/*
**********************************************************************
* Copyright (c) 2001-2011, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
*/
package com.ibm.icu.text;
import java.text.ParsePosition;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import com.ibm.icu.impl.IllegalIcuArgumentException;
import com.ibm.icu.impl.PatternProps;
import com.ibm.icu.impl.Utility;
import com.ibm.icu.lang.UCharacter;
import com.ibm.icu.text.RuleBasedTransliterator.Data;
@SuppressWarnings("deprecation")
class TransliteratorParser {
//----------------------------------------------------------------------
// Data members
//----------------------------------------------------------------------
/**
* PUBLIC data member. A Vector of RuleBasedTransliterator.Data objects, one for each discrete group of rules in the rule set
*/
public List<Data> dataVector;
/**
* PUBLIC data member. A Vector of Strings containing all of the ID blocks in the rule set
*/
public List<String> idBlockVector;
/**
* The current data object for which we are parsing rules
*/
private Data curData;
/**
* PUBLIC data member containing the parsed compound filter, if any.
*/
public UnicodeSet compoundFilter;
private int direction;
/**
* Temporary symbol table used during parsing.
*/
private ParseData parseData;
/**
* Temporary vector of set variables. When parsing is complete, this is copied into the array data.variables. As with data.variables,
* element 0 corresponds to character data.variablesBase.
*/
private List<Object> variablesVector;
/**
* Temporary table of variable names. When parsing is complete, this is copied into data.variableNames.
*/
private Map<String, char[]> variableNames;
/**
* String of standins for segments. Used during the parsing of a single rule. segmentStandins.charAt(0) is the standin for "$1" and
* corresponds to StringMatcher object segmentObjects.elementAt(0), etc.
*/
private StringBuffer segmentStandins;
/**
* Vector of StringMatcher objects for segments. Used during the parsing of a single rule. segmentStandins.charAt(0) is the standin for
* "$1" and corresponds to StringMatcher object segmentObjects.elementAt(0), etc.
*/
private List<StringMatcher> segmentObjects;
/**
* The next available stand-in for variables. This starts at some point in the private use area (discovered dynamically) and increments
* up toward <code>variableLimit</code>. At any point during parsing, available variables are <code>variableNext..variableLimit-1</code>
* .
*/
private char variableNext;
/**
* The last available stand-in for variables. This is discovered dynamically. At any point during parsing, available variables are
* <code>variableNext..variableLimit-1</code>. During variable definition we use the special value variableLimit-1 as a placeholder.
*/
private char variableLimit;
/**
* When we encounter an undefined variable, we do not immediately signal an error, in case we are defining this variable, e.g.,
* "$a = [a-z];". Instead, we save the name of the undefined variable, and substitute in the placeholder char variableLimit - 1, and
* decrement variableLimit.
*/
private String undefinedVariableName;
/**
* The stand-in character for the 'dot' set, represented by '.' in patterns. This is allocated the first time it is needed, and reused
* thereafter.
*/
private int dotStandIn = -1;
//----------------------------------------------------------------------
// Constants
//----------------------------------------------------------------------
// Indicator for ID blocks
private static final String ID_TOKEN = "::";
private static final int ID_TOKEN_LEN = 2;
/*
(reserved for future expansion)
// markers for beginning and end of rule groups
private static final String BEGIN_TOKEN = "BEGIN";
private static final String END_TOKEN = "END";
*/
// Operators
private static final char VARIABLE_DEF_OP = '=';
private static final char FORWARD_RULE_OP = '>';
private static final char REVERSE_RULE_OP = '<';
private static final char FWDREV_RULE_OP = '~'; // internal rep of <> op
private static final String OPERATORS = "=><\u2190\u2192\u2194";
private static final String HALF_ENDERS = "=><\u2190\u2192\u2194;";
// Other special characters
private static final char QUOTE = '\'';
private static final char ESCAPE = '\\';
private static final char END_OF_RULE = ';';
private static final char RULE_COMMENT_CHAR = '#';
private static final char CONTEXT_ANTE = '{'; // ante{key
private static final char CONTEXT_POST = '}'; // key}post
private static final char CURSOR_POS = '|';
private static final char CURSOR_OFFSET = '@';
private static final char ANCHOR_START = '^';
private static final char KLEENE_STAR = '*';
private static final char ONE_OR_MORE = '+';
private static final char ZERO_OR_ONE = '?';
private static final char DOT = '.';
private static final String DOT_SET = "[^[:Zp:][:Zl:]\\r\\n$]";
// By definition, the ANCHOR_END special character is a
// trailing SymbolTable.SYMBOL_REF character.
// private static final char ANCHOR_END = '$';
// Segments of the input string are delimited by "(" and ")". In the
// output string these segments are referenced as "$1", "$2", etc.
private static final char SEGMENT_OPEN = '(';
private static final char SEGMENT_CLOSE = ')';
// A function is denoted &Source-Target/Variant(text)
private static final char FUNCTION = '&';
// Aliases for some of the syntax characters. These are provided so
// transliteration rules can be expressed in XML without clashing with
// XML syntax characters '<', '>', and '&'.
private static final char ALT_REVERSE_RULE_OP = '\u2190'; // Left Arrow
private static final char ALT_FORWARD_RULE_OP = '\u2192'; // Right Arrow
private static final char ALT_FWDREV_RULE_OP = '\u2194'; // Left Right Arrow
private static final char ALT_FUNCTION = '\u2206'; // Increment (~Greek Capital Delta)
// Special characters disallowed at the top level
private static UnicodeSet ILLEGAL_TOP = new UnicodeSet("[\\)]");
// Special characters disallowed within a segment
private static UnicodeSet ILLEGAL_SEG = new UnicodeSet("[\\{\\}\\|\\@]");
// Special characters disallowed within a function argument
private static UnicodeSet ILLEGAL_FUNC = new UnicodeSet("[\\^\\(\\.\\*\\+\\?\\{\\}\\|\\@]");
//----------------------------------------------------------------------
// class ParseData
//----------------------------------------------------------------------
/**
* This class implements the SymbolTable interface. It is used during parsing to give UnicodeSet access to variables that have been
* defined so far. Note that it uses variablesVector, _not_ data.variables.
