/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* SimpleKMeans.java
* Copyright (C) 2000-2010 University of Waikato, Hamilton, New Zealand
*
*/
package weka.clusterers;
import weka.classifiers.rules.DecisionTableHashKey;
import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.DistanceFunction;
import weka.core.EuclideanDistance;
import weka.core.Instance;
import weka.core.DenseInstance;
import weka.core.Instances;
import weka.core.ManhattanDistance;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.Capabilities.Capability;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;
import java.util.Enumeration;
import java.util.HashMap;
import java.util.Random;
import java.util.Vector;
/**
<!-- globalinfo-start -->
* Cluster data using the k means algorithm. Can use either the Euclidean distance (default) or the Manhattan distance. If the Manhattan distance is used, then centroids are computed as the component-wise median rather than mean. For more information see:<br/>
* <br/>
* D. Arthur, S. Vassilvitskii: k-means++: the advantages of carefull seeding. In: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 1027-1035, 2007.
* <p/>
<!-- globalinfo-end -->
*
<!-- technical-bibtex-start -->
* BibTeX:
* <pre>
* @inproceedings{Arthur2007,
* author = {D. Arthur and S. Vassilvitskii},
* booktitle = {Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms},
* pages = {1027-1035},
* title = {k-means++: the advantages of carefull seeding},
* year = {2007}
* }
* </pre>
* <p/>
<!-- technical-bibtex-end -->
*
<!-- options-start -->
* Valid options are: <p/>
*
* <pre> -N <num>
* number of clusters.
* (default 2).</pre>
*
* <pre> -P
* Initialize using the k-means++ method.
* </pre>
*
* <pre> -V
* Display std. deviations for centroids.
* </pre>
*
* <pre> -M
* Replace missing values with mean/mode.
* </pre>
*
* <pre> -A <classname and options>
* Distance function to use.
* (default: weka.core.EuclideanDistance)</pre>
*
* <pre> -I <num>
* Maximum number of iterations.
* </pre>
*
* <pre> -O
* Preserve order of instances.
* </pre>
*
* <pre> -fast
* Enables faster distance calculations, using cut-off values.
* Disables the calculation/output of squared errors/distances.
* </pre>
*
* <pre> -S <num>
* Random number seed.
* (default 10)</pre>
*
<!-- options-end -->
*
* @author Mark Hall (mhall@cs.waikato.ac.nz)
* @author Eibe Frank (eibe@cs.waikato.ac.nz)
* @version $Revision: 7282 $
* @see RandomizableClusterer
*/
public class SimpleKMeans
extends RandomizableClusterer
implements NumberOfClustersRequestable, WeightedInstancesHandler,
TechnicalInformationHandler {
/** for serialization. */
static final long serialVersionUID = -3235809600124455376L;
/**
* replace missing values in training instances.
*/
private ReplaceMissingValues m_ReplaceMissingFilter;
/**
* number of clusters to generate.
*/
private int m_NumClusters = 2;
/**
* holds the cluster centroids.
*/
private Instances m_ClusterCentroids;
/**
* Holds the standard deviations of the numeric attributes in each cluster.
*/
private Instances m_ClusterStdDevs;
/**
* For each cluster, holds the frequency counts for the values of each
* nominal attribute.
*/
private int[][][] m_ClusterNominalCounts;
private int[][] m_ClusterMissingCounts;
/**
* Stats on the full data set for comparison purposes.
* In case the attribute is numeric the value is the mean if is
* being used the Euclidian distance or the median if Manhattan distance
* and if the attribute is nominal then it's mode is saved.
*/
private double[] m_FullMeansOrMediansOrModes;
private double[] m_FullStdDevs;
private int[][] m_FullNominalCounts;
private int[] m_FullMissingCounts;
/**
* Display standard deviations for numeric atts.
*/
private boolean m_displayStdDevs;
/**
* Replace missing values globally?
*/
private boolean m_dontReplaceMissing = false;
/**
* The number of instances in each cluster.
*/
private int[] m_ClusterSizes;
/**
* Maximum number of iterations to be executed.
*/
private int m_MaxIterations = 500;
/**
* Keep track of the number of iterations completed before convergence.
*/
private int m_Iterations = 0;
/**
* Holds the squared errors for all clusters.
*/
private double[] m_squaredErrors;
/** the distance function used. */
protected DistanceFunction m_DistanceFunction = new EuclideanDistance();
/**
* Preserve order of instances.
*/
private boolean m_PreserveOrder = false;
/**
* Assignments obtained.
*/
protected int[] m_Assignments = null;
/** whether to use fast calculation of distances (using a cut-off). */
protected boolean m_FastDistanceCalc = false;
/** Whether to initialize cluster centers using the k-means++ method */
protected boolean m_initializeWithKMeansPlusPlus = false;
/**
* the default constructor.
*/
public SimpleKMeans() {
super();
m_SeedDefault = 10;
setSeed(m_SeedDefault);
}
public TechnicalInformation getTechnicalInformation() {
TechnicalInformation result;
result = new TechnicalInformation(Type.INPROCEEDINGS);
result.setValue(Field.AUTHOR, "D. Arthur and S. Vassilvitskii");
result.setValue(Field.TITLE, "k-means++: the advantages of carefull seeding");
result.setValue(Field.BOOKTITLE, "Proceedings of the eighteenth annual " +
"ACM-SIAM symposium on Discrete algorithms");
result.setValue(Field.YEAR, "2007");
result.setValue(Field.PAGES, "1027-1035");
return result;
}
/**
* Returns a string describing this clusterer.
