/*
* Copyright 2001-2006 Stephen Colebourne
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.goda.time.format;
import org.goda.util.ArrayUtils;
import java.util.Arrays;
import java.util.Locale;
import org.goda.time.Chronology;
import org.goda.time.DateTimeField;
import org.goda.time.DateTimeFieldType;
import org.goda.time.DateTimeUtils;
import org.goda.time.DateTimeZone;
import org.goda.time.DurationField;
import org.goda.time.IllegalFieldValueException;
/**
* DateTimeParserBucket is an advanced class, intended mainly for parser
* implementations. It can also be used during normal parsing operations to
* capture more information about the parse.
* <p>
* This class allows fields to be saved in any order, but be physically set in
* a consistent order. This is useful for parsing against formats that allow
* field values to contradict each other.
* <p>
* Field values are applied in an order where the "larger" fields are set
* first, making their value less likely to stick. A field is larger than
* another when it's range duration is longer. If both ranges are the same,
* then the larger field has the longer duration. If it cannot be determined
* which field is larger, then the fields are set in the order they were saved.
* <p>
* For example, these fields were saved in this order: dayOfWeek, monthOfYear,
* dayOfMonth, dayOfYear. When computeMillis is called, the fields are set in
* this order: monthOfYear, dayOfYear, dayOfMonth, dayOfWeek.
* <p>
* DateTimeParserBucket is mutable and not thread-safe.
*
* @author Brian S O'Neill
* @author Fredrik Borgh
* @since 1.0
*/
public class DateTimeParserBucket {
/** The chronology to use for parsing. */
private final Chronology iChrono;
private final long iMillis;
// TimeZone to switch to in computeMillis. If null, use offset.
private DateTimeZone iZone;
private int iOffset;
/** The locale to use for parsing. */
private Locale iLocale;
/** Used for parsing two-digit years. */
private Integer iPivotYear;
private SavedField[] iSavedFields = new SavedField[8];
private int iSavedFieldsCount;
private boolean iSavedFieldsShared;
private Object iSavedState;
/**
* Constucts a bucket.
*
* @param instantLocal the initial millis from 1970-01-01T00:00:00, local time
* @param chrono the chronology to use
* @param locale the locale to use
*/
public DateTimeParserBucket(long instantLocal, Chronology chrono, Locale locale) {
this(instantLocal, chrono, locale, null);
}
/**
* Constucts a bucket, with the option of specifying the pivot year for
* two-digit year parsing.
*
* @param instantLocal the initial millis from 1970-01-01T00:00:00, local time
* @param chrono the chronology to use
* @param locale the locale to use
* @param pivotYear the pivot year to use when parsing two-digit years
* @since 1.1
*/
public DateTimeParserBucket(long instantLocal, Chronology chrono, Locale locale, Integer pivotYear) {
super();
chrono = DateTimeUtils.getChronology(chrono);
iMillis = instantLocal;
iChrono = chrono.withUTC();
iLocale = (locale == null ? Locale.getDefault() : locale);
setZone(chrono.getZone());
iPivotYear = pivotYear;
}
//-----------------------------------------------------------------------
/**
* Gets the chronology of the bucket, which will be a local (UTC) chronology.
*/
public Chronology getChronology() {
return iChrono;
}
//-----------------------------------------------------------------------
/**
* Returns the locale to be used during parsing.
*
* @return the locale to use
*/
public Locale getLocale() {
return iLocale;
}
//-----------------------------------------------------------------------
/**
* Returns the time zone used by computeMillis, or null if an offset is
* used instead.
*/
public DateTimeZone getZone() {
return iZone;
}
/**
* Set a time zone to be used when computeMillis is called, which
* overrides any set time zone offset.
*
* @param zone the date time zone to operate in, or null if UTC
*/
public void setZone(DateTimeZone zone) {
iSavedState = null;
iZone = zone == DateTimeZone.UTC ? null : zone;
iOffset = 0;
}
//-----------------------------------------------------------------------
/**
* Returns the time zone offset in milliseconds used by computeMillis,
* unless getZone doesn't return null.
*/
public int getOffset() {
return iOffset;
}
/**
* Set a time zone offset to be used when computeMillis is called, which
* overrides the time zone.
*/
public void setOffset(int offset) {
iSavedState = null;
iOffset = offset;
iZone = null;
}
//-----------------------------------------------------------------------
/**
* Returns the pivot year used for parsing two-digit years.