*/
private class ParseData implements SymbolTable {
/**
* Implement SymbolTable API.
*/
public char[] lookup(final String name) {
return variableNames.get(name);
}
/**
* Implement SymbolTable API.
*/
public UnicodeMatcher lookupMatcher(final int ch) {
// Note that we cannot use data.lookup() because the
// set array has not been constructed yet.
int i = ch - curData.variablesBase;
if (i >= 0 && i < variablesVector.size()) {
return (UnicodeMatcher) variablesVector.get(i);
}
return null;
}
/**
* Implement SymbolTable API. Parse out a symbol reference name.
*/
public String parseReference(final String text, final ParsePosition pos, final int limit) {
int start = pos.getIndex();
int i = start;
while (i < limit) {
char c = text.charAt(i);
if ((i == start && !UCharacter.isUnicodeIdentifierStart(c)) || !UCharacter.isUnicodeIdentifierPart(c)) {
break;
}
++i;
}
if (i == start) { // No valid name chars
return null;
}
pos.setIndex(i);
return text.substring(start, i);
}
/**
* Return true if the given character is a matcher standin or a plain character (non standin).
*/
public boolean isMatcher(final int ch) {
// Note that we cannot use data.lookup() because the
// set array has not been constructed yet.
int i = ch - curData.variablesBase;
if (i >= 0 && i < variablesVector.size()) {
return variablesVector.get(i) instanceof UnicodeMatcher;
}
return true;
}
/**
* Return true if the given character is a replacer standin or a plain character (non standin).
*/
public boolean isReplacer(final int ch) {
// Note that we cannot use data.lookup() because the
// set array has not been constructed yet.
int i = ch - curData.variablesBase;
if (i >= 0 && i < variablesVector.size()) {
return variablesVector.get(i) instanceof UnicodeReplacer;
}
return true;
}
}
//----------------------------------------------------------------------
// classes RuleBody, RuleArray, and RuleReader
//----------------------------------------------------------------------
/**
* A private abstract class representing the interface to rule source code that is broken up into lines. Handles the folding of lines
* terminated by a backslash. This folding is limited; it does not account for comments, quotes, or escapes, so its use to be limited.
*/
private static abstract class RuleBody {
/**
* Retrieve the next line of the source, or return null if none. Folds lines terminated by a backslash into the next line, without
* regard for comments, quotes, or escapes.
*/
String nextLine() {
String s = handleNextLine();
if (s != null && s.length() > 0 && s.charAt(s.length() - 1) == '\\') {
StringBuilder b = new StringBuilder(s);
do {
b.deleteCharAt(b.length() - 1);
s = handleNextLine();
if (s == null) {
break;
}
b.append(s);
} while (s.length() > 0 && s.charAt(s.length() - 1) == '\\');
s = b.toString();
}
return s;
}
/**
* Reset to the first line of the source.
*/
abstract void reset();
/**
* Subclass method to return the next line of the source.
*/
abstract String handleNextLine();
}
/**
* RuleBody subclass for a String[] array.
*/
private static class RuleArray extends RuleBody {
String[] array;
int i;
public RuleArray(final String[] array) {
this.array = array;
i = 0;
}
@Override
public String handleNextLine() {
return (i < array.length) ? array[i++] : null;
}
@Override
public void reset() {
i = 0;
}
}
/*
* RuleBody subclass for a ResourceReader.
*/
/* private static class RuleReader extends RuleBody {
ResourceReader reader;
public RuleReader(ResourceReader reader) { this.reader = reader; }
public String handleNextLine() {
try {
return reader.readLine();
} catch (java.io.IOException e) {}
return null;
}
public void reset() {
reader.reset();
}
}*/
//----------------------------------------------------------------------
// class RuleHalf
//----------------------------------------------------------------------
/**
* A class representing one side of a rule. This class knows how to parse half of a rule. It is tightly coupled to the method
* TransliteratorParser.parseRule().
*/
private static class RuleHalf {
public String text;
public int cursor = -1; // position of cursor in text
public int ante = -1; // position of ante context marker '{' in text
public int post = -1; // position of post context marker '}' in text
// Record the offset to the cursor either to the left or to the
// right of the key. This is indicated by characters on the output
// side that allow the cursor to be positioned arbitrarily within
// the matching text. For example, abc{def} > | @@@ xyz; changes
// def to xyz and moves the cursor to before abc. Offset characters
// must be at the start or end, and they cannot move the cursor past
// the ante- or postcontext text. Placeholders are only valid in
// output text. The length of the ante and post context is
// determined at runtime, because of supplementals and quantifiers.
public int cursorOffset = 0; // only nonzero on output side
// Position of first CURSOR_OFFSET on _right_. This will be -1
// for |@, -2 for |@@, etc., and 1 for @|, 2 for @@|, etc.
private int cursorOffsetPos = 0;
public boolean anchorStart = false;
public boolean anchorEnd = false;
/**
* The segment number from 1..n of the next '(' we see during parsing; 1-based.
*/
private int nextSegmentNumber = 1;
/**
* Parse one side of a rule, stopping at either the limit, the END_OF_RULE character, or an operator.