* @return a description of the evaluator suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return "Cluster data using the k means algorithm. Can use either "
+ "the Euclidean distance (default) or the Manhattan distance."
+ " If the Manhattan distance is used, then centroids are computed "
+ "as the component-wise median rather than mean."
+ " For more information see:\n\n"
+ getTechnicalInformation().toString();
}
/**
* Returns default capabilities of the clusterer.
*
* @return the capabilities of this clusterer
*/
public Capabilities getCapabilities() {
Capabilities result = super.getCapabilities();
result.disableAll();
result.enable(Capability.NO_CLASS);
// attributes
result.enable(Capability.NOMINAL_ATTRIBUTES);
result.enable(Capability.NUMERIC_ATTRIBUTES);
result.enable(Capability.MISSING_VALUES);
return result;
}
/**
* Generates a clusterer. Has to initialize all fields of the clusterer
* that are not being set via options.
*
* @param data set of instances serving as training data
* @throws Exception if the clusterer has not been
* generated successfully
*/
public void buildClusterer(Instances data) throws Exception {
// can clusterer handle the data?
getCapabilities().testWithFail(data);
m_Iterations = 0;
m_ReplaceMissingFilter = new ReplaceMissingValues();
Instances instances = new Instances(data);
instances.setClassIndex(-1);
if (!m_dontReplaceMissing) {
m_ReplaceMissingFilter.setInputFormat(instances);
instances = Filter.useFilter(instances, m_ReplaceMissingFilter);
}
m_FullMissingCounts = new int[instances.numAttributes()];
if (m_displayStdDevs) {
m_FullStdDevs = new double[instances.numAttributes()];
}
m_FullNominalCounts = new int[instances.numAttributes()][0];
m_FullMeansOrMediansOrModes = moveCentroid(0, instances, false);
for (int i = 0; i < instances.numAttributes(); i++) {
m_FullMissingCounts[i] = instances.attributeStats(i).missingCount;
if (instances.attribute(i).isNumeric()) {
if (m_displayStdDevs) {
m_FullStdDevs[i] = Math.sqrt(instances.variance(i));
}
if (m_FullMissingCounts[i] == instances.numInstances()) {
m_FullMeansOrMediansOrModes[i] = Double.NaN; // mark missing as mean
}
} else {
m_FullNominalCounts[i] = instances.attributeStats(i).nominalCounts;
if (m_FullMissingCounts[i]
> m_FullNominalCounts[i][Utils.maxIndex(m_FullNominalCounts[i])]) {
m_FullMeansOrMediansOrModes[i] = -1; // mark missing as most common value
}
}
}
m_ClusterCentroids = new Instances(instances, m_NumClusters);
int[] clusterAssignments = new int [instances.numInstances()];
if (m_PreserveOrder)
m_Assignments = clusterAssignments;
m_DistanceFunction.setInstances(instances);
Random RandomO = new Random(getSeed());
int instIndex;
HashMap initC = new HashMap();
DecisionTableHashKey hk = null;
Instances initInstances = null;
if (m_PreserveOrder)
initInstances = new Instances(instances);
else
initInstances = instances;
if (m_initializeWithKMeansPlusPlus) {
kMeansPlusPlusInit(initInstances);
} else {
for (int j = initInstances.numInstances() - 1; j >= 0; j--) {
instIndex = RandomO.nextInt(j+1);
hk = new DecisionTableHashKey(initInstances.instance(instIndex),
initInstances.numAttributes(), true);
if (!initC.containsKey(hk)) {
m_ClusterCentroids.add(initInstances.instance(instIndex));
initC.put(hk, null);
}
initInstances.swap(j, instIndex);
if (m_ClusterCentroids.numInstances() == m_NumClusters) {
break;
}
}
}
m_NumClusters = m_ClusterCentroids.numInstances();
//removing reference
initInstances = null;
int i;
boolean converged = false;
int emptyClusterCount;
Instances[] tempI = new Instances[m_NumClusters];
m_squaredErrors = new double [m_NumClusters];
m_ClusterNominalCounts = new int [m_NumClusters][instances.numAttributes()][0];
m_ClusterMissingCounts = new int[m_NumClusters][instances.numAttributes()];
while (!converged) {
emptyClusterCount = 0;
m_Iterations++;
converged = true;
for (i = 0; i < instances.numInstances(); i++) {
Instance toCluster = instances.instance(i);
int newC = clusterProcessedInstance(toCluster, false, true);
if (newC != clusterAssignments[i]) {
converged = false;
}
clusterAssignments[i] = newC;
}
// update centroids
m_ClusterCentroids = new Instances(instances, m_NumClusters);