* <p>
* If null is returned, this indicates default behaviour
*
* @return Integer value of the pivot year, null if not set
* @since 1.1
*/
public Integer getPivotYear() {
return iPivotYear;
}
/**
* Sets the pivot year to use when parsing two digit years.
* <p>
* If the value is set to null, this will indicate that default
* behaviour should be used.
*
* @param pivotYear the pivot year to use
* @since 1.1
*/
public void setPivotYear(Integer pivotYear) {
iPivotYear = pivotYear;
}
//-----------------------------------------------------------------------
/**
* Saves a datetime field value.
*
* @param field the field, whose chronology must match that of this bucket
* @param value the value
*/
public void saveField(DateTimeField field, int value) {
saveField(new SavedField(field, value));
}
/**
* Saves a datetime field value.
*
* @param fieldType the field type
* @param value the value
*/
public void saveField(DateTimeFieldType fieldType, int value) {
saveField(new SavedField(fieldType.getField(iChrono), value));
}
/**
* Saves a datetime field text value.
*
* @param fieldType the field type
* @param text the text value
* @param locale the locale to use
*/
public void saveField(DateTimeFieldType fieldType, String text, Locale locale) {
saveField(new SavedField(fieldType.getField(iChrono), text, locale));
}
private void saveField(SavedField field) {
SavedField[] savedFields = iSavedFields;
int savedFieldsCount = iSavedFieldsCount;
if (savedFieldsCount == savedFields.length || iSavedFieldsShared) {
// Expand capacity or merely copy if saved fields are shared.
SavedField[] newArray = new SavedField
[savedFieldsCount == savedFields.length ? savedFieldsCount * 2 : savedFields.length];
System.arraycopy(savedFields, 0, newArray, 0, savedFieldsCount);
iSavedFields = savedFields = newArray;
iSavedFieldsShared = false;
}
iSavedState = null;
savedFields[savedFieldsCount] = field;
iSavedFieldsCount = savedFieldsCount + 1;
}
/**
* Saves the state of this bucket, returning it in an opaque object. Call
* restoreState to undo any changes that were made since the state was
* saved. Calls to saveState may be nested.
*
* @return opaque saved state, which may be passed to restoreState
*/
public Object saveState() {
if (iSavedState == null) {
iSavedState = new SavedState();
}
return iSavedState;
}
/**
* Restores the state of this bucket from a previously saved state. The
* state object passed into this method is not consumed, and it can be used
* later to restore to that state again.
*
* @param savedState opaque saved state, returned from saveState
* @return true state object is valid and state restored
*/
public boolean restoreState(Object savedState) {
if (savedState instanceof SavedState) {
if (((SavedState) savedState).restoreState(this)) {
iSavedState = savedState;
return true;
}
}
return false;
}
/**
* Computes the parsed datetime by setting the saved fields.
* This method is idempotent, but it is not thread-safe.
*
* @return milliseconds since 1970-01-01T00:00:00Z
* @throws IllegalArgumentException if any field is out of range
*/
public long computeMillis() {
return computeMillis(false, null);
}
/**
* Computes the parsed datetime by setting the saved fields.
* This method is idempotent, but it is not thread-safe.
*
* @param resetFields false by default, but when true, unsaved field values are cleared
* @return milliseconds since 1970-01-01T00:00:00Z
* @throws IllegalArgumentException if any field is out of range
*/
public long computeMillis(boolean resetFields) {
return computeMillis(resetFields, null);
}
/**
* Computes the parsed datetime by setting the saved fields.
* This method is idempotent, but it is not thread-safe.