*
* @return the index after the terminating character, or if limit was reached, limit
*/
public int parse(final String rule, int pos, final int limit, final TransliteratorParser parser) {
int start = pos;
StringBuffer buf = new StringBuffer();
pos = parseSection(rule, pos, limit, parser, buf, ILLEGAL_TOP, false);
text = buf.toString();
if (cursorOffset > 0 && cursor != cursorOffsetPos) {
syntaxError("Misplaced " + CURSOR_POS, rule, start);
}
return pos;
}
/**
* Parse a section of one side of a rule, stopping at either the limit, the END_OF_RULE character, an operator, or a segment close
* character. This method parses both a top-level rule half and a segment within such a rule half. It calls itself recursively to
* parse segments and nested segments.
*
* @param buf
* buffer into which to accumulate the rule pattern characters, either literal characters from the rule or standins for
* UnicodeMatcher objects including segments.
* @param illegal
* the set of special characters that is illegal during this parse.
* @param isSegment
* if true, then we've already seen a '(' and pos on entry points right after it. Accumulate everything up to the closing
* ')', put it in a segment matcher object, generate a standin for it, and add the standin to buf. As a side effect,
* update the segments vector with a reference to the segment matcher. This works recursively for nested segments. If
* isSegment is false, just accumulate characters into buf.
* @return the index after the terminating character, or if limit was reached, limit
*/
private int parseSection(final String rule, int pos, final int limit, final TransliteratorParser parser, final StringBuffer buf,
final UnicodeSet illegal, final boolean isSegment) {
int start = pos;
ParsePosition pp = null;
int quoteStart = -1; // Most recent 'single quoted string'
int quoteLimit = -1;
int varStart = -1; // Most recent $variableReference
int varLimit = -1;
int[] iref = new int[1];
int bufStart = buf.length();
main: while (pos < limit) {
// Since all syntax characters are in the BMP, fetching
// 16-bit code units suffices here.
char c = rule.charAt(pos++);
if (PatternProps.isWhiteSpace(c)) {
continue;
}
// HALF_ENDERS is all chars that end a rule half: "<>=;"
if (HALF_ENDERS.indexOf(c) >= 0) {
///CLOVER:OFF
// isSegment is always false
if (isSegment) {
syntaxError("Unclosed segment", rule, start);
}
///CLOVER:ON
break main;
}
if (anchorEnd) {
// Text after a presumed end anchor is a syntax err
syntaxError("Malformed variable reference", rule, start);
}
if (UnicodeSet.resemblesPattern(rule, pos - 1)) {
if (pp == null) {
pp = new ParsePosition(0);
}
pp.setIndex(pos - 1); // Backup to opening '['
buf.append(parser.parseSet(rule, pp));
pos = pp.getIndex();
continue;
}
// Handle escapes
if (c == ESCAPE) {
if (pos == limit) {
syntaxError("Trailing backslash", rule, start);
}
iref[0] = pos;
int escaped = Utility.unescapeAt(rule, iref);
pos = iref[0];
if (escaped == -1) {
syntaxError("Malformed escape", rule, start);
}
parser.checkVariableRange(escaped, rule, start);
UTF16.append(buf, escaped);
continue;
}
// Handle quoted matter
if (c == QUOTE) {
int iq = rule.indexOf(QUOTE, pos);
if (iq == pos) {
buf.append(c); // Parse [''] outside quotes as [']
++pos;
} else {
/* This loop picks up a run of quoted text of the
* form 'aaaa' each time through. If this run
* hasn't really ended ('aaaa''bbbb') then it keeps
* looping, each time adding on a new run. When it
* reaches the final quote it breaks.
*/
quoteStart = buf.length();
for (;;) {
if (iq < 0) {
syntaxError("Unterminated quote", rule, start);
}
buf.append(rule.substring(pos, iq));
pos = iq + 1;
if (pos < limit && rule.charAt(pos) == QUOTE) {
// Parse [''] inside quotes as [']
iq = rule.indexOf(QUOTE, pos + 1);
// Continue looping
} else {
break;
}
}
quoteLimit = buf.length();
for (iq = quoteStart; iq < quoteLimit; ++iq) {
parser.checkVariableRange(buf.charAt(iq), rule, start);
}
}
continue;
}
parser.checkVariableRange(c, rule, start);
if (illegal.contains(c)) {
syntaxError("Illegal character '" + c + '\'', rule, start);
}
switch (c) {
//------------------------------------------------------
// Elements allowed within and out of segments
//------------------------------------------------------
case ANCHOR_START:
if (buf.length() == 0 && !anchorStart) {
anchorStart = true;
} else {
syntaxError("Misplaced anchor start", rule, start);
}
break;
case SEGMENT_OPEN: {
// bufSegStart is the offset in buf to the first
// character of the segment we are parsing.
int bufSegStart = buf.length();
// Record segment number now, since nextSegmentNumber
// will be incremented during the call to parseSection
// if there are nested segments.
int segmentNumber = nextSegmentNumber++; // 1-based
// Parse the segment
pos = parseSection(rule, pos, limit, parser, buf, ILLEGAL_SEG, true);
// After parsing a segment, the relevant characters are
// in buf, starting at offset bufSegStart. Extract them
// into a string matcher, and replace them with a
// standin for that matcher.