for (i = 0; i < m_NumClusters; i++) {
tempI[i] = new Instances(instances, 0);
}
for (i = 0; i < instances.numInstances(); i++) {
tempI[clusterAssignments[i]].add(instances.instance(i));
}
for (i = 0; i < m_NumClusters; i++) {
if (tempI[i].numInstances() == 0) {
// empty cluster
emptyClusterCount++;
} else {
moveCentroid( i, tempI[i], true );
}
}
if (emptyClusterCount > 0) {
m_NumClusters -= emptyClusterCount;
if (converged) {
Instances[] t = new Instances[m_NumClusters];
int index = 0;
for (int k = 0; k < tempI.length; k++) {
if (tempI[k].numInstances() > 0) {
t[index++] = tempI[k];
}
}
tempI = t;
} else {
tempI = new Instances[m_NumClusters];
}
}
if (m_Iterations == m_MaxIterations)
converged = true;
if (!converged) {
m_ClusterNominalCounts = new int [m_NumClusters][instances.numAttributes()][0];
}
}
// calculate errors
if (!m_FastDistanceCalc) {
for (i = 0; i < instances.numInstances(); i++) {
clusterProcessedInstance(instances.instance(i), true, false);
}
}
if (m_displayStdDevs) {
m_ClusterStdDevs = new Instances(instances, m_NumClusters);
}
m_ClusterSizes = new int [m_NumClusters];
for (i = 0; i < m_NumClusters; i++) {
if (m_displayStdDevs) {
double[] vals2 = new double[instances.numAttributes()];
for (int j = 0; j < instances.numAttributes(); j++) {
if (instances.attribute(j).isNumeric()) {
vals2[j] = Math.sqrt(tempI[i].variance(j));
} else {
vals2[j] = Utils.missingValue();
}
}
m_ClusterStdDevs.add(new DenseInstance(1.0, vals2));
}
m_ClusterSizes[i] = tempI[i].numInstances();
}
}
protected void kMeansPlusPlusInit(Instances data) throws Exception {
Random randomO = new Random(getSeed());
HashMap<DecisionTableHashKey, String> initC = new HashMap<DecisionTableHashKey, String>();
// choose initial center uniformly at random
int index = randomO.nextInt(data.numInstances());
m_ClusterCentroids.add(data.instance(index));
DecisionTableHashKey hk = new DecisionTableHashKey(data.instance(index),
data.numAttributes(), true);
initC.put(hk, null);
int iteration = 0;
int remainingInstances = data.numInstances() - 1;
if (m_NumClusters > 1) {
// proceed with selecting the rest
// distances to the initial randomly chose center
double[] distances = new double[data.numInstances()];
double[] cumProbs = new double[data.numInstances()];
for (int i = 0; i < data.numInstances(); i++) {
distances[i] =
m_DistanceFunction.distance(data.instance(i),
m_ClusterCentroids.instance(iteration));
}
// now choose the remaining cluster centers
for (int i = 1; i < m_NumClusters; i++) {
// distances converted to probabilities
double[] weights = new double[data.numInstances()];
System.arraycopy(distances, 0, weights, 0, distances.length);
Utils.normalize(weights);
double sumOfProbs = 0;
for (int k = 0; k < data.numInstances(); k++) {
sumOfProbs += weights[k];
cumProbs[k] = sumOfProbs;
}
cumProbs[data.numInstances() - 1] = 1.0; // make sure there are no rounding issues
// choose a random instance
double prob = randomO.nextDouble();
for (int k = 0; k < cumProbs.length; k++) {
if (prob < cumProbs[k]) {
Instance candidateCenter = data.instance(k);
hk = new DecisionTableHashKey(candidateCenter, data.numAttributes(), true);
if (!initC.containsKey(hk)) {
initC.put(hk, null);
m_ClusterCentroids.add(candidateCenter);
} else {
// we shouldn't get here because any instance that is a duplicate of
// an already chosen cluster center should have zero distance (and hence
// zero probability of getting chosen) to that center.
System.err.println("We shouldn't get here....");
}
remainingInstances--;
break;
}
}
iteration++;
if (remainingInstances == 0) {
break;
}
// prepare to choose the next cluster center.
// check distances against the new cluster center to see if it is closer
for (int k = 0; k < data.numInstances(); k++) {
if (distances[k] > 0) {
double newDist = m_DistanceFunction.distance(data.instance(k),
m_ClusterCentroids.instance(iteration));
if (newDist < distances[k]) {
distances[k] = newDist;
}
}
}
}
}
}
/**
* Move the centroid to it's new coordinates. Generate the centroid coordinates based
* on it's members (objects assigned to the cluster of the centroid) and the distance
* function being used.
