package edu.stanford.nlp.sequences;
import edu.stanford.nlp.util.Beam;
import edu.stanford.nlp.util.Scored;
import edu.stanford.nlp.util.ScoredComparator;
import java.util.Iterator;
import java.util.NoSuchElementException;
/**
* A class capable of computing the best sequence given a SequenceModel.
* Uses beam search.
*
* @author Dan Klein
* @author Teg Grenager (grenager@stanford.edu)
*/
public class BeamBestSequenceFinder implements BestSequenceFinder {
// todo [CDM 2013]: AFAICS, this class doesn't actually work correctly AND gives nondeterministic answers. See the commented out test in BestSequenceFinderTest
private static int[] tmp = null;
private static class TagSeq implements Scored {
private static class TagList {
int tag = -1;
TagList last = null;
}
private double score = 0.0;
public double score() {
return score;
}
private int size = 0;
public int size() {
return size;
}
private TagList info = null;
public int[] tmpTags(int count, int s) {
if (tmp == null || tmp.length < s) {
//tmp = new int[1024*128];
tmp = new int[s];
}
TagList tl = info;
int i = size() - 1;
while (tl != null && count >= 0) {
tmp[i] = tl.tag;
i--;
count--;
tl = tl.last;
}
return tmp;
}
public int[] tags() {
int[] t = new int[size()];
int i = size() - 1;
for (TagList tl = info; tl != null; tl = tl.last) {
t[i] = tl.tag;
i--;
}
return t;
}
public void extendWith(int tag) {
TagList last = info;
info = new TagList();
info.tag = tag;
info.last = last;
size++;
}
public void extendWith(int tag, SequenceModel ts, int s) {
extendWith(tag);
int[] tags = tmpTags(ts.leftWindow() + 1 + ts.rightWindow(), s);
score += ts.scoreOf(tags, size() - ts.rightWindow() - 1);
//for (int i=0; i<tags.length; i++)
//System.out.print(tags[i]+" ");
//System.out.println("\nWith "+tag+" score was "+score);
}
public TagSeq tclone() {
TagSeq o = new TagSeq();
o.info = info;
o.size = size;
o.score = score;
return o;
}
} // end class TagSeq
private int beamSize;
private boolean exhaustiveStart;
private boolean recenter = true;
public int[] bestSequence(SequenceModel ts) {
return bestSequence(ts, (1024 * 128));
}
public int[] bestSequence(SequenceModel ts, int size) {
// Set up tag options
int length = ts.length();
int leftWindow = ts.leftWindow();
int rightWindow = ts.rightWindow();
int padLength = length + leftWindow + rightWindow;
int[][] tags = new int[padLength][];
int[] tagNum = new int[padLength];
for (int pos = 0; pos < padLength; pos++) {
tags[pos] = ts.getPossibleValues(pos);
tagNum[pos] = tags[pos].length;
}
Beam newBeam = new Beam(beamSize, ScoredComparator.ASCENDING_COMPARATOR);
TagSeq initSeq = new TagSeq();
newBeam.add(initSeq);
for (int pos = 0; pos < padLength; pos++) {
//System.out.println("scoring word " + pos + " / " + (leftWindow + length) + ", tagNum = " + tagNum[pos] + "...");
//System.out.flush();
Beam oldBeam = newBeam;
if (pos < leftWindow + rightWindow && exhaustiveStart) {
newBeam = new Beam(100000, ScoredComparator.ASCENDING_COMPARATOR);
} else {
newBeam = new Beam(beamSize, ScoredComparator.ASCENDING_COMPARATOR);
}
// each hypothesis gets extended and beamed
for (Iterator beamI = oldBeam.iterator(); beamI.hasNext();) {
// System.out.print("#"); System.out.flush();
TagSeq tagSeq = (TagSeq) beamI.next();
for (int nextTagNum = 0; nextTagNum < tagNum[pos]; nextTagNum++) {
TagSeq nextSeq = tagSeq.tclone();
if (pos >= leftWindow + rightWindow) {
nextSeq.extendWith(tags[pos][nextTagNum], ts, size);
} else {
nextSeq.extendWith(tags[pos][nextTagNum]);
}
//System.out.println("Created: "+nextSeq.score()+" %% "+arrayToString(nextSeq.tags(), nextSeq.size()));
newBeam.add(nextSeq);
// System.out.println("Beam size: "+newBeam.size()+" of "+beamSize);
//System.out.println("Best is: "+((Scored)newBeam.iterator().next()).score());
}
}