StringMatcher m = new StringMatcher(buf.substring(bufSegStart), segmentNumber, parser.curData);
// Record and associate object and segment number
parser.setSegmentObject(segmentNumber, m);
buf.setLength(bufSegStart);
buf.append(parser.getSegmentStandin(segmentNumber));
}
break;
case FUNCTION:
case ALT_FUNCTION: {
iref[0] = pos;
TransliteratorIDParser.SingleID single = TransliteratorIDParser.parseFilterID(rule, iref);
// The next character MUST be a segment open
if (single == null || !Utility.parseChar(rule, iref, SEGMENT_OPEN)) {
syntaxError("Invalid function", rule, start);
}
Transliterator t = single.getInstance();
if (t == null) {
syntaxError("Invalid function ID", rule, start);
}
// bufSegStart is the offset in buf to the first
// character of the segment we are parsing.
int bufSegStart = buf.length();
// Parse the segment
pos = parseSection(rule, iref[0], limit, parser, buf, ILLEGAL_FUNC, true);
// After parsing a segment, the relevant characters are
// in buf, starting at offset bufSegStart.
FunctionReplacer r = new FunctionReplacer(t, new StringReplacer(buf.substring(bufSegStart), parser.curData));
// Replace the buffer contents with a stand-in
buf.setLength(bufSegStart);
buf.append(parser.generateStandInFor(r));
}
break;
case SymbolTable.SYMBOL_REF:
// Handle variable references and segment references "$1" .. "$9"
{
// A variable reference must be followed immediately
// by a Unicode identifier start and zero or more
// Unicode identifier part characters, or by a digit
// 1..9 if it is a segment reference.
if (pos == limit) {
// A variable ref character at the end acts as
// an anchor to the context limit, as in perl.
anchorEnd = true;
break;
}
// Parse "$1" "$2" .. "$9" .. (no upper limit)
c = rule.charAt(pos);
int r = UCharacter.digit(c, 10);
if (r >= 1 && r <= 9) {
iref[0] = pos;
r = Utility.parseNumber(rule, iref, 10);
if (r < 0) {
syntaxError("Undefined segment reference", rule, start);
}
pos = iref[0];
buf.append(parser.getSegmentStandin(r));
} else {
if (pp == null) { // Lazy create
pp = new ParsePosition(0);
}
pp.setIndex(pos);
String name = parser.parseData.parseReference(rule, pp, limit);
if (name == null) {
// This means the '$' was not followed by a
// valid name. Try to interpret it as an
// end anchor then. If this also doesn't work
// (if we see a following character) then signal
// an error.
anchorEnd = true;
break;
}
pos = pp.getIndex();
// If this is a variable definition statement,
// then the LHS variable will be undefined. In
// that case appendVariableDef() will append the
// special placeholder char variableLimit-1.
varStart = buf.length();
parser.appendVariableDef(name, buf);
varLimit = buf.length();
}
}
break;
case DOT:
buf.append(parser.getDotStandIn());
break;
case KLEENE_STAR:
case ONE_OR_MORE:
case ZERO_OR_ONE:
// Quantifiers. We handle single characters, quoted strings,
// variable references, and segments.
// a+ matches aaa
// 'foo'+ matches foofoofoo
// $v+ matches xyxyxy if $v == xy
// (seg)+ matches segsegseg
{
///CLOVER:OFF
// isSegment is always false
if (isSegment && buf.length() == bufStart) {
// The */+ immediately follows '('
syntaxError("Misplaced quantifier", rule, start);
break;
}
///CLOVER:ON
int qstart, qlimit;
// The */+ follows an isolated character or quote
// or variable reference
if (buf.length() == quoteLimit) {
// The */+ follows a 'quoted string'
qstart = quoteStart;
qlimit = quoteLimit;
} else if (buf.length() == varLimit) {
// The */+ follows a $variableReference
qstart = varStart;
qlimit = varLimit;
} else {
// The */+ follows a single character, possibly
// a segment standin
qstart = buf.length() - 1;
qlimit = qstart + 1;
}
UnicodeMatcher m;
try {
m = new StringMatcher(buf.toString(), qstart, qlimit, 0, parser.curData);
} catch (RuntimeException e) {
final String precontext = pos < 50 ? rule.substring(0, pos) : "..." + rule.substring(pos - 50, pos);
final String postContext = limit - pos <= 50 ? rule.substring(pos, limit) : rule.substring(pos, pos + 50) + "...";
throw (RuntimeException) new IllegalIcuArgumentException("Failure in rule: " + precontext + "$$$" + postContext)
.initCause(e);
}
int min = 0;
int max = Quantifier.MAX;
switch (c) {
case ONE_OR_MORE:
min = 1;
break;
case ZERO_OR_ONE:
min = 0;
max = 1;
break;
// case KLEENE_STAR:
// do nothing -- min, max already set
}
m = new Quantifier(m, min, max);
buf.setLength(qstart);
buf.append(parser.generateStandInFor(m));
}
break;
//------------------------------------------------------
// Elements allowed ONLY WITHIN segments
//------------------------------------------------------
case SEGMENT_CLOSE:
// assert(isSegment);
// We're done parsing a segment.
break main;
//------------------------------------------------------
// Elements allowed ONLY OUTSIDE segments
//------------------------------------------------------
case CONTEXT_ANTE:
if (ante >= 0) {
syntaxError("Multiple ante contexts", rule, start);
}
ante = buf.length();
break;
case CONTEXT_POST:
if (post >= 0) {
syntaxError("Multiple post contexts", rule, start);
}
post = buf.length();
break;
case CURSOR_POS:
if (cursor >= 0) {
syntaxError("Multiple cursors", rule, start);
}
cursor = buf.length();
break;
case CURSOR_OFFSET:
if (cursorOffset < 0) {
if (buf.length() > 0) {
syntaxError("Misplaced " + c, rule, start);
}
--cursorOffset;
} else if (cursorOffset > 0) {
if (buf.length() != cursorOffsetPos || cursor >= 0) {
syntaxError("Misplaced " + c, rule, start);
}
++cursorOffset;
} else {
if (cursor == 0 && buf.length() == 0) {
cursorOffset = -1;
} else if (cursor < 0) {
cursorOffsetPos = buf.length();
cursorOffset = 1;
} else {
syntaxError("Misplaced " + c, rule, start);
}
}
break;
//------------------------------------------------------
// Non-special characters
//------------------------------------------------------
default:
// Disallow unquoted characters other than [0-9A-Za-z]
// in the printable ASCII range. These characters are
// reserved for possible future use.
if (c >= 0x0021 && c <= 0x007E && !((c >= '0' && c <= '9') || (c >= 'A' && c <= 'Z') || (c >= 'a' && c <= 'z'))) {
syntaxError("Unquoted " + c, rule, start);
}
buf.append(c);
break;
}
}
return pos;
}
/**
* Remove context.