* @param centroidIndex index of the centroid which the coordinates will be computed
* @param members the objects that are assigned to the cluster of this centroid
* @param updateClusterInfo if the method is supposed to update the m_Cluster arrays
* @return the centroid coordinates
*/
protected double[] moveCentroid(int centroidIndex, Instances members, boolean updateClusterInfo) {
double[] vals = new double[members.numAttributes()];
//used only for Manhattan Distance
Instances sortedMembers = null;
int middle = 0;
boolean dataIsEven = false;
if (m_DistanceFunction instanceof ManhattanDistance) {
middle = (members.numInstances()-1)/2;
dataIsEven = ((members.numInstances()%2)==0);
if (m_PreserveOrder) {
sortedMembers = members;
}else{
sortedMembers = new Instances(members);
}
}
for (int j = 0; j < members.numAttributes(); j++) {
//in case of Euclidian distance the centroid is the mean point
//in case of Manhattan distance the centroid is the median point
//in both cases, if the attribute is nominal, the centroid is the mode
if (m_DistanceFunction instanceof EuclideanDistance ||
members.attribute(j).isNominal())
{
vals[j] = members.meanOrMode(j);
}else if (m_DistanceFunction instanceof ManhattanDistance) {
//singleton special case
if (members.numInstances() == 1) {
vals[j] = members.instance(0).value(j);
}else{
sortedMembers.kthSmallestValue(j, middle+1);
vals[j] = sortedMembers.instance(middle).value(j);
if ( dataIsEven ) {
sortedMembers.kthSmallestValue(j, middle+2);
vals[j] = (vals[j]+sortedMembers.instance(middle+1).value(j))/2;
}
}
}
if (updateClusterInfo) {
m_ClusterMissingCounts[centroidIndex][j] = members.attributeStats(j).missingCount;
m_ClusterNominalCounts[centroidIndex][j] = members.attributeStats(j).nominalCounts;
if (members.attribute(j).isNominal()) {
if (m_ClusterMissingCounts[centroidIndex][j] >
m_ClusterNominalCounts[centroidIndex][j][Utils.maxIndex(m_ClusterNominalCounts[centroidIndex][j])])
{
vals[j] = Utils.missingValue(); // mark mode as missing
}
} else {
if (m_ClusterMissingCounts[centroidIndex][j] == members.numInstances()) {
vals[j] = Utils.missingValue(); // mark mean as missing
}
}
}
}
if (updateClusterInfo)
m_ClusterCentroids.add(new DenseInstance(1.0, vals));
return vals;
}
/**
* clusters an instance that has been through the filters.
*
* @param instance the instance to assign a cluster to
* @param updateErrors if true, update the within clusters sum of errors
* @param useFastDistCalc whether to use the fast distance calculation or not
* @return a cluster number
*/
private int clusterProcessedInstance(Instance instance, boolean updateErrors, boolean useFastDistCalc) {
double minDist = Integer.MAX_VALUE;
int bestCluster = 0;
for (int i = 0; i < m_NumClusters; i++) {
double dist;
if (useFastDistCalc)
dist = m_DistanceFunction.distance(instance, m_ClusterCentroids.instance(i), minDist);
else
dist = m_DistanceFunction.distance(instance, m_ClusterCentroids.instance(i));
if (dist < minDist) {
minDist = dist;
bestCluster = i;
}
}
if (updateErrors) {
if (m_DistanceFunction instanceof EuclideanDistance) {
//Euclidean distance to Squared Euclidean distance
minDist *= minDist;
}
m_squaredErrors[bestCluster] += minDist;
}
return bestCluster;
}
/**
* Classifies a given instance.
*
* @param instance the instance to be assigned to a cluster
* @return the number of the assigned cluster as an interger
* if the class is enumerated, otherwise the predicted value
* @throws Exception if instance could not be classified
* successfully
*/
public int clusterInstance(Instance instance) throws Exception {
Instance inst = null;
if (!m_dontReplaceMissing) {
m_ReplaceMissingFilter.input(instance);
m_ReplaceMissingFilter.batchFinished();
inst = m_ReplaceMissingFilter.output();
} else {
inst = instance;
}
return clusterProcessedInstance(inst, false, true);
}
/**
* Returns the number of clusters.
*
* @return the number of clusters generated for a training dataset.
* @throws Exception if number of clusters could not be returned
* successfully
*/
public int numberOfClusters() throws Exception {
return m_NumClusters;
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector result = new Vector();
result.addElement(new Option(
"\tnumber of clusters.\n"
+ "\t(default 2).",
"N", 1, "-N <num>"));
result.addElement(new Option(
"\tInitialize using the k-means++ method.\n",
"P", 0, "-P"));
result.addElement(new Option(
"\tDisplay std. deviations for centroids.\n",
"V", 0, "-V"));
result.addElement(new Option(
"\tReplace missing values with mean/mode.\n",
"M", 0, "-M"));
result.add(new Option(
"\tDistance function to use.\n"
+ "\t(default: weka.core.EuclideanDistance)",
"A", 1,"-A <classname and options>"));
result.add(new Option(
"\tMaximum number of iterations.\n",
"I",1,"-I <num>"));
result.addElement(new Option(
"\tPreserve order of instances.\n",
"O", 0, "-O"));
result.addElement(new Option(
"\tEnables faster distance calculations, using cut-off values.\n"
+ "\tDisables the calculation/output of squared errors/distances.\n",
"fast", 0, "-fast"));
Enumeration en = super.listOptions();
while (en.hasMoreElements())
result.addElement(en.nextElement());
return result.elements();
}
/**
* Returns the tip text for this property.
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String numClustersTipText() {
return "set number of clusters";
}
/**
* set the number of clusters to generate.
*
* @param n the number of clusters to generate
* @throws Exception if number of clusters is negative
*/
public void setNumClusters(int n) throws Exception {
if (n <= 0) {
throw new Exception("Number of clusters must be > 0");
}
m_NumClusters = n;
}
/**
* gets the number of clusters to generate.
*
* @return the number of clusters to generate
*/
public int getNumClusters() {
return m_NumClusters;
}
/**
* Returns the tip text for this property.