// System.out.println(" done");
if (recenter) {
double max = Double.NEGATIVE_INFINITY;
for (Iterator beamI = newBeam.iterator(); beamI.hasNext();) {
TagSeq tagSeq = (TagSeq) beamI.next();
if (tagSeq.score > max) {
max = tagSeq.score;
}
}
for (Iterator beamI = newBeam.iterator(); beamI.hasNext();) {
TagSeq tagSeq = (TagSeq) beamI.next();
tagSeq.score -= max;
}
}
}
try {
TagSeq bestSeq = (TagSeq) newBeam.iterator().next();
int[] seq = bestSeq.tags();
return seq;
} catch (NoSuchElementException e) {
System.err.println("Beam empty -- no best sequence.");
return null;
}
/*
int[] tempTags = new int[padLength];
// Set up product space sizes
int[] productSizes = new int[padLength];
int curProduct = 1;
for (int i=0; i<leftWindow+rightWindow; i++)
curProduct *= tagNum[i];
for (int pos = leftWindow+rightWindow; pos < padLength; pos++) {
if (pos > leftWindow+rightWindow)
curProduct /= tagNum[pos-leftWindow-rightWindow-1]; // shift off
curProduct *= tagNum[pos]; // shift on
productSizes[pos-rightWindow] = curProduct;
}
// Score all of each window's options
double[][] windowScore = new double[padLength][];
for (int pos=leftWindow; pos<leftWindow+length; pos++) {
windowScore[pos] = new double[productSizes[pos]];
Arrays.fill(tempTags,tags[0][0]);
for (int product=0; product<productSizes[pos]; product++) {
int p = product;
int shift = 1;
for (int curPos = pos+rightWindow; curPos >= pos-leftWindow; curPos--) {
tempTags[curPos] = tags[curPos][p % tagNum[curPos]];
p /= tagNum[curPos];
if (curPos > pos)
shift *= tagNum[curPos];
}
if (tempTags[pos] == tags[pos][0]) {
// get all tags at once
double[] scores = ts.scoresOf(tempTags, pos);
// fill in the relevant windowScores
for (int t = 0; t < tagNum[pos]; t++) {
windowScore[pos][product+t*shift] = scores[t];
}
}
}
}
// Set up score and backtrace arrays
double[][] score = new double[padLength][];
int[][] trace = new int[padLength][];
for (int pos=0; pos<padLength; pos++) {
score[pos] = new double[productSizes[pos]];
trace[pos] = new int[productSizes[pos]];
}
// Do forward Viterbi algorithm
// loop over the classification spot
//System.err.println();
for (int pos=leftWindow; pos<length+leftWindow; pos++) {
//System.err.print(".");
// loop over window product types
for (int product=0; product<productSizes[pos]; product++) {
// check for initial spot
if (pos==leftWindow) {
// no predecessor type
score[pos][product] = windowScore[pos][product];
trace[pos][product] = -1;
} else {
// loop over possible predecessor types
score[pos][product] = Double.NEGATIVE_INFINITY;
trace[pos][product] = -1;
int sharedProduct = product / tagNum[pos+rightWindow];
int factor = productSizes[pos] / tagNum[pos+rightWindow];
for (int newTagNum=0; newTagNum<tagNum[pos-leftWindow-1]; newTagNum++) {
int predProduct = newTagNum*factor+sharedProduct;
double predScore = score[pos-1][predProduct]+windowScore[pos][product];
if (predScore > score[pos][product]) {
score[pos][product] = predScore;
trace[pos][product] = predProduct;
}
}
}
}
}
// Project the actual tag sequence
double bestFinalScore = Double.NEGATIVE_INFINITY;
int bestCurrentProduct = -1;
for (int product=0; product<productSizes[leftWindow+length-1]; product++) {
if (score[leftWindow+length-1][product] > bestFinalScore) {
bestCurrentProduct = product;
bestFinalScore = score[leftWindow+length-1][product];
}
}
int lastProduct = bestCurrentProduct;
for (int last=padLength-1; last>=length-1; last--) {
tempTags[last] = tags[last][lastProduct % tagNum[last]];
lastProduct /= tagNum[last];
}
for (int pos=leftWindow+length-2; pos>=leftWindow; pos--) {
int bestNextProduct = bestCurrentProduct;
bestCurrentProduct = trace[pos+1][bestNextProduct];
tempTags[pos-leftWindow] = tags[pos-leftWindow][bestCurrentProduct / (productSizes[pos]/tagNum[pos-leftWindow])];
}
