass() - body1.getInvMass());

    Vector2f v2 = MathUtil.cross(MathUtil.cross(r2, n), r2);
    v2.scale(-body2.getInvI());

    Vector2f v3 = MathUtil.cross(MathUtil.cross(R, n), r1);
    v3.scale(-body1.getInvI());

    Vector2f K1 = new Vector2f(v1);
    K1.add(v2);
    K1.add(v3);

    K = MathUtil.cross(dp, K1) / dlength2 - MathUtil.cross(R, n)
        * body1.getInvI();

    restituteAngular = -restitution
        * (MathUtil.cross(dp, relativeVelocity) / dlength2 - body1
            .getAngularVelocity());

    if (MathUtil.cross(ndp, VA) > 0) {
      // collide on A side
      if (bounceSide != BOUNCE_LOWER)
        accumulateImpulse = 0;
      biasImpulse = biasFactor * MathUtil.cross(ndp, VA) * invDT;
      bounceSide = BOUNCE_LOWER;
      if (restituteAngular < 0) {
        restituteAngular = 0;
      }
    } else if (MathUtil.cross(VB, ndp) > 0) {
      // collide on B side
      if (bounceSide != BOUNCE_HIGHER)
        accumulateImpulse = 0;
      biasImpulse = -biasFactor * MathUtil.cross(VB, ndp) * invDT;
      bounceSide = BOUNCE_HIGHER;
      if (restituteAngular > 0) {
        restituteAngular = 0;
      }
    } else {
      accumulateImpulse = 0;
      biasImpulse = 0.0f;
      bounceSide = BOUNCE_NONE;
    }
    restituteAngular += biasImpulse;

    Vector2f impulse = new Vector2f(n);
    impulse.scale(accumulateImpulse);
    if (!body1.isStatic()) {
      Vector2f accum1 = new Vector2f(impulse);
      accum1.scale(body1.getInvMass());
      body1.adjustVelocity(accum1);
      body1.adjustAngularVelocity((body1.getInvI() * MathUtil.cross(R,
          impulse)));
    }
    if (!body2.isStatic()) {
      Vector2f accum2 = new Vector2f(impulse);
      accum2.scale(-body2.getInvMass());
      body2.adjustVelocity(accum2);
      body2.adjustAngularVelocity(-(body2.getInvI() * MathUtil.cross(r2,
          impulse)));
    }
  }

  /**
   * @see net.phys2d.raw.Joint#setRelaxation(float)
   */
  public void setRelaxation(float relaxation) {
  }

  /**
   * Get the upper angle bound
   *
   * @return The upper angle bound
   */
  public float getRotateA() {
    return rotateA;
  }

  /**
   * Get the lower angle bound
   *
   * @return The lower angle bound
   */
  public float getRotateB() {
    return rotateB;
  }

  /**
   * Get the anchor of the joint on the first body
   *
   * @return The anchor of the joint on the first body
   */
  public Vector2f getAnchor1() {
    return anchor1;
  }

  /**
   * Get the anchor of the joint on the second body
   *
   * @return The anchor of the joint on the second body
   */
  public Vector2f getAnchor2() {
    return anchor2;
  }


}
TOP

Related Classes of net.phys2d.raw.AngleJoint

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.