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String initializeUsingKMeansPlusPlusMethodTipText() {
return "Initialize cluster centers using the probabilistic "
+ " farthest first method of the k-means++ algorithm";
}
/**
* Set whether to initialize using the probabilistic farthest
* first like method of the k-means++ algorithm (rather than
* the standard random selection of initial cluster centers).
*
* @param k true if the k-means++ method is to be used to select
* initial cluster centers.
*/
public void setInitializeUsingKMeansPlusPlusMethod(boolean k) {
m_initializeWithKMeansPlusPlus = k;
}
/**
* Get whether to initialize using the probabilistic farthest
* first like method of the k-means++ algorithm (rather than
* the standard random selection of initial cluster centers).
*
* @return true if the k-means++ method is to be used to select
* initial cluster centers.
*/
public boolean getInitializeUsingKMeansPlusPlusMethod() {
return m_initializeWithKMeansPlusPlus;
}
/**
* Returns the tip text for this property.
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String maxIterationsTipText() {
return "set maximum number of iterations";
}
/**
* set the maximum number of iterations to be executed.
*
* @param n the maximum number of iterations
* @throws Exception if maximum number of iteration is smaller than 1
*/
public void setMaxIterations(int n) throws Exception {
if (n <= 0) {
throw new Exception("Maximum number of iterations must be > 0");
}
m_MaxIterations = n;
}
/**
* gets the number of maximum iterations to be executed.
*
* @return the number of clusters to generate
*/
public int getMaxIterations() {
return m_MaxIterations;
}
/**
* Returns the tip text for this property.
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String displayStdDevsTipText() {
return "Display std deviations of numeric attributes "
+ "and counts of nominal attributes.";
}
/**
* Sets whether standard deviations and nominal count.
* Should be displayed in the clustering output.
*
* @param stdD true if std. devs and counts should be
* displayed
*/
public void setDisplayStdDevs(boolean stdD) {
m_displayStdDevs = stdD;
}
/**
* Gets whether standard deviations and nominal count.
* Should be displayed in the clustering output.
*
* @return true if std. devs and counts should be
* displayed
*/
public boolean getDisplayStdDevs() {
return m_displayStdDevs;
}
/**
* Returns the tip text for this property.
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String dontReplaceMissingValuesTipText() {
return "Replace missing values globally with mean/mode.";
}
/**
* Sets whether missing values are to be replaced.
*
* @param r true if missing values are to be
* replaced
*/
public void setDontReplaceMissingValues(boolean r) {
m_dontReplaceMissing = r;
}
/**
* Gets whether missing values are to be replaced.
*
* @return true if missing values are to be
* replaced
*/
public boolean getDontReplaceMissingValues() {
return m_dontReplaceMissing;
}
/**
* Returns the tip text for this property.
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String distanceFunctionTipText() {
return "The distance function to use for instances comparison " +
"(default: weka.core.EuclideanDistance). ";
}
/**
* returns the distance function currently in use.
*
* @return the distance function
*/
public DistanceFunction getDistanceFunction() {
return m_DistanceFunction;
}
/**
* sets the distance function to use for instance comparison.
*
* @param df the new distance function to use
* @throws Exception if instances cannot be processed
*/
public void setDistanceFunction(DistanceFunction df) throws Exception {
if (!(df instanceof EuclideanDistance) &&
!(df instanceof ManhattanDistance)) {
throw new Exception("SimpleKMeans currently only supports the Euclidean and Manhattan distances.");
}
m_DistanceFunction = df;
}
/**
* Returns the tip text for this property.
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String preserveInstancesOrderTipText() {
return "Preserve order of instances.";
}
/**
* Sets whether order of instances must be preserved.
*
* @param r true if missing values are to be
* replaced
*/
public void setPreserveInstancesOrder(boolean r) {
m_PreserveOrder = r;
}
/**
* Gets whether order of instances must be preserved.
*
* @return true if missing values are to be
* replaced
*/
public boolean getPreserveInstancesOrder() {
return m_PreserveOrder;
}
/**
* Returns the tip text for this property.
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String fastDistanceCalcTipText() {
return
"Uses cut-off values for speeding up distance calculation, but "
+ "suppresses also the calculation and output of the within cluster sum "
+ "of squared errors/sum of distances.";
}
/**
* Sets whether to use faster distance calculation.
*
* @param value true if faster calculation to be used
*/
public void setFastDistanceCalc(boolean value) {
m_FastDistanceCalc = value;
}
/**
* Gets whether to use faster distance calculation.
*
* @return true if faster calculation is used
*/
public boolean getFastDistanceCalc() {
return m_FastDistanceCalc;
}
/**
* Parses a given list of options. <p/>
*
<!-- options-start -->
* Valid options are: <p/>
*
* <pre> -N <num>
* number of clusters.
* (default 2).</pre>
*
* <pre> -P
* Initialize using the k-means++ method.
* </pre>
*
* <pre> -V
* Display std. deviations for centroids.
* </pre>
*
* <pre> -M
* Replace missing values with mean/mode.
* </pre>
*
* <pre> -A <classname and options>
* Distance function to use.
* (default: weka.core.EuclideanDistance)</pre>
*
* <pre> -I <num>
* Maximum number of iterations.
