Package edu.stanford.nlp.pipeline

Source Code of edu.stanford.nlp.pipeline.RegexNERAnnotatorITest

package edu.stanford.nlp.pipeline;

import edu.stanford.nlp.ling.Sentence;
import junit.framework.TestCase;

import java.util.ArrayList;
import java.util.List;

import edu.stanford.nlp.ling.CoreAnnotations;
import edu.stanford.nlp.ling.CoreLabel;
import edu.stanford.nlp.util.ArrayCoreMap;
import edu.stanford.nlp.util.CoreMap;

/** @author jtibs */
public class RegexNERAnnotatorITest extends TestCase {
  private static final String MAPPING = "/u/nlp/data/TAC-KBP2010/sentence_extraction/itest_map";
  private static RegexNERAnnotator annotator;

  @Override
  public void setUp() throws Exception {
    synchronized(RegexNERAnnotator.class) {
      if (annotator == null) {
        annotator = new RegexNERAnnotator(MAPPING, false, null);
      }
    }
  }

  /**
   * Helper method, checks that each token is tagged with the expected NER type.
   */
  private static void checkTags(List<CoreLabel> tokens, String ... tags) {
    assertEquals(tags.length, tokens.size());
    for (int i = 0; i < tags.length; ++i) {
      assertEquals("Mismatch for token " + i + " " + tokens.get(i),
                   tags[i], tokens.get(i).get(CoreAnnotations.NamedEntityTagAnnotation.class));
    }
  }

  public void testBasicMatching() {
    String str = "President Barack Obama lives in Chicago , Illinois , " +
    "and is a practicing Christian .";
    String[] split = str.split(" ");

    List<CoreLabel> tokens = Sentence.toCoreLabelList(split);
    tokens.get(1).set(CoreAnnotations.NamedEntityTagAnnotation.class, "PERSON");
    tokens.get(2).set(CoreAnnotations.NamedEntityTagAnnotation.class, "PERSON");
    tokens.get(5).set(CoreAnnotations.NamedEntityTagAnnotation.class, "LOCATION");
    tokens.get(7).set(CoreAnnotations.NamedEntityTagAnnotation.class, "LOCATION");

    CoreMap sentence = new ArrayCoreMap();
    sentence.set(CoreAnnotations.TokensAnnotation.class, tokens);

    List<CoreMap> sentences = new ArrayList<CoreMap>();
    sentences.add(sentence);

    Annotation corpus = new Annotation("President Barack Obama lives in Chicago, Illinois," +
        "and is a practicing Christian.");
    corpus.set(CoreAnnotations.SentencesAnnotation.class, sentences);

    annotator.annotate(corpus);

    checkTags(tokens, "TITLE", "PERSON", "PERSON", "O", "O", "LOCATION", "O", "STATE_OR_PROVINCE",
        "O", "O", "O", "O", "O", "IDEOLOGY", "O");
  }

  /**
   * Neither the LOCATION nor the ORGANIZATION tags should be overridden, since both
   * Ontario (STATE_OR_PROVINCE) and American (NATIONALITY) do not span the entire
   * phrase that is NamedEntityTag-annotated.
   */
  public void testOverwrite() {
    String str = "I like Ontario Place , and I like the Native American Church , too .";
    String[] split = str.split(" ");

    List<CoreLabel> tokens = Sentence.toCoreLabelList(split);
    tokens.get(2).set(CoreAnnotations.NamedEntityTagAnnotation.class, "LOCATION");
    tokens.get(3).set(CoreAnnotations.NamedEntityTagAnnotation.class, "LOCATION");
    tokens.get(9).set(CoreAnnotations.NamedEntityTagAnnotation.class, "ORGANIZATION");
    tokens.get(10).set(CoreAnnotations.NamedEntityTagAnnotation.class, "ORGANIZATION");
    tokens.get(11).set(CoreAnnotations.NamedEntityTagAnnotation.class, "ORGANIZATION");

    CoreMap sentence = new ArrayCoreMap();
    sentence.set(CoreAnnotations.TokensAnnotation.class, tokens);

    List<CoreMap> sentences = new ArrayList<CoreMap>();
    sentences.add(sentence);

    Annotation corpus = new Annotation("I like Ontario Place, and I like the Native" +
        "American Church, too.");
    corpus.set(CoreAnnotations.SentencesAnnotation.class, sentences);

    annotator.annotate(corpus);

    checkTags(tokens, "O", "O", "LOCATION", "LOCATION", "O", "O", "O", "O", "O", "ORGANIZATION",
        "ORGANIZATION", "ORGANIZATION", "O", "O", "O");
  }

  /**
   * In the mapping file, Christianity is assigned a higher priority than Early Christianity,
   * and so Early should not be marked as RELIGION.
   */
  public void testPriority() {
    String str = "Christianity is of higher regex priority than Early Christianity . ";
    String[] split = str.split(" ");

    List<CoreLabel> tokens = Sentence.toCoreLabelList(split);

    CoreMap sentence = new ArrayCoreMap();
    sentence.set(CoreAnnotations.TokensAnnotation.class, tokens);

    List<CoreMap> sentences = new ArrayList<CoreMap>();
    sentences.add(sentence);

    Annotation corpus = new Annotation("Christianity is of higher regex priority than Early " +
        "Christianity. ");
    corpus.set(CoreAnnotations.SentencesAnnotation.class, sentences);

    annotator.annotate(corpus);

    checkTags(tokens, "RELIGION", "O", "O", "O", "O", "O", "O", "O", "RELIGION", "O");
  }


  /**
   * Test that if there are no annotations at all, the annotator
   * throws an exception.  We are happy if we can catch an exception
   * and continue, and if we don't get any exceptions, we throw an
   * exception of our own.
   */
  public void testEmptyAnnotation() {
    try {
      annotator.annotate(new Annotation(""));
    } catch(RuntimeException e) {
      return;
    }
    fail("Never expected to get this far... the annotator should have thrown an exception by now");
  }

}
TOP

Related Classes of edu.stanford.nlp.pipeline.RegexNERAnnotatorITest

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.