*
* @param resetFields false by default, but when true, unsaved field values are cleared
* @param text optional text being parsed, to be included in any error message
* @return milliseconds since 1970-01-01T00:00:00Z
* @throws IllegalArgumentException if any field is out of range
* @since 1.3
*/
public long computeMillis(boolean resetFields, String text) {
SavedField[] savedFields = iSavedFields;
int count = iSavedFieldsCount;
if (iSavedFieldsShared) {
SavedField[] sf1 = new SavedField[iSavedFields.length];
SavedField[] sf2 = new SavedField[iSavedFields.length];
ArrayUtils.copyArray(iSavedFields, sf1);
ArrayUtils.copyArray(iSavedFields, sf2);
iSavedFields = sf1;
savedFields = sf2;
iSavedFieldsShared = false;
}
sort(savedFields, count);
long millis = iMillis;
try {
for (int i=0; i<count; i++) {
millis = savedFields[i].set(millis, resetFields);
}
} catch (IllegalFieldValueException e) {
if (text != null) {
e.prependMessage("Cannot parse \"" + text + '"');
}
throw e;
}
if (iZone == null) {
millis -= iOffset;
} else {
int offset = iZone.getOffsetFromLocal(millis);
millis -= offset;
if (offset != iZone.getOffset(millis)) {
String message =
"Illegal instant due to time zone offset transition (" + iZone + ')';
if (text != null) {
message = "Cannot parse \"" + text + "\": " + message;
}
throw new IllegalArgumentException(message);
}
}
return millis;
}
/**
* Sorts elements [0,high). Calling java.util.Arrays isn't always the right
* choice since it always creates an internal copy of the array, even if it
* doesn't need to. If the array slice is small enough, an insertion sort
* is chosen instead, but it doesn't need a copy!
* <p>
* This method has a modified version of that insertion sort, except it
* doesn't create an unnecessary array copy. If high is over 10, then
* java.util.Arrays is called, which will perform a merge sort, which is
* faster than insertion sort on large lists.
* <p>
* The end result is much greater performace when computeMillis is called.
* Since the amount of saved fields is small, the insertion sort is a
* better choice. Additional performance is gained since there is no extra
* array allocation and copying. Also, the insertion sort here does not
* perform any casting operations. The version in java.util.Arrays performs
* casts within the insertion sort loop.
*/
@SuppressWarnings("unchecked")
private static void sort(Comparable[] array, int high) {
if (high > 10) {
Arrays.sort(array, 0, high);
} else {
for (int i=0; i<high; i++) {
for (int j=i; j>0 && (array[j-1]).compareTo(array[j])>0; j--) {
Comparable t = array[j];
array[j] = array[j-1];
array[j-1] = t;
}
}
}
}
class SavedState {
final DateTimeZone iZone;
final int iOffset;
final SavedField[] iSavedFields;
final int iSavedFieldsCount;
SavedState() {
this.iZone = DateTimeParserBucket.this.iZone;
this.iOffset = DateTimeParserBucket.this.iOffset;
this.iSavedFields = DateTimeParserBucket.this.iSavedFields;
this.iSavedFieldsCount = DateTimeParserBucket.this.iSavedFieldsCount;
}
boolean restoreState(DateTimeParserBucket enclosing) {
if (enclosing != DateTimeParserBucket.this) {
return false;
}
enclosing.iZone = this.iZone;
enclosing.iOffset = this.iOffset;
enclosing.iSavedFields = this.iSavedFields;
if (this.iSavedFieldsCount < enclosing.iSavedFieldsCount) {
// Since count is being restored to a lower count, the
// potential exists for new saved fields to destroy data being
// shared by another state. Set this flag such that the array
// of saved fields is cloned prior to modification.
enclosing.iSavedFieldsShared = true;
}
enclosing.iSavedFieldsCount = this.iSavedFieldsCount;
return true;
}
}
static class SavedField implements Comparable {
final DateTimeField iField;
final int iValue;
final String iText;
final Locale iLocale;
SavedField(DateTimeField field, int value) {
iField = field;
iValue = value;
iText = null;
iLocale = null;
}
SavedField(DateTimeField field, String text, Locale locale) {
iField = field;
iValue = 0;
iText = text;
iLocale = locale;
}
long set(long millis, boolean reset) {
if (iText == null) {
millis = iField.set(millis, iValue);
} else {
millis = iField.set(millis, iText, iLocale);
}
if (reset) {
millis = iField.roundFloor(millis);
}
return millis;
}
/**
* The field with the longer range duration is ordered first, where
* null is considered infinite. If the ranges match, then the field
* with the longer duration is ordered first.
*/
public int compareTo(Object obj) {
DateTimeField other = ((SavedField)obj).iField;
int result = compareReverse
(iField.getRangeDurationField(), other.getRangeDurationField());
if (result != 0) {
return result;
}
return compareReverse
(iField.getDurationField(), other.getDurationField());
}
private int compareReverse(DurationField a, DurationField b) {
if (a == null || !a.isSupported()) {
if (b == null || !b.isSupported()) {
return 0;
}
return -1;
}
if (b == null || !b.isSupported()) {
return 1;
}
return -a.compareTo(b);
}
}
}