* </pre>
*
* <pre> -O
* Preserve order of instances.
* </pre>
*
* <pre> -fast
* Enables faster distance calculations, using cut-off values.
* Disables the calculation/output of squared errors/distances.
* </pre>
*
* <pre> -S <num>
* Random number seed.
* (default 10)</pre>
*
<!-- options-end -->
*
* @param options the list of options as an array of strings
* @throws Exception if an option is not supported
*/
public void setOptions (String[] options)
throws Exception {
m_displayStdDevs = Utils.getFlag("V", options);
m_dontReplaceMissing = Utils.getFlag("M", options);
m_initializeWithKMeansPlusPlus = Utils.getFlag('P', options);
String optionString = Utils.getOption('N', options);
if (optionString.length() != 0) {
setNumClusters(Integer.parseInt(optionString));
}
optionString = Utils.getOption("I", options);
if (optionString.length() != 0) {
setMaxIterations(Integer.parseInt(optionString));
}
String distFunctionClass = Utils.getOption('A', options);
if (distFunctionClass.length() != 0) {
String distFunctionClassSpec[] = Utils.splitOptions(distFunctionClass);
if (distFunctionClassSpec.length == 0) {
throw new Exception("Invalid DistanceFunction specification string.");
}
String className = distFunctionClassSpec[0];
distFunctionClassSpec[0] = "";
setDistanceFunction( (DistanceFunction)
Utils.forName( DistanceFunction.class,
className, distFunctionClassSpec) );
}
else {
setDistanceFunction(new EuclideanDistance());
}
m_PreserveOrder = Utils.getFlag("O", options);
m_FastDistanceCalc = Utils.getFlag("fast", options);
super.setOptions(options);
}
/**
* Gets the current settings of SimpleKMeans.
*
* @return an array of strings suitable for passing to setOptions()
*/
public String[] getOptions () {
int i;
Vector result;
String[] options;
result = new Vector();
if (m_initializeWithKMeansPlusPlus) {
result.add("-P");
}
if (m_displayStdDevs) {
result.add("-V");
}
if (m_dontReplaceMissing) {
result.add("-M");
}
result.add("-N");
result.add("" + getNumClusters());
result.add("-A");
result.add((m_DistanceFunction.getClass().getName() + " " +
Utils.joinOptions(m_DistanceFunction.getOptions())).trim());
result.add("-I");
result.add(""+ getMaxIterations());
if (m_PreserveOrder) {
result.add("-O");
}
if (m_FastDistanceCalc) {
result.add("-fast");
}
options = super.getOptions();
for (i = 0; i < options.length; i++)
result.add(options[i]);
return (String[]) result.toArray(new String[result.size()]);
}
/**
* return a string describing this clusterer.
*
* @return a description of the clusterer as a string
*/
public String toString() {
if (m_ClusterCentroids == null) {
return "No clusterer built yet!";
}
int maxWidth = 0;
int maxAttWidth = 0;
boolean containsNumeric = false;
for (int i = 0; i < m_NumClusters; i++) {
for (int j = 0 ;j < m_ClusterCentroids.numAttributes(); j++) {
if (m_ClusterCentroids.attribute(j).name().length() > maxAttWidth) {
maxAttWidth = m_ClusterCentroids.attribute(j).name().length();
}
if (m_ClusterCentroids.attribute(j).isNumeric()) {
containsNumeric = true;
double width = Math.log(Math.abs(m_ClusterCentroids.instance(i).value(j))) /
Math.log(10.0);
// System.err.println(m_ClusterCentroids.instance(i).value(j)+" "+width);
if (width < 0) {
width = 1;
}
// decimal + # decimal places + 1
width += 6.0;
if ((int)width > maxWidth) {
maxWidth = (int)width;
}
}
}
}
for (int i = 0; i < m_ClusterCentroids.numAttributes(); i++) {
if (m_ClusterCentroids.attribute(i).isNominal()) {
Attribute a = m_ClusterCentroids.attribute(i);
for (int j = 0; j < m_ClusterCentroids.numInstances(); j++) {
String val = a.value((int)m_ClusterCentroids.instance(j).value(i));
if (val.length() > maxWidth) {
maxWidth = val.length();
}
}
for (int j = 0; j < a.numValues(); j++) {
String val = a.value(j) + " ";
if (val.length() > maxAttWidth) {
maxAttWidth = val.length();
}
}
}
}
if (m_displayStdDevs) {
// check for maximum width of maximum frequency count
for (int i = 0; i < m_ClusterCentroids.numAttributes(); i++) {
if (m_ClusterCentroids.attribute(i).isNominal()) {
int maxV = Utils.maxIndex(m_FullNominalCounts[i]);
/* int percent = (int)((double)m_FullNominalCounts[i][maxV] /
Utils.sum(m_ClusterSizes) * 100.0); */
int percent = 6; // max percent width (100%)
String nomV = "" + m_FullNominalCounts[i][maxV];
// + " (" + percent + "%)";
if (nomV.length() + percent > maxWidth) {
maxWidth = nomV.length() + 1;
}
}
}
}