*/
void removeContext() {
text = text.substring(ante < 0 ? 0 : ante, post < 0 ? text.length() : post);
ante = post = -1;
anchorStart = anchorEnd = false;
}
/**
* Return true if this half looks like valid output, that is, does not contain quantifiers or other special input-only elements.
*/
public boolean isValidOutput(final TransliteratorParser parser) {
for (int i = 0; i < text.length();) {
int c = UTF16.charAt(text, i);
i += UTF16.getCharCount(c);
if (!parser.parseData.isReplacer(c)) {
return false;
}
}
return true;
}
/**
* Return true if this half looks like valid input, that is, does not contain functions or other special output-only elements.
*/
public boolean isValidInput(final TransliteratorParser parser) {
for (int i = 0; i < text.length();) {
int c = UTF16.charAt(text, i);
i += UTF16.getCharCount(c);
if (!parser.parseData.isMatcher(c)) {
return false;
}
}
return true;
}
}
//----------------------------------------------------------------------
// PUBLIC methods
//----------------------------------------------------------------------
/**
* Constructor.
*/
public TransliteratorParser() {
}
/**
* Parse a set of rules. After the parse completes, examine the public data members for results.
*/
public void parse(final String rules, final int dir) {
parseRules(new RuleArray(new String[] { rules }), dir);
}
/*
* Parse a set of rules. After the parse completes, examine the public
* data members for results.
*/
/* public void parse(ResourceReader rules, int direction) {
parseRules(new RuleReader(rules), direction);
}*/
//----------------------------------------------------------------------
// PRIVATE methods
//----------------------------------------------------------------------
/**
* Parse an array of zero or more rules. The strings in the array are treated as if they were concatenated together, with rule
* terminators inserted between array elements if not present already.
*
* Any previous rules are discarded. Typically this method is called exactly once, during construction.
*
* The member this.data will be set to null if there are no rules.
*
* @exception IllegalIcuArgumentException
* if there is a syntax error in the rules
*/
void parseRules(final RuleBody ruleArray, final int dir) {
boolean parsingIDs = true;
int ruleCount = 0;
dataVector = new ArrayList<Data>();
idBlockVector = new ArrayList<String>();
curData = null;
direction = dir;
compoundFilter = null;
variablesVector = new ArrayList<Object>();
variableNames = new HashMap<String, char[]>();
parseData = new ParseData();
List<RuntimeException> errors = new ArrayList<RuntimeException>();
int errorCount = 0;
ruleArray.reset();
StringBuilder idBlockResult = new StringBuilder();
// The compound filter offset is an index into idBlockResult.
// If it is 0, then the compound filter occurred at the start,
// and it is the offset to the _start_ of the compound filter
// pattern. Otherwise it is the offset to the _limit_ of the
// compound filter pattern within idBlockResult.
this.compoundFilter = null;
int compoundFilterOffset = -1;
main: for (;;) {
String rule = ruleArray.nextLine();
if (rule == null) {
break;
}
int pos = 0;
int limit = rule.length();
while (pos < limit) {
char c = rule.charAt(pos++);
if (PatternProps.isWhiteSpace(c)) {
continue;
}
// Skip lines starting with the comment character
if (c == RULE_COMMENT_CHAR) {
pos = rule.indexOf("\n", pos) + 1;
if (pos == 0) {
break; // No "\n" found; rest of rule is a commnet
}
continue; // Either fall out or restart with next line
}
// skip empty rules
if (c == END_OF_RULE)
continue;
// Often a rule file contains multiple errors. It's
// convenient to the rule author if these are all reported
// at once. We keep parsing rules even after a failure, up
// to a specified limit, and report all errors at once.
try {
++ruleCount;
// We've found the start of a rule or ID. c is its first
// character, and pos points past c.
--pos;
// Look for an ID token. Must have at least ID_TOKEN_LEN + 1
// chars left.
if ((pos + ID_TOKEN_LEN + 1) <= limit && rule.regionMatches(pos, ID_TOKEN, 0, ID_TOKEN_LEN)) {
pos += ID_TOKEN_LEN;
c = rule.charAt(pos);
while (PatternProps.isWhiteSpace(c) && pos < limit) {
++pos;
c = rule.charAt(pos);
}
int[] p = new int[] { pos };
if (!parsingIDs) {
if (curData != null) {
if (direction == Transliterator.FORWARD)
dataVector.add(curData);
else
dataVector.add(0, curData);
curData = null;
}
parsingIDs = true;
}
TransliteratorIDParser.SingleID id = TransliteratorIDParser.parseSingleID(rule, p, direction);
if (p[0] != pos && Utility.parseChar(rule, p, END_OF_RULE)) {
// Successful ::ID parse.