return tempTags;
*/
}
/*
public int[] bestSequenceOld(TagScorer ts) {
// Set up tag options
int length = ts.length();
int leftWindow = ts.leftWindow();
int rightWindow = ts.rightWindow();
int padLength = length+leftWindow+rightWindow;
int[][] tags = new int[padLength][];
int[] tagNum = new int[padLength];
for (int pos = 0; pos < padLength; pos++) {
tags[pos] = ts.tagsAt(pos);
tagNum[pos] = tags[pos].length;
}
int[] tempTags = new int[padLength];
// Set up product space sizes
int[] productSizes = new int[padLength];
int curProduct = 1;
for (int i=0; i<leftWindow+rightWindow; i++)
curProduct *= tagNum[i];
for (int pos = leftWindow+rightWindow; pos < padLength; pos++) {
if (pos > leftWindow+rightWindow)
curProduct /= tagNum[pos-leftWindow-rightWindow-1]; // shift off
curProduct *= tagNum[pos]; // shift on
productSizes[pos-rightWindow] = curProduct;
}
// Score all of each window's options
double[][] windowScore = new double[padLength][];
for (int pos=leftWindow; pos<leftWindow+length; pos++) {
windowScore[pos] = new double[productSizes[pos]];
Arrays.fill(tempTags,tags[0][0]);
for (int product=0; product<productSizes[pos]; product++) {
int p = product;
for (int curPos = pos+rightWindow; curPos >= pos-leftWindow; curPos--) {
tempTags[curPos] = tags[curPos][p % tagNum[curPos]];
p /= tagNum[curPos];
}
windowScore[pos][product] = ts.scoreOf(tempTags, pos);
}
}
// Set up score and backtrace arrays
double[][] score = new double[padLength][];
int[][] trace = new int[padLength][];
for (int pos=0; pos<padLength; pos++) {
score[pos] = new double[productSizes[pos]];
trace[pos] = new int[productSizes[pos]];
}
// Do forward Viterbi algorithm
// loop over the classification spot
//System.err.println();
for (int pos=leftWindow; pos<length+leftWindow; pos++) {
//System.err.print(".");
// loop over window product types
for (int product=0; product<productSizes[pos]; product++) {
// check for initial spot
if (pos==leftWindow) {
// no predecessor type
score[pos][product] = windowScore[pos][product];
trace[pos][product] = -1;
} else {
// loop over possible predecessor types
score[pos][product] = Double.NEGATIVE_INFINITY;
trace[pos][product] = -1;
int sharedProduct = product / tagNum[pos+rightWindow];
int factor = productSizes[pos] / tagNum[pos+rightWindow];
for (int newTagNum=0; newTagNum<tagNum[pos-leftWindow-1]; newTagNum++) {
int predProduct = newTagNum*factor+sharedProduct;
double predScore = score[pos-1][predProduct]+windowScore[pos][product];
if (predScore > score[pos][product]) {
score[pos][product] = predScore;
trace[pos][product] = predProduct;
}
}
}
}
}
// Project the actual tag sequence
double bestFinalScore = Double.NEGATIVE_INFINITY;
int bestCurrentProduct = -1;
for (int product=0; product<productSizes[leftWindow+length-1]; product++) {
if (score[leftWindow+length-1][product] > bestFinalScore) {
bestCurrentProduct = product;
bestFinalScore = score[leftWindow+length-1][product];
}
}
int lastProduct = bestCurrentProduct;
for (int last=padLength-1; last>=length-1; last--) {
tempTags[last] = tags[last][lastProduct % tagNum[last]];
lastProduct /= tagNum[last];
}
for (int pos=leftWindow+length-2; pos>=leftWindow; pos--) {
int bestNextProduct = bestCurrentProduct;
bestCurrentProduct = trace[pos+1][bestNextProduct];
tempTags[pos-leftWindow] = tags[pos-leftWindow][bestCurrentProduct / (productSizes[pos]/tagNum[pos-leftWindow])];
}
return tempTags;
}
*/
public BeamBestSequenceFinder(int beamSize) {
this(beamSize, false, false);
}
public BeamBestSequenceFinder(int beamSize, boolean exhaustiveStart) {
this(beamSize, exhaustiveStart, false);
}
public BeamBestSequenceFinder(int beamSize, boolean exhaustiveStart, boolean recenter) {
this.exhaustiveStart = exhaustiveStart;
this.beamSize = beamSize;
this.recenter = recenter;
}
}