// check for size of cluster sizes
for (int i = 0; i < m_ClusterSizes.length; i++) {
String size = "(" + m_ClusterSizes[i] + ")";
if (size.length() > maxWidth) {
maxWidth = size.length();
}
}
if (m_displayStdDevs && maxAttWidth < "missing".length()) {
maxAttWidth = "missing".length();
}
String plusMinus = "+/-";
maxAttWidth += 2;
if (m_displayStdDevs && containsNumeric) {
maxWidth += plusMinus.length();
}
if (maxAttWidth < "Attribute".length() + 2) {
maxAttWidth = "Attribute".length() + 2;
}
if (maxWidth < "Full Data".length()) {
maxWidth = "Full Data".length() + 1;
}
if (maxWidth < "missing".length()) {
maxWidth = "missing".length() + 1;
}
StringBuffer temp = new StringBuffer();
temp.append("\nkMeans\n======\n");
temp.append("\nNumber of iterations: " + m_Iterations);
if (!m_FastDistanceCalc) {
temp.append("\n");
if (m_DistanceFunction instanceof EuclideanDistance) {
temp.append("Within cluster sum of squared errors: " + Utils.sum(m_squaredErrors));
}else{
temp.append("Sum of within cluster distances: " + Utils.sum(m_squaredErrors));
}
}
if (!m_dontReplaceMissing) {
temp.append("\nMissing values globally replaced with mean/mode");
}
temp.append("\n\nCluster centroids:\n");
temp.append(pad("Cluster#", " ", (maxAttWidth + (maxWidth * 2 + 2)) - "Cluster#".length(), true));
temp.append("\n");
temp.append(pad("Attribute", " ", maxAttWidth - "Attribute".length(), false));
temp.append(pad("Full Data", " ", maxWidth + 1 - "Full Data".length(), true));
// cluster numbers
for (int i = 0; i < m_NumClusters; i++) {
String clustNum = "" + i;
temp.append(pad(clustNum, " ", maxWidth + 1 - clustNum.length(), true));
}
temp.append("\n");
// cluster sizes
String cSize = "(" + Utils.sum(m_ClusterSizes) + ")";
temp.append(pad(cSize, " ", maxAttWidth + maxWidth + 1 - cSize.length(), true));
for (int i = 0; i < m_NumClusters; i++) {
cSize = "(" + m_ClusterSizes[i] + ")";
temp.append(pad(cSize, " ",maxWidth + 1 - cSize.length(), true));
}
temp.append("\n");
temp.append(pad("", "=", maxAttWidth +
(maxWidth * (m_ClusterCentroids.numInstances()+1)
+ m_ClusterCentroids.numInstances() + 1), true));
temp.append("\n");
for (int i = 0; i < m_ClusterCentroids.numAttributes(); i++) {
String attName = m_ClusterCentroids.attribute(i).name();
temp.append(attName);
for (int j = 0; j < maxAttWidth - attName.length(); j++) {
temp.append(" ");
}
String strVal;
String valMeanMode;
// full data
if (m_ClusterCentroids.attribute(i).isNominal()) {
if (m_FullMeansOrMediansOrModes[i] == -1) { // missing
valMeanMode = pad("missing", " ", maxWidth + 1 - "missing".length(), true);
} else {
valMeanMode =
pad((strVal = m_ClusterCentroids.attribute(i).value((int)m_FullMeansOrMediansOrModes[i])),
" ", maxWidth + 1 - strVal.length(), true);
}
} else {
if (Double.isNaN(m_FullMeansOrMediansOrModes[i])) {
valMeanMode = pad("missing", " ", maxWidth + 1 - "missing".length(), true);
} else {
valMeanMode = pad((strVal = Utils.doubleToString(m_FullMeansOrMediansOrModes[i],
maxWidth,4).trim()),
" ", maxWidth + 1 - strVal.length(), true);
}
}
temp.append(valMeanMode);
for (int j = 0; j < m_NumClusters; j++) {
if (m_ClusterCentroids.attribute(i).isNominal()) {
if (m_ClusterCentroids.instance(j).isMissing(i)) {
valMeanMode = pad("missing", " ", maxWidth + 1 - "missing".length(), true);
} else {
valMeanMode =
pad((strVal = m_ClusterCentroids.attribute(i).value((int)m_ClusterCentroids.instance(j).value(i))),
" ", maxWidth + 1 - strVal.length(), true);
}
} else {
if (m_ClusterCentroids.instance(j).isMissing(i)) {
valMeanMode = pad("missing", " ", maxWidth + 1 - "missing".length(), true);
} else {
valMeanMode = pad((strVal = Utils.doubleToString(m_ClusterCentroids.instance(j).value(i),
maxWidth,4).trim()),
" ", maxWidth + 1 - strVal.length(), true);
}
}
temp.append(valMeanMode);
}
temp.append("\n");
if (m_displayStdDevs) {
// Std devs/max nominal
String stdDevVal = "";
if (m_ClusterCentroids.attribute(i).isNominal()) {
// Do the values of the nominal attribute
Attribute a = m_ClusterCentroids.attribute(i);
for (int j = 0; j < a.numValues(); j++) {
// full data
String val = " " + a.value(j);
temp.append(pad(val, " ", maxAttWidth + 1 - val.length(), false));
int count = m_FullNominalCounts[i][j];
int percent = (int)((double)m_FullNominalCounts[i][j] /
Utils.sum(m_ClusterSizes) * 100.0);
String percentS = "" + percent + "%)";
percentS = pad(percentS, " ", 5 - percentS.length(), true);