if (direction == Transliterator.FORWARD) {
idBlockResult.append(id.canonID).append(END_OF_RULE);
} else {
idBlockResult.insert(0, id.canonID + END_OF_RULE);
}
} else {
// Couldn't parse an ID. Try to parse a global filter
int[] withParens = new int[] { -1 };
UnicodeSet f = TransliteratorIDParser.parseGlobalFilter(rule, p, direction, withParens, null);
if (f != null && Utility.parseChar(rule, p, END_OF_RULE)) {
if ((direction == Transliterator.FORWARD) == (withParens[0] == 0)) {
if (compoundFilter != null) {
// Multiple compound filters
syntaxError("Multiple global filters", rule, pos);
}
compoundFilter = f;
compoundFilterOffset = ruleCount;
}
} else {
// Invalid ::id
// Can be parsed as neither an ID nor a global filter
syntaxError("Invalid ::ID", rule, pos);
}
}
pos = p[0];
} else {
if (parsingIDs) {
if (direction == Transliterator.FORWARD)
idBlockVector.add(idBlockResult.toString());
else
idBlockVector.add(0, idBlockResult.toString());
idBlockResult.delete(0, idBlockResult.length());
parsingIDs = false;
curData = new RuleBasedTransliterator.Data();
// By default, rules use part of the private use area
// E000..F8FF for variables and other stand-ins. Currently
// the range F000..F8FF is typically sufficient. The 'use
// variable range' pragma allows rule sets to modify this.
setVariableRange(0xF000, 0xF8FF);
}
if (resemblesPragma(rule, pos, limit)) {
int ppp = parsePragma(rule, pos, limit);
if (ppp < 0) {
syntaxError("Unrecognized pragma", rule, pos);
}
pos = ppp;
// Parse a rule
} else {
pos = parseRule(rule, pos, limit);
}
}
} catch (IllegalArgumentException e) {
if (errorCount == 30) {
IllegalIcuArgumentException icuEx = new IllegalIcuArgumentException(
"\nMore than 30 errors; further messages squelched");
icuEx.initCause(e);
errors.add(icuEx);
break main;
}
e.fillInStackTrace();
errors.add(e);
++errorCount;
pos = ruleEnd(rule, pos, limit) + 1; // +1 advances past ';'
}
}
}
if (parsingIDs && idBlockResult.length() > 0) {
if (direction == Transliterator.FORWARD)
idBlockVector.add(idBlockResult.toString());
else
idBlockVector.add(0, idBlockResult.toString());
} else if (!parsingIDs && curData != null) {
if (direction == Transliterator.FORWARD)
dataVector.add(curData);
else
dataVector.add(0, curData);
}
// Convert the set vector to an array
for (int i = 0; i < dataVector.size(); i++) {
Data data = dataVector.get(i);
data.variables = new Object[variablesVector.size()];
variablesVector.toArray(data.variables);
data.variableNames = new HashMap<String, char[]>();
data.variableNames.putAll(variableNames);
}
variablesVector = null;
// Do more syntax checking and index the rules
try {
if (compoundFilter != null) {
if ((direction == Transliterator.FORWARD && compoundFilterOffset != 1)
|| (direction == Transliterator.REVERSE && compoundFilterOffset != ruleCount)) {
throw new IllegalIcuArgumentException("Compound filters misplaced");
}
}
for (int i = 0; i < dataVector.size(); i++) {
Data data = dataVector.get(i);
data.ruleSet.freeze();
}
if (idBlockVector.size() == 1 && (idBlockVector.get(0)).length() == 0)
idBlockVector.remove(0);
} catch (IllegalArgumentException e) {
e.fillInStackTrace();
errors.add(e);
}
if (errors.size() != 0) {
for (int i = errors.size() - 1; i > 0; --i) {
RuntimeException previous = errors.get(i - 1);
while (previous.getCause() != null) {
previous = (RuntimeException) previous.getCause(); // chain specially
}
previous.initCause(errors.get(i));
}
throw errors.get(0);
// if initCause not supported: throw new IllegalArgumentException(errors.toString());
}
}
/**
* MAIN PARSER. Parse the next rule in the given rule string, starting at pos. Return the index after the last character parsed. Do not
* parse characters at or after limit.
*
* Important: The character at pos must be a non-whitespace character that is not the comment character.
*
* This method handles quoting, escaping, and whitespace removal. It parses the end-of-rule character. It recognizes context and cursor
* indicators. Once it does a lexical breakdown of the rule at pos, it creates a rule object and adds it to our rule list.
*
* This method is tightly coupled to the inner class RuleHalf.
*/
private int parseRule(final String rule, int pos, final int limit) {
// Locate the left side, operator, and right side
int start = pos;
char operator = 0;
// Set up segments data
segmentStandins = new StringBuffer();
segmentObjects = new ArrayList<StringMatcher>();
RuleHalf left = new RuleHalf();
RuleHalf right = new RuleHalf();
undefinedVariableName = null;
pos = left.parse(rule, pos, limit, this);
if (pos == limit || OPERATORS.indexOf(operator = rule.charAt(--pos)) < 0) {
syntaxError("No operator pos=" + pos, rule, start);
}
++pos;
// Found an operator char. Check for forward-reverse operator.
if (operator == REVERSE_RULE_OP && (pos < limit && rule.charAt(pos) == FORWARD_RULE_OP)) {
++pos;
operator = FWDREV_RULE_OP;
}
// Translate alternate op characters.
switch (operator) {
case ALT_FORWARD_RULE_OP:
operator = FORWARD_RULE_OP;
break;
case ALT_REVERSE_RULE_OP:
operator = REVERSE_RULE_OP;
break;
case ALT_FWDREV_RULE_OP:
operator = FWDREV_RULE_OP;
break;
}
pos = right.parse(rule, pos, limit, this);
if (pos < limit) {
if (rule.charAt(--pos) == END_OF_RULE) {
++pos;
} else {
// RuleHalf parser must have terminated at an operator
syntaxError("Unquoted operator", rule, start);
}
}
if (operator == VARIABLE_DEF_OP) {
// LHS is the name. RHS is a single character, either a literal
// or a set (already parsed). If RHS is longer than one
// character, it is either a multi-character string, or multiple
// sets, or a mixture of chars and sets -- syntax error.
// We expect to see a single undefined variable (the one being
// defined).
if (undefinedVariableName == null) {
syntaxError("Missing '$' or duplicate definition", rule, start);
}
if (left.text.length() != 1 || left.text.charAt(0) != variableLimit) {
syntaxError("Malformed LHS", rule, start);
}
if (left.anchorStart || left.anchorEnd || right.anchorStart || right.anchorEnd) {
syntaxError("Malformed variable def", rule, start);
}
// We allow anything on the right, including an empty string.
int n = right.text.length();
char[] value = new char[n];
right.text.getChars(0, n, value, 0);
variableNames.put(undefinedVariableName, value);
++variableLimit;
return pos;
}
// If this is not a variable definition rule, we shouldn't have
// any undefined variable names.
if (undefinedVariableName != null) {
syntaxError("Undefined variable $" + undefinedVariableName, rule, start);
}
// Verify segments
if (segmentStandins.length() > segmentObjects.size()) {
syntaxError("Undefined segment reference", rule, start);
}
for (int i = 0; i < segmentStandins.length(); ++i) {
if (segmentStandins.charAt(i) == 0) {
syntaxError("Internal error", rule, start); // will never happen
}
}
for (int i = 0; i < segmentObjects.size(); ++i) {
if (segmentObjects.get(i) == null) {
syntaxError("Internal error", rule, start); // will never happen
}
}
// If the direction we want doesn't match the rule
// direction, do nothing.
if (operator != FWDREV_RULE_OP && ((direction == Transliterator.FORWARD) != (operator == FORWARD_RULE_OP))) {
return pos;
}
// Transform the rule into a forward rule by swapping the
// sides if necessary.
if (direction == Transliterator.REVERSE) {
RuleHalf temp = left;
left = right;
right = temp;
}
// Remove non-applicable elements in forward-reverse
// rules. Bidirectional rules ignore elements that do not
// apply.
if (operator == FWDREV_RULE_OP) {
right.removeContext();
left.cursor = -1;
left.cursorOffset = 0;
}
// Normalize context
if (left.ante < 0) {
left.ante = 0;
}
if (left.post < 0) {
left.post = left.text.length();
}
// Context is only allowed on the input side. Cursors are only
// allowed on the output side. Segment delimiters can only appear
// on the left, and references on the right. Cursor offset
// cannot appear without an explicit cursor. Cursor offset
// cannot place the cursor outside the limits of the context.
// Anchors are only allowed on the input side.
if (right.ante >= 0 || right.post >= 0 || left.cursor >= 0 || (right.cursorOffset != 0 && right.cursor < 0) ||
// - The following two checks were used to ensure that the
// - the cursor offset stayed within the ante- or postcontext.
// - However, with the addition of quantifiers, we have to
// - allow arbitrary cursor offsets and do runtime checking.
//(right.cursorOffset > (left.text.length() - left.post)) ||
//(-right.cursorOffset > left.ante) ||
right.anchorStart || right.anchorEnd || !left.isValidInput(this) || !right.isValidOutput(this) || left.ante > left.post) {
syntaxError("Malformed rule", rule, start);
}
// Flatten segment objects vector to an array
UnicodeMatcher[] segmentsArray = null;
if (segmentObjects.size() > 0) {
segmentsArray = new UnicodeMatcher[segmentObjects.size()];
segmentObjects.toArray(segmentsArray);
}
curData.ruleSet.addRule(new TransliterationRule(left.text, left.ante, left.post, right.text, right.cursor, right.cursorOffset,
segmentsArray, left.anchorStart, left.anchorEnd, curData));
return pos;
}
/**
* Set the variable range to [start, end] (inclusive).
*/
private void setVariableRange(final int start, final int end) {
if (start > end || start < 0 || end > 0xFFFF) {
throw new IllegalIcuArgumentException("Invalid variable range " + start + ", " + end);
}
curData.variablesBase = (char) start; // first private use
if (dataVector.size() == 0) {
variableNext = (char) start;
variableLimit = (char) (end + 1);
}
}
/**
* Assert that the given character is NOT within the variable range. If it is, signal an error. This is neccesary to ensure that the
* variable range does not overlap characters used in a rule.
*/
private void checkVariableRange(final int ch, final String rule, final int start) {
if (ch >= curData.variablesBase && ch < variableLimit) {
syntaxError("Variable range character in rule", rule, start);
}
}
// (The following method is part of an unimplemented feature.
// Remove this clover pragma after the feature is implemented.
// 2003-06-11 ICU 2.6 Alan)
///CLOVER:OFF
/**
* Set the maximum backup to 'backup', in response to a pragma statement.
*/
private void pragmaMaximumBackup(final int backup) {
//TODO Finish
throw new IllegalIcuArgumentException("use maximum backup pragma not implemented yet");
}
///CLOVER:ON
// (The following method is part of an unimplemented feature.
// Remove this clover pragma after the feature is implemented.
// 2003-06-11 ICU 2.6 Alan)
///CLOVER:OFF
/**
* Begin normalizing all rules using the given mode, in response to a pragma statement.
*/
private void pragmaNormalizeRules(final Normalizer.Mode mode) {
//TODO Finish
throw new IllegalIcuArgumentException("use normalize rules pragma not implemented yet");
}
///CLOVER:ON
/**
* Return true if the given rule looks like a pragma.
*
* @param pos
* offset to the first non-whitespace character of the rule.