stdDevVal = "" + count + " (" + percentS;
stdDevVal =
pad(stdDevVal, " ", maxWidth + 1 - stdDevVal.length(), true);
temp.append(stdDevVal);
// Clusters
for (int k = 0; k < m_NumClusters; k++) {
count = m_ClusterNominalCounts[k][i][j];
percent = (int)((double)m_ClusterNominalCounts[k][i][j] /
m_ClusterSizes[k] * 100.0);
percentS = "" + percent + "%)";
percentS = pad(percentS, " ", 5 - percentS.length(), true);
stdDevVal = "" + count + " (" + percentS;
stdDevVal =
pad(stdDevVal, " ", maxWidth + 1 - stdDevVal.length(), true);
temp.append(stdDevVal);
}
temp.append("\n");
}
// missing (if any)
if (m_FullMissingCounts[i] > 0) {
// Full data
temp.append(pad(" missing", " ", maxAttWidth + 1 - " missing".length(), false));
int count = m_FullMissingCounts[i];
int percent = (int)((double)m_FullMissingCounts[i] /
Utils.sum(m_ClusterSizes) * 100.0);
String percentS = "" + percent + "%)";
percentS = pad(percentS, " ", 5 - percentS.length(), true);
stdDevVal = "" + count + " (" + percentS;
stdDevVal =
pad(stdDevVal, " ", maxWidth + 1 - stdDevVal.length(), true);
temp.append(stdDevVal);
// Clusters
for (int k = 0; k < m_NumClusters; k++) {
count = m_ClusterMissingCounts[k][i];
percent = (int)((double)m_ClusterMissingCounts[k][i] /
m_ClusterSizes[k] * 100.0);
percentS = "" + percent + "%)";
percentS = pad(percentS, " ", 5 - percentS.length(), true);
stdDevVal = "" + count + " (" + percentS;
stdDevVal =
pad(stdDevVal, " ", maxWidth + 1 - stdDevVal.length(), true);
temp.append(stdDevVal);
}
temp.append("\n");
}
temp.append("\n");
} else {
// Full data
if (Double.isNaN(m_FullMeansOrMediansOrModes[i])) {
stdDevVal = pad("--", " ", maxAttWidth + maxWidth + 1 - 2, true);
} else {
stdDevVal = pad((strVal = plusMinus
+ Utils.doubleToString(m_FullStdDevs[i],
maxWidth,4).trim()),
" ", maxWidth + maxAttWidth + 1 - strVal.length(), true);
}
temp.append(stdDevVal);
// Clusters
for (int j = 0; j < m_NumClusters; j++) {
if (m_ClusterCentroids.instance(j).isMissing(i)) {
stdDevVal = pad("--", " ", maxWidth + 1 - 2, true);
} else {
stdDevVal =
pad((strVal = plusMinus
+ Utils.doubleToString(m_ClusterStdDevs.instance(j).value(i),
maxWidth,4).trim()),
" ", maxWidth + 1 - strVal.length(), true);
}
temp.append(stdDevVal);
}
temp.append("\n\n");
}
}
}
temp.append("\n\n");
return temp.toString();
}
private String pad(String source, String padChar,
int length, boolean leftPad) {
StringBuffer temp = new StringBuffer();
if (leftPad) {
for (int i = 0; i< length; i++) {
temp.append(padChar);
}
temp.append(source);
} else {
temp.append(source);
for (int i = 0; i< length; i++) {
temp.append(padChar);
}
}
return temp.toString();
}
/**
* Gets the the cluster centroids.
*
* @return the cluster centroids
*/
public Instances getClusterCentroids() {
return m_ClusterCentroids;
}
/**
* Gets the standard deviations of the numeric attributes in each cluster.
*
* @return the standard deviations of the numeric attributes
* in each cluster
*/
public Instances getClusterStandardDevs() {
return m_ClusterStdDevs;
}
/**
* Returns for each cluster the frequency counts for the values of each
* nominal attribute.
*
* @return the counts
*/
public int[][][] getClusterNominalCounts() {
return m_ClusterNominalCounts;
}
/**
* Gets the squared error for all clusters.
*
* @return the squared error, NaN if fast distance calculation is
* used
* @see #m_FastDistanceCalc
*/
public double getSquaredError() {
if (m_FastDistanceCalc)
return Double.NaN;
else
return Utils.sum(m_squaredErrors);
}
/**
* Gets the number of instances in each cluster.
*
* @return The number of instances in each cluster
*/
public int[] getClusterSizes() {
return m_ClusterSizes;
}
/**
* Gets the assignments for each instance.
* @return Array of indexes of the centroid assigned to each instance
* @throws Exception if order of instances wasn't preserved or no assignments were made
*/
public int[] getAssignments() throws Exception{
if (!m_PreserveOrder) {
throw new Exception("The assignments are only available when order of instances is preserved (-O)");
}
if (m_Assignments == null) {
throw new Exception("No assignments made.");
}
return m_Assignments;
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 7282 $");
}
/**
* Main method for executing this class.
*
* @param args use -h to list all parameters
*/
public static void main (String[] args) {
runClusterer(new SimpleKMeans(), args);
}
}