* @param limit
* pointer past the last character of the rule.
*/
static boolean resemblesPragma(final String rule, final int pos, final int limit) {
// Must start with /use\s/i
return Utility.parsePattern(rule, pos, limit, "use ", null) >= 0;
}
/**
* Parse a pragma. This method assumes resemblesPragma() has already returned true.
*
* @param pos
* offset to the first non-whitespace character of the rule.
* @param limit
* pointer past the last character of the rule.
* @return the position index after the final ';' of the pragma, or -1 on failure.
*/
private int parsePragma(final String rule, int pos, final int limit) {
int[] array = new int[2];
// resemblesPragma() has already returned true, so we
// know that pos points to /use\s/i; we can skip 4 characters
// immediately
pos += 4;
// Here are the pragmas we recognize:
// use variable range 0xE000 0xEFFF;
// use maximum backup 16;
// use nfd rules;
int p = Utility.parsePattern(rule, pos, limit, "~variable range # #~;", array);
if (p >= 0) {
setVariableRange(array[0], array[1]);
return p;
}
p = Utility.parsePattern(rule, pos, limit, "~maximum backup #~;", array);
if (p >= 0) {
pragmaMaximumBackup(array[0]);
return p;
}
p = Utility.parsePattern(rule, pos, limit, "~nfd rules~;", null);
if (p >= 0) {
pragmaNormalizeRules(Normalizer.NFD);
return p;
}
p = Utility.parsePattern(rule, pos, limit, "~nfc rules~;", null);
if (p >= 0) {
pragmaNormalizeRules(Normalizer.NFC);
return p;
}
// Syntax error: unable to parse pragma
return -1;
}
/**
* Throw an exception indicating a syntax error. Search the rule string for the probable end of the rule. Of course, if the error is
* that the end of rule marker is missing, then the rule end will not be found. In any case the rule start will be correctly reported.
*
* @param msg
* error description
* @param rule
* pattern string
* @param start
* position of first character of current rule
*/
static final void syntaxError(final String msg, final String rule, final int start) {
int end = ruleEnd(rule, start, rule.length());
throw new IllegalIcuArgumentException(msg + " in \"" + Utility.escape(rule.substring(start, end)) + '"');
}
static final int ruleEnd(final String rule, final int start, final int limit) {
int end = Utility.quotedIndexOf(rule, start, limit, ";");
if (end < 0) {
end = limit;
}
return end;
}
/**
* Parse a UnicodeSet out, store it, and return the stand-in character used to represent it.
*/
private final char parseSet(final String rule, final ParsePosition pos) {
UnicodeSet set = new UnicodeSet(rule, pos, parseData);
if (variableNext >= variableLimit) {
throw new RuntimeException("Private use variables exhausted");
}
set.compact();
return generateStandInFor(set);
}
/**
* Generate and return a stand-in for a new UnicodeMatcher or UnicodeReplacer. Store the object.
*/
char generateStandInFor(final Object obj) {
// assert(obj != null);
// Look up previous stand-in, if any. This is a short list
// (typical n is 0, 1, or 2); linear search is optimal.
for (int i = 0; i < variablesVector.size(); ++i) {
if (variablesVector.get(i) == obj) { // [sic] pointer comparison
return (char) (curData.variablesBase + i);
}
}
if (variableNext >= variableLimit) {
throw new RuntimeException("Variable range exhausted");
}
variablesVector.add(obj);
return variableNext++;
}
/**
* Return the standin for segment seg (1-based).
*/
public char getSegmentStandin(final int seg) {
if (segmentStandins.length() < seg) {
segmentStandins.setLength(seg);
}
char c = segmentStandins.charAt(seg - 1);
if (c == 0) {
if (variableNext >= variableLimit) {
throw new RuntimeException("Variable range exhausted");
}
c = variableNext++;
// Set a placeholder in the master variables vector that will be
// filled in later by setSegmentObject(). We know that we will get
// called first because setSegmentObject() will call us.
variablesVector.add(null);
segmentStandins.setCharAt(seg - 1, c);
}
return c;
}
/**
* Set the object for segment seg (1-based).
*/
public void setSegmentObject(final int seg, final StringMatcher obj) {
// Since we call parseSection() recursively, nested
// segments will result in segment i+1 getting parsed
// and stored before segment i; be careful with the
// vector handling here.
while (segmentObjects.size() < seg) {
segmentObjects.add(null);
}
int index = getSegmentStandin(seg) - curData.variablesBase;
if (segmentObjects.get(seg - 1) != null || variablesVector.get(index) != null) {
throw new RuntimeException(); // should never happen
}
segmentObjects.set(seg - 1, obj);
variablesVector.set(index, obj);
}
/**
* Return the stand-in for the dot set. It is allocated the first time and reused thereafter.
*/
char getDotStandIn() {
if (dotStandIn == -1) {
dotStandIn = generateStandInFor(new UnicodeSet(DOT_SET));
}
return (char) dotStandIn;
}
/**
* Append the value of the given variable name to the given StringBuffer.
*
* @exception IllegalIcuArgumentException
* if the name is unknown.
*/
private void appendVariableDef(final String name, final StringBuffer buf) {
char[] ch = variableNames.get(name);
if (ch == null) {
// We allow one undefined variable so that variable definition
// statements work. For the first undefined variable we return
// the special placeholder variableLimit-1, and save the variable
// name.
if (undefinedVariableName == null) {
undefinedVariableName = name;
if (variableNext >= variableLimit) {
throw new RuntimeException("Private use variables exhausted");
}
buf.append(--variableLimit);
} else {
throw new IllegalIcuArgumentException("Undefined variable $" + name);
}
} else {
buf.append(ch);
}
}
